Coverage Report

Created: 2025-07-01 06:07

/src/libsodium/src/libsodium/crypto_pwhash/argon2/argon2-fill-block-ref.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Argon2 source code package
3
 *
4
 * Written by Daniel Dinu and Dmitry Khovratovich, 2015
5
 *
6
 * This work is licensed under a Creative Commons CC0 1.0 License/Waiver.
7
 *
8
 * You should have received a copy of the CC0 Public Domain Dedication along
9
 * with
10
 * this software. If not, see
11
 * <http://creativecommons.org/publicdomain/zero/1.0/>.
12
 */
13
14
#include <stdint.h>
15
#include <stdlib.h>
16
#include <string.h>
17
18
#include "argon2-core.h"
19
#include "argon2.h"
20
#include "blamka-round-ref.h"
21
#include "private/common.h"
22
23
static void
24
fill_block(const block *prev_block, const block *ref_block, block *next_block)
25
0
{
26
0
    block    blockR, block_tmp;
27
0
    unsigned i;
28
29
0
    copy_block(&blockR, ref_block);
30
0
    xor_block(&blockR, prev_block);
31
0
    copy_block(&block_tmp, &blockR);
32
    /* Now blockR = ref_block + prev_block and bloc_tmp = ref_block + prev_block
33
       Apply Blake2 on columns of 64-bit words: (0,1,...,15), then
34
       (16,17,..31)... finally (112,113,...127) */
35
0
    for (i = 0; i < 8; ++i) {
36
0
        BLAKE2_ROUND_NOMSG(
37
0
            blockR.v[16 * i], blockR.v[16 * i + 1], blockR.v[16 * i + 2],
38
0
            blockR.v[16 * i + 3], blockR.v[16 * i + 4], blockR.v[16 * i + 5],
39
0
            blockR.v[16 * i + 6], blockR.v[16 * i + 7], blockR.v[16 * i + 8],
40
0
            blockR.v[16 * i + 9], blockR.v[16 * i + 10], blockR.v[16 * i + 11],
41
0
            blockR.v[16 * i + 12], blockR.v[16 * i + 13], blockR.v[16 * i + 14],
42
0
            blockR.v[16 * i + 15]);
43
0
    }
44
45
    /* Apply Blake2 on rows of 64-bit words: (0,1,16,17,...112,113), then
46
       (2,3,18,19,...,114,115).. finally (14,15,30,31,...,126,127) */
47
0
    for (i = 0; i < 8; i++) {
48
0
        BLAKE2_ROUND_NOMSG(
49
0
            blockR.v[2 * i], blockR.v[2 * i + 1], blockR.v[2 * i + 16],
50
0
            blockR.v[2 * i + 17], blockR.v[2 * i + 32], blockR.v[2 * i + 33],
51
0
            blockR.v[2 * i + 48], blockR.v[2 * i + 49], blockR.v[2 * i + 64],
52
0
            blockR.v[2 * i + 65], blockR.v[2 * i + 80], blockR.v[2 * i + 81],
53
0
            blockR.v[2 * i + 96], blockR.v[2 * i + 97], blockR.v[2 * i + 112],
54
0
            blockR.v[2 * i + 113]);
55
0
    }
56
57
0
    copy_block(next_block, &block_tmp);
58
0
    xor_block(next_block, &blockR);
59
0
}
60
61
static void
62
fill_block_with_xor(const block *prev_block, const block *ref_block,
63
                    block *next_block)
64
0
{
65
0
    block    blockR, block_tmp;
66
0
    unsigned i;
67
68
0
    copy_block(&blockR, ref_block);
69
0
    xor_block(&blockR, prev_block);
70
0
    copy_block(&block_tmp, &blockR);
71
0
    xor_block(&block_tmp,
72
0
              next_block); /* Saving the next block contents for XOR over */
73
    /* Now blockR = ref_block + prev_block and bloc_tmp = ref_block + prev_block
74
     * + next_block */
75
    /* Apply Blake2 on columns of 64-bit words: (0,1,...,15) , then
76
       (16,17,..31)... finally (112,113,...127) */
77
0
    for (i = 0; i < 8; ++i) {
78
0
        BLAKE2_ROUND_NOMSG(
79
0
            blockR.v[16 * i], blockR.v[16 * i + 1], blockR.v[16 * i + 2],
80
0
            blockR.v[16 * i + 3], blockR.v[16 * i + 4], blockR.v[16 * i + 5],
81
0
            blockR.v[16 * i + 6], blockR.v[16 * i + 7], blockR.v[16 * i + 8],
82
0
            blockR.v[16 * i + 9], blockR.v[16 * i + 10], blockR.v[16 * i + 11],
83
0
            blockR.v[16 * i + 12], blockR.v[16 * i + 13], blockR.v[16 * i + 14],
84
0
            blockR.v[16 * i + 15]);
85
0
    }
86
87
    /* Apply Blake2 on rows of 64-bit words: (0,1,16,17,...112,113), then
88
       (2,3,18,19,...,114,115).. finally (14,15,30,31,...,126,127) */
89
0
    for (i = 0; i < 8; i++) {
90
0
        BLAKE2_ROUND_NOMSG(
91
0
            blockR.v[2 * i], blockR.v[2 * i + 1], blockR.v[2 * i + 16],
92
0
            blockR.v[2 * i + 17], blockR.v[2 * i + 32], blockR.v[2 * i + 33],
93
0
            blockR.v[2 * i + 48], blockR.v[2 * i + 49], blockR.v[2 * i + 64],
94
0
            blockR.v[2 * i + 65], blockR.v[2 * i + 80], blockR.v[2 * i + 81],
95
0
            blockR.v[2 * i + 96], blockR.v[2 * i + 97], blockR.v[2 * i + 112],
96
0
            blockR.v[2 * i + 113]);
97
0
    }
98
99
0
    copy_block(next_block, &block_tmp);
100
0
    xor_block(next_block, &blockR);
101
0
}
102
103
/*
104
 * Generate pseudo-random values to reference blocks in the segment and puts
105
 * them into the array
106
 * @param instance Pointer to the current instance
107
 * @param position Pointer to the current position
108
 * @param pseudo_rands Pointer to the array of 64-bit values
109
 * @pre pseudo_rands must point to @a instance->segment_length allocated values
110
 */
111
static void
