/src/libxlsxwriter/third_party/md5/md5.c
Line | Count | Source |
1 | | /* |
2 | | * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc. |
3 | | * MD5 Message-Digest Algorithm (RFC 1321). |
4 | | * |
5 | | * Homepage: |
6 | | * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5 |
7 | | * |
8 | | * Author: |
9 | | * Alexander Peslyak, better known as Solar Designer <solar at openwall.com> |
10 | | * |
11 | | * This software was written by Alexander Peslyak in 2001. No copyright is |
12 | | * claimed, and the software is hereby placed in the public domain. |
13 | | * In case this attempt to disclaim copyright and place the software in the |
14 | | * public domain is deemed null and void, then the software is |
15 | | * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the |
16 | | * general public under the following terms: |
17 | | * |
18 | | * Redistribution and use in source and binary forms, with or without |
19 | | * modification, are permitted. |
20 | | * |
21 | | * There's ABSOLUTELY NO WARRANTY, express or implied. |
22 | | * |
23 | | * (This is a heavily cut-down "BSD license".) |
24 | | * |
25 | | * This differs from Colin Plumb's older public domain implementation in that |
26 | | * no exactly 32-bit integer data type is required (any 32-bit or wider |
27 | | * unsigned integer data type will do), there's no compile-time endianness |
28 | | * configuration, and the function prototypes match OpenSSL's. No code from |
29 | | * Colin Plumb's implementation has been reused; this comment merely compares |
30 | | * the properties of the two independent implementations. |
31 | | * |
32 | | * The primary goals of this implementation are portability and ease of use. |
33 | | * It is meant to be fast, but not as fast as possible. Some known |
34 | | * optimizations are not included to reduce source code size and avoid |
35 | | * compile-time configuration. |
36 | | */ |
37 | | |
38 | | #ifndef HAVE_OPENSSL |
39 | | |
40 | | #include <string.h> |
41 | | |
42 | | #include "md5.h" |
43 | | |
44 | | /* |
45 | | * The basic MD5 functions. |
46 | | * |
47 | | * F and G are optimized compared to their RFC 1321 definitions for |
48 | | * architectures that lack an AND-NOT instruction, just like in Colin Plumb's |
49 | | * implementation. |
50 | | */ |
51 | 0 | #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) |
52 | 0 | #define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y)))) |
53 | 0 | #define H(x, y, z) (((x) ^ (y)) ^ (z)) |
54 | 0 | #define H2(x, y, z) ((x) ^ ((y) ^ (z))) |
55 | 0 | #define I(x, y, z) ((y) ^ ((x) | ~(z))) |
56 | | |
57 | | /* |
58 | | * The MD5 transformation for all four rounds. |
59 | | */ |
60 | | #define STEP(f, a, b, c, d, x, t, s) \ |
61 | 0 | (a) += f((b), (c), (d)) + (x) + (t); \ |
62 | 0 | (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \ |
63 | 0 | (a) += (b); |
64 | | |
65 | | /* |
66 | | * SET reads 4 input bytes in little-endian byte order and stores them in a |
67 | | * properly aligned word in host byte order. |
68 | | * |
69 | | * The check for little-endian architectures that tolerate unaligned memory |
70 | | * accesses is just an optimization. Nothing will break if it fails to detect |
71 | | * a suitable architecture. |
72 | | * |
73 | | * Unfortunately, this optimization may be a C strict aliasing rules violation |
74 | | * if the caller's data buffer has effective type that cannot be aliased by |
75 | | * MD5_u32plus. In practice, this problem may occur if these MD5 routines are |
76 | | * inlined into a calling function, or with future and dangerously advanced |
77 | | * link-time optimizations. For the time being, keeping these MD5 routines in |
78 | | * their own translation unit avoids the problem. |
79 | | */ |
80 | | #if defined(__i386__) || defined(__x86_64__) || defined(__vax__) |
81 | | #define SET(n) \ |
82 | | (*(MD5_u32plus *)&ptr[(n) * 4]) |
83 | | #define GET(n) \ |
84 | | SET(n) |
85 | | #else |
86 | | #define SET(n) \ |
87 | | (ctx->block[(n)] = \ |
88 | | (MD5_u32plus)ptr[(n) * 4] | \ |
