Coverage Report

Created: 2025-11-11 07:03

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libxlsxwriter/third_party/md5/md5.c
Line
Count
Source
1
/*
2
 * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
3
 * MD5 Message-Digest Algorithm (RFC 1321).
4
 *
5
 * Homepage:
6
 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
7
 *
8
 * Author:
9
 * Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
10
 *
11
 * This software was written by Alexander Peslyak in 2001.  No copyright is
12
 * claimed, and the software is hereby placed in the public domain.
13
 * In case this attempt to disclaim copyright and place the software in the
14
 * public domain is deemed null and void, then the software is
15
 * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
16
 * general public under the following terms:
17
 *
18
 * Redistribution and use in source and binary forms, with or without
19
 * modification, are permitted.
20
 *
21
 * There's ABSOLUTELY NO WARRANTY, express or implied.
22
 *
23
 * (This is a heavily cut-down "BSD license".)
24
 *
25
 * This differs from Colin Plumb's older public domain implementation in that
26
 * no exactly 32-bit integer data type is required (any 32-bit or wider
27
 * unsigned integer data type will do), there's no compile-time endianness
28
 * configuration, and the function prototypes match OpenSSL's.  No code from
29
 * Colin Plumb's implementation has been reused; this comment merely compares
30
 * the properties of the two independent implementations.
31
 *
32
 * The primary goals of this implementation are portability and ease of use.
33
 * It is meant to be fast, but not as fast as possible.  Some known
34
 * optimizations are not included to reduce source code size and avoid
35
 * compile-time configuration.
36
 */
37
38
#ifndef HAVE_OPENSSL
39
40
#include <string.h>
41
42
#include "md5.h"
43
44
/*
45
 * The basic MD5 functions.
46
 *
47
 * F and G are optimized compared to their RFC 1321 definitions for
48
 * architectures that lack an AND-NOT instruction, just like in Colin Plumb's
49
 * implementation.
50
 */
51
0
#define F(x, y, z)      ((z) ^ ((x) & ((y) ^ (z))))
52
0
#define G(x, y, z)      ((y) ^ ((z) & ((x) ^ (y))))
53
0
#define H(x, y, z)      (((x) ^ (y)) ^ (z))
54
0
#define H2(x, y, z)     ((x) ^ ((y) ^ (z)))
55
0
#define I(x, y, z)      ((y) ^ ((x) | ~(z)))
56
57
/*
58
 * The MD5 transformation for all four rounds.
59
 */
60
#define STEP(f, a, b, c, d, x, t, s) \
61
0
  (a) += f((b), (c), (d)) + (x) + (t); \
62
0
  (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
63
0
  (a) += (b);
64
65
/*
66
 * SET reads 4 input bytes in little-endian byte order and stores them in a
67
 * properly aligned word in host byte order.
68
 *
69
 * The check for little-endian architectures that tolerate unaligned memory
70
 * accesses is just an optimization.  Nothing will break if it fails to detect
71
 * a suitable architecture.
72
 *
73
 * Unfortunately, this optimization may be a C strict aliasing rules violation
74
 * if the caller's data buffer has effective type that cannot be aliased by
75
 * MD5_u32plus.  In practice, this problem may occur if these MD5 routines are
76
 * inlined into a calling function, or with future and dangerously advanced
77
 * link-time optimizations.  For the time being, keeping these MD5 routines in
78
 * their own translation unit avoids the problem.
79
 */
80
#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
81
#define SET(n) \
82
  (*(MD5_u32plus *)&ptr[(n) * 4])
83
#define GET(n) \
84
  SET(n)
85
#else
86
#define SET(n) \
87
  (ctx->block[(n)] = \
88
  (MD5_u32plus)ptr[(n) * 4] | \
89
  ((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \
90
  ((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \
91
  ((MD5_u32plus)ptr[(n) * 4 + 3] << 24))
92
#define GET(n) \
93
  (ctx->block[(n)])
94
#endif
95
96
/*
97
 * This processes one or more 64-byte data blocks, but does NOT update the bit
98
 * counters.  There are no alignment requirements.
