Coverage Report

Created: 2024-12-17 06:15

/rust/registry/src/index.crates.io-6f17d22bba15001f/regex-1.11.1/src/regex/string.rs
Line
Count
Source (jump to first uncovered line)
1
use alloc::{borrow::Cow, string::String, sync::Arc};
2
3
use regex_automata::{meta, util::captures, Input, PatternID};
4
5
use crate::{error::Error, RegexBuilder};
6
7
/// A compiled regular expression for searching Unicode haystacks.
8
///
9
/// A `Regex` can be used to search haystacks, split haystacks into substrings
10
/// or replace substrings in a haystack with a different substring. All
11
/// searching is done with an implicit `(?s:.)*?` at the beginning and end of
12
/// an pattern. To force an expression to match the whole string (or a prefix
13
/// or a suffix), you must use an anchor like `^` or `$` (or `\A` and `\z`).
14
///
15
/// While this crate will handle Unicode strings (whether in the regular
16
/// expression or in the haystack), all positions returned are **byte
17
/// offsets**. Every byte offset is guaranteed to be at a Unicode code point
18
/// boundary. That is, all offsets returned by the `Regex` API are guaranteed
19
/// to be ranges that can slice a `&str` without panicking. If you want to
20
/// relax this requirement, then you must search `&[u8]` haystacks with a
21
/// [`bytes::Regex`](crate::bytes::Regex).
22
///
23
/// The only methods that allocate new strings are the string replacement
24
/// methods. All other methods (searching and splitting) return borrowed
25
/// references into the haystack given.
26
///
27
/// # Example
28
///
29
/// Find the offsets of a US phone number:
30
///
31
/// ```
32
/// use regex::Regex;
33
///
34
/// let re = Regex::new("[0-9]{3}-[0-9]{3}-[0-9]{4}").unwrap();
35
/// let m = re.find("phone: 111-222-3333").unwrap();
36
/// assert_eq!(7..19, m.range());
37
/// ```
38
///
39
/// # Example: extracting capture groups
40
///
41
/// A common way to use regexes is with capture groups. That is, instead of
42
/// just looking for matches of an entire regex, parentheses are used to create
43
/// groups that represent part of the match.
44
///
45
/// For example, consider a haystack with multiple lines, and each line has
46
/// three whitespace delimited fields where the second field is expected to be
47
/// a number and the third field a boolean. To make this convenient, we use
48
/// the [`Captures::extract`] API to put the strings that match each group
49
/// into a fixed size array:
50
///
51
/// ```
52
/// use regex::Regex;
53
///
54
/// let hay = "
55
/// rabbit         54 true
56
/// groundhog 2 true
57
/// does not match
58
/// fox   109    false
59
/// ";
60
/// let re = Regex::new(r"(?m)^\s*(\S+)\s+([0-9]+)\s+(true|false)\s*$").unwrap();
61
/// let mut fields: Vec<(&str, i64, bool)> = vec![];
62
/// for (_, [f1, f2, f3]) in re.captures_iter(hay).map(|caps| caps.extract()) {
63
///     fields.push((f1, f2.parse()?, f3.parse()?));
64
/// }
65
/// assert_eq!(fields, vec![
66
///     ("rabbit", 54, true),
67
///     ("groundhog", 2, true),
68
///     ("fox", 109, false),
69
/// ]);
70
///
71
/// # Ok::<(), Box<dyn std::error::Error>>(())
72
/// ```
73
///
74
/// # Example: searching with the `Pattern` trait
75
///
76
/// **Note**: This section requires that this crate is compiled with the
77
/// `pattern` Cargo feature enabled, which **requires nightly Rust**.
78
///
79
/// Since `Regex` implements `Pattern` from the standard library, one can
80
/// use regexes with methods defined on `&str`. For example, `is_match`,
81
/// `find`, `find_iter` and `split` can, in some cases, be replaced with
82
/// `str::contains`, `str::find`, `str::match_indices` and `str::split`.
83
///
84
/// Here are some examples:
85
///
86
/// ```ignore
87
/// use regex::Regex;
88
///
89
/// let re = Regex::new(r"\d+").unwrap();
90
/// let hay = "a111b222c";
91
///
92
/// assert!(hay.contains(&re));
93
/// assert_eq!(hay.find(&re), Some(1));
94
/// assert_eq!(hay.match_indices(&re).collect::<Vec<_>>(), vec![
95
///     (1, "111"),
96
///     (5, "222"),
97
/// ]);
98
/// assert_eq!(hay.split(&re).collect::<Vec<_>>(), vec!["a", "b", "c"]);
99
/// ```
100
#[derive(Clone)]
101
pub struct Regex {
102
    pub(crate) meta: meta::Regex,
103
    pub(crate) pattern: Arc<str>,
104
}
105
106
impl core::fmt::Display for Regex {
107
    /// Shows the original regular expression.
108
0
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
109
0
        write!(f, "{}", self.as_str())
110
0
    }
Unexecuted instantiation: <regex::regex::string::Regex as