89 | | ((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \ |
90 | | ((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \ |
91 | | ((MD5_u32plus)ptr[(n) * 4 + 3] << 24)) |
92 | | #define GET(n) \ |
93 | | (ctx->block[(n)]) |
94 | | #endif |
95 | | |
96 | | /* |
97 | | * This processes one or more 64-byte data blocks, but does NOT update the bit |
98 | | * counters. There are no alignment requirements. |
99 | | */ |
100 | | static const void *body(MD5_CTX *ctx, const void *data, unsigned long size) |
101 | 0 | { |
102 | 0 | const unsigned char *ptr; |
103 | 0 | MD5_u32plus a, b, c, d; |
104 | 0 | MD5_u32plus saved_a, saved_b, saved_c, saved_d; |
105 | |
|
106 | 0 | ptr = (const unsigned char *)data; |
107 | |
|
108 | 0 | a = ctx->a; |
109 | 0 | b = ctx->b; |
110 | 0 | c = ctx->c; |
111 | 0 | d = ctx->d; |
112 | |
|
113 | 0 | do { |
114 | 0 | saved_a = a; |
115 | 0 | saved_b = b; |
116 | 0 | saved_c = c; |
117 | 0 | saved_d = d; |
118 | | |
119 | | /* Round 1 */ |
120 | 0 | STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7) |
121 | 0 | STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12) |
122 | 0 | STEP(F, c, d, a, b, SET(2), 0x242070db, 17) |
123 | 0 | STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22) |
124 | 0 | STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7) |
125 | 0 | STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12) |
126 | 0 | STEP(F, c, d, a, b, SET(6), 0xa8304613, 17) |
127 | 0 | STEP(F, b, c, d, a, SET(7), 0xfd469501, 22) |
128 | 0 | STEP(F, a, b, c, d, SET(8), 0x698098d8, 7) |
129 | 0 | STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12) |
130 | 0 | STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17) |
131 | 0 | STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22) |
132 | 0 | STEP(F, a, b, c, d, SET(12), 0x6b901122, 7) |
133 | 0 | STEP(F, d, a, b, c, SET(13), 0xfd987193, 12) |
134 | 0 | STEP(F, c, d, a, b, SET(14), 0xa679438e, 17) |
135 | 0 | STEP(F, b, c, d, a, SET(15), 0x49b40821, 22) |
136 | | |
137 | | /* Round 2 */ |
138 | 0 | STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5) |
139 | 0 | STEP(G, d, a, b, c, GET(6), 0xc040b340, 9) |
140 | 0 | STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14) |
141 | 0 | STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20) |
142 | 0 | STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5) |
143 | 0 | STEP(G, d, a, b, c, GET(10), 0x02441453, 9) |
144 | 0 | STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14) |
145 | 0 | STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20) |
146 | 0 | STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5) |
147 | 0 | STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9) |
148 | 0 | STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14) |
149 | 0 | STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20) |
150 | 0 | STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5) |
151 | 0 | STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9) |
152 | 0 | STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14) |
153 | 0 | STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20) |
154 | | |
155 | | /* Round 3 */ |
156 | 0 | STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4) |
157 | 0 | STEP(H2, d, a, b, c, GET(8), 0x8771f681, 11) |
158 | 0 | STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16) |
159 | 0 | STEP(H2, b, c, d, a, GET(14), 0xfde5380c, 23) |
160 | 0 | STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4) |
161 | 0 | STEP(H2, d, a, b, c, GET(4), 0x4bdecfa9, 11) |
162 | 0 | STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16) |
163 | 0 | STEP(H2, b, c, d, a, GET(10), 0xbebfbc70, 23) |
164 | 0 | STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4) |
165 | 0 | STEP(H2, d, a, b, c, GET(0), 0xeaa127fa, 11) |
166 | 0 | STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16) |
167 | 0 | STEP(H2, b, c, d, a, GET(6), 0x04881d05, 23) |
168 | 0 | STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4) |
169 | 0 | STEP(H2, d, a, b, c, GET(12), 0xe6db99e5, 11) |