112
generate_addresses(const argon2_instance_t *instance,
113
                   const argon2_position_t *position, uint64_t *pseudo_rands)
114
0
{
115
0
    block    zero_block, input_block, address_block, tmp_block;
116
0
    uint32_t i;
117
118
0
    init_block_value(&zero_block, 0);
119
0
    init_block_value(&input_block, 0);
120
121
0
    if (instance != NULL && position != NULL) {
122
0
        input_block.v[0] = position->pass;
123
0
        input_block.v[1] = position->lane;
124
0
        input_block.v[2] = position->slice;
125
0
        input_block.v[3] = instance->memory_blocks;
126
0
        input_block.v[4] = instance->passes;
127
0
        input_block.v[5] = instance->type;
128
129
0
        for (i = 0; i < instance->segment_length; ++i) {
130
0
            if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) {
131
0
                input_block.v[6]++;
132
0
                init_block_value(&tmp_block, 0);
133
0
                init_block_value(&address_block, 0);
134
0
                fill_block_with_xor(&zero_block, &input_block, &tmp_block);
135
0
                fill_block_with_xor(&zero_block, &tmp_block, &address_block);
136
0
            }
137
138
0
            pseudo_rands[i] = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK];
139
0
        }
140
0
    }
141
0
}
142
143
void
144
argon2_fill_segment_ref(const argon2_instance_t *instance,
145
                        argon2_position_t position)
146
0
{
147
0
    block    *ref_block = NULL, *curr_block = NULL;
148
    /* Pseudo-random values that determine the reference block position */
149
0
    uint64_t *pseudo_rands = NULL;
150
0
    uint64_t  pseudo_rand, ref_index, ref_lane;
151
0
    uint32_t  prev_offset, curr_offset;
152
0
    uint32_t  starting_index;
153
0
    uint32_t  i;
154
0
    int       data_independent_addressing = 1;
155
156
0
    if (instance == NULL) {
157
0
        return;
158
0
    }
159
160
0
    if (instance->type == Argon2_id &&
161
0
        (position.pass != 0 || position.slice >= ARGON2_SYNC_POINTS / 2)) {
162
0
        data_independent_addressing = 0;
163
0
    }
164
165
0
    pseudo_rands = instance->pseudo_rands;
166
167
0
    if (data_independent_addressing) {
168
0
        generate_addresses(instance, &position, pseudo_rands);
169
0
    }
170
171
0
    starting_index = 0;
172
173
0
    if ((0 == position.pass) && (0 == position.slice)) {
174
0
        starting_index = 2; /* we have already generated the first two blocks */
175
0
    }
176
177
    /* Offset of the current block */
178
0
    curr_offset = position.lane * instance->lane_length +
179
0
                  position.slice * instance->segment_length + starting_index;
180
181
0
    if (0 == curr_offset % instance->lane_length) {
182
        /* Last block in this lane */
183
0
        prev_offset = curr_offset + instance->lane_length - 1;
184
0
    } else {
185
        /* Previous block */
186
0
        prev_offset = curr_offset - 1;
187
0
    }
188
189
0
    for (i = starting_index; i < instance->segment_length;
190
0
         ++i, ++curr_offset, ++prev_offset) {
191
        /*1.1 Rotating prev_offset if needed */
192
0
        if (curr_offset % instance->lane_length == 1) {
193
0
            prev_offset = curr_offset - 1;
194
0
        }
195
196
        /* 1.2 Computing the index of the reference block */
197
        /* 1.2.1 Taking pseudo-random value from the previous block */
198
0
        if (data_independent_addressing) {
199
0
#pragma warning(push)
200
0
#pragma warning(disable : 6385)
201
0
            pseudo_rand = pseudo_rands[i];
202
0
#pragma warning(pop)
203
0
        } else {
204
0
            pseudo_rand = instance->region->memory[prev_offset].v[0];
205
0
        }
206
207
        /* 1.2.2 Computing the lane of the reference block */
208
0
        ref_lane = ((pseudo_rand >> 32)) % instance->lanes;
209
210
0
        if ((position.pass == 0) && (position.slice == 0)) {
211
            /* Can not reference other lanes yet */
212
0
            ref_lane = position.lane;
213
0
        }
214
215
        /* 1.2.3 Computing the number of possible reference block within the
216
         * lane.
217
         */
218
0
        position.index = i;
219
0
        ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,
220
0
                                ref_lane == position.lane);
221
222
        /* 2 Creating a new block */
223
0
        ref_block = instance->region->memory +
224
0
                    instance->lane_length * ref_lane + ref_index;
225
0
        curr_block = instance->region->memory + curr_offset;
226
0
        if (position.pass != 0) {
227
0
            fill_block_with_xor(instance->region->memory + prev_offset,
228
0
                                ref_block, curr_block);
229
0
        } else {
230
0
            fill_block(instance->region->memory + prev_offset, ref_block,
231
0
                       curr_block);
232
0
        }
233
0
    }
234
0
}