99
 */
100
static const void *body(MD5_CTX *ctx, const void *data, unsigned long size)
101
0
{
102
0
  const unsigned char *ptr;
103
0
  MD5_u32plus a, b, c, d;
104
0
  MD5_u32plus saved_a, saved_b, saved_c, saved_d;
105
106
0
  ptr = (const unsigned char *)data;
107
108
0
  a = ctx->a;
109
0
  b = ctx->b;
110
0
  c = ctx->c;
111
0
  d = ctx->d;
112
113
0
  do {
114
0
    saved_a = a;
115
0
    saved_b = b;
116
0
    saved_c = c;
117
0
    saved_d = d;
118
119
/* Round 1 */
120
0
    STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7)
121
0
    STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12)
122
0
    STEP(F, c, d, a, b, SET(2), 0x242070db, 17)
123
0
    STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22)
124
0
    STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7)
125
0
    STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12)
126
0
    STEP(F, c, d, a, b, SET(6), 0xa8304613, 17)
127
0
    STEP(F, b, c, d, a, SET(7), 0xfd469501, 22)
128
0
    STEP(F, a, b, c, d, SET(8), 0x698098d8, 7)
129
0
    STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12)
130
0
    STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17)
131
0
    STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22)
132
0
    STEP(F, a, b, c, d, SET(12), 0x6b901122, 7)
133
0
    STEP(F, d, a, b, c, SET(13), 0xfd987193, 12)
134
0
    STEP(F, c, d, a, b, SET(14), 0xa679438e, 17)
135
0
    STEP(F, b, c, d, a, SET(15), 0x49b40821, 22)
136
137
/* Round 2 */
138
0
    STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5)
139
0
    STEP(G, d, a, b, c, GET(6), 0xc040b340, 9)
140
0
    STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14)
141
0
    STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20)
142
0
    STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5)
143
0
    STEP(G, d, a, b, c, GET(10), 0x02441453, 9)
144
0
    STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14)
145
0
    STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20)
146
0
    STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5)
147
0
    STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9)
148
0
    STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14)
149
0
    STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20)
150
0
    STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5)
151
0
    STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9)
152
0
    STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14)
153
0
    STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20)
154
155
/* Round 3 */
156
0
    STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4)
157
0
    STEP(H2, d, a, b, c, GET(8), 0x8771f681, 11)
158
0
    STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16)
159
0
    STEP(H2, b, c, d, a, GET(14), 0xfde5380c, 23)
160
0
    STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4)
161
0
    STEP(H2, d, a, b, c, GET(4), 0x4bdecfa9, 11)
162
0
    STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16)
163
0
    STEP(H2, b, c, d, a, GET(10), 0xbebfbc70, 23)
164
0
    STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4)
165
0
    STEP(H2, d, a, b, c, GET(0), 0xeaa127fa, 11)
166
0
    STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16)
167
0
    STEP(H2, b, c, d, a, GET(6), 0x04881d05, 23)
168
0
    STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4)
169
0
    STEP(H2, d, a, b, c, GET(12), 0xe6db99e5, 11)
170
0
    STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16)
171
0
    STEP(H2, b, c, d, a, GET(2), 0xc4ac5665, 23)
172
173
/* Round 4 */
174
0
    STEP(I, a, b, c, d, GET(0), 0xf4292244, 6)
175
0
    STEP(I, d, a, b, c, GET(7), 0x432aff97, 10)
176
0
    STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15)
177
0
    STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21)
178
0
    STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6)
179
0
    STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10)
180
0
    STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15)
181
0
    STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21)
182
0
    STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6)
183
0
    STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10)
184
0
    STEP(I, c, d, a, b, GET(6), 0xa3014314, 15)
185
0
    STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21)
186
0
    STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6)
187
0
    STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10)
188
0
    STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15)
189
0
    STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21)
190
191
0
    a += saved_a;
192
0
    b += saved_b;
193
0
    c += saved_c;
194
0
    d += saved_d;
195
196
0
    ptr += 64;
197
0
  } while (size -= 64);
198
199
0
  ctx->a = a;
200
0
  ctx->b = b;
201
0
  ctx->c = c;
202
0
  ctx->d = d;
203
204
0
  return ptr;
205
0
}
206
207
void MD5_Init(MD5_CTX *ctx)
208
0
{
209
0
  ctx->a = 0x67452301;
210
0
  ctx->b = 0xefcdab89;
211
0
  ctx->c = 0x98badcfe;
212
0
  ctx->d = 0x10325476;
213
214
0
  ctx->lo = 0;
215
0
  ctx->hi = 0;
216
0
}
217
218
void MD5_Update(MD5_CTX *ctx, const void *data, unsigned long size)
219
0
{
220
0
  MD5_u32plus saved_lo;
221
0
  unsigned long used, available;
222
223
0
  saved_lo = ctx->lo;
224
0
  if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
225
0
    ctx->hi++;
226
0
  ctx->hi += size >> 29;
227
228
0
  used = saved_lo & 0x3f;
229
230
0
  if (used) {
231
0
    available = 64 - used;
232
233
0
    if (size < available) {
234
0
      memcpy(&ctx->buffer[used], data, size);
235
0
      return;
236
0
    }
237
238
0
    memcpy(&ctx->buffer[used], data, available);
239
0
    data = (const unsigned char *)data + available;
240
0
    size -= available;
241
0
    body(ctx, ctx->buffer, 64);
242
0
  }
243
244
0
  if (size >= 64) {
245
0
    data = body(ctx, data, size & ~(unsigned long)0x3f);
246
0
    size &= 0x3f;
247
0
  }
248
249
0
  memcpy(ctx->buffer, data, size);
250
0
}
251
252
#define OUT(dst, src) \
253
0
  (dst)[0] = (unsigned char)(src); \
254
0
  (dst)[1] = (unsigned char)((src) >> 8); \
255
0
  (dst)[2] = (unsigned char)((src) >> 16); \
256
0
  (dst)[3] = (unsigned char)((src) >> 24);
257
258
void MD5_Final(unsigned char *result, MD5_CTX *ctx)
259
0
{
260
0
  unsigned long used, available;
261
262
0
  used = ctx->lo & 0x3f;
263
264
0
  ctx->buffer[used++] = 0x80;
265
266
0
  available = 64 - used;
267
268
0
  if (available < 8) {
269
0
    memset(&ctx->buffer[used], 0, available);
270
0
    body(ctx, ctx->buffer, 64);
271
0
    used = 0;
272
0
    available = 64;
273
0
  }
274
275
0
  memset(&ctx->buffer[used], 0, available - 8);
276
277
0
  ctx->lo <<= 3;
278
0
  OUT(&ctx->buffer[56], ctx->lo)
279
0
  OUT(&ctx->buffer[60], ctx->hi)
280
281
0
  body(ctx, ctx->buffer, 64);
282
283
0
  OUT(&result[0], ctx->a)
284
0
  OUT(&result[4], ctx->b)
285
0
  OUT(&result[8], ctx->c)
286
0
  OUT(&result[12], ctx->d)
287
288
0
  memset(ctx, 0, sizeof(*ctx));
289
0
}
290
291
#endif