170 | 0 | STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16) |
171 | 0 | STEP(H2, b, c, d, a, GET(2), 0xc4ac5665, 23) |
172 | | |
173 | | /* Round 4 */ |
174 | 0 | STEP(I, a, b, c, d, GET(0), 0xf4292244, 6) |
175 | 0 | STEP(I, d, a, b, c, GET(7), 0x432aff97, 10) |
176 | 0 | STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15) |
177 | 0 | STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21) |
178 | 0 | STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6) |
179 | 0 | STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10) |
180 | 0 | STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15) |
181 | 0 | STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21) |
182 | 0 | STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6) |
183 | 0 | STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10) |
184 | 0 | STEP(I, c, d, a, b, GET(6), 0xa3014314, 15) |
185 | 0 | STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21) |
186 | 0 | STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6) |
187 | 0 | STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10) |
188 | 0 | STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15) |
189 | 0 | STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21) |
190 | |
|
191 | 0 | a += saved_a; |
192 | 0 | b += saved_b; |
193 | 0 | c += saved_c; |
194 | 0 | d += saved_d; |
195 | |
|
196 | 0 | ptr += 64; |
197 | 0 | } while (size -= 64); |
198 | |
|
199 | 0 | ctx->a = a; |
200 | 0 | ctx->b = b; |
201 | 0 | ctx->c = c; |
202 | 0 | ctx->d = d; |
203 | |
|
204 | 0 | return ptr; |
205 | 0 | } |
206 | | |
207 | | void MD5_Init(MD5_CTX *ctx) |
208 | 0 | { |
209 | 0 | ctx->a = 0x67452301; |
210 | 0 | ctx->b = 0xefcdab89; |
211 | 0 | ctx->c = 0x98badcfe; |
212 | 0 | ctx->d = 0x10325476; |
213 | |
|
214 | 0 | ctx->lo = 0; |
215 | 0 | ctx->hi = 0; |
216 | 0 | } |
217 | | |
218 | | void MD5_Update(MD5_CTX *ctx, const void *data, unsigned long size) |
219 | 0 | { |
220 | 0 | MD5_u32plus saved_lo; |
221 | 0 | unsigned long used, available; |
222 | |
|
223 | 0 | saved_lo = ctx->lo; |
224 | 0 | if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo) |
225 | 0 | ctx->hi++; |
226 | 0 | ctx->hi += size >> 29; |
227 | |
|
228 | 0 | used = saved_lo & 0x3f; |
229 | |
|
230 | 0 | if (used) { |
231 | 0 | available = 64 - used; |
232 | |
|
233 | 0 | if (size < available) { |
234 | 0 | memcpy(&ctx->buffer[used], data, size); |
235 | 0 | return; |
236 | 0 | } |
237 | | |
238 | 0 | memcpy(&ctx->buffer[used], data, available); |
239 | 0 | data = (const unsigned char *)data + available; |
240 | 0 | size -= available; |
241 | 0 | body(ctx, ctx->buffer, 64); |
242 | 0 | } |
243 | | |
244 | 0 | if (size >= 64) { |
245 | 0 | data = body(ctx, data, size & ~(unsigned long)0x3f); |
246 | 0 | size &= 0x3f; |
247 | 0 | } |
248 | |
|
249 | 0 | memcpy(ctx->buffer, data, size); |
250 | 0 | } |
251 | | |
252 | | #define OUT(dst, src) \ |
253 | 0 | (dst)[0] = (unsigned char)(src); \ |
254 | 0 | (dst)[1] = (unsigned char)((src) >> 8); \ |
255 | 0 | (dst)[2] = (unsigned char)((src) >> 16); \ |
256 | 0 | (dst)[3] = (unsigned char)((src) >> 24); |
257 | | |
258 | | void MD5_Final(unsigned char *result, MD5_CTX *ctx) |
259 | 0 | { |
260 | 0 | unsigned long used, available; |
261 | |
|
262 | 0 | used = ctx->lo & 0x3f; |
263 | |
|
264 | 0 | ctx->buffer[used++] = 0x80; |
265 | |
|
266 | 0 | available = 64 - used; |
267 | |
|
268 | 0 | if (available < 8) { |
269 | 0 | memset(&ctx->buffer[used], 0, available); |
270 | 0 | body(ctx, ctx->buffer, 64); |
271 | 0 | used = 0; |
272 | 0 | available = 64; |
273 | 0 | } |
274 | |
|
275 | 0 | memset(&ctx->buffer[used], 0, available - 8); |
276 | |
|
277 | 0 | ctx->lo <<= 3; |
278 | 0 | OUT(&ctx->buffer[56], ctx->lo) |
279 | 0 | OUT(&ctx->buffer[60], ctx->hi) |
280 | |
|
281 | 0 | body(ctx, ctx->buffer, 64); |
282 | |
|
283 | 0 | OUT(&result[0], ctx->a) |
284 | 0 | OUT(&result[4], ctx->b) |
285 | 0 | OUT(&result[8], ctx->c) |
286 | 0 | OUT(&result[12], ctx->d) |
287 | |
|
288 | 0 | memset(ctx, 0, sizeof(*ctx)); |
289 | 0 | } |
290 | | |
291 | | #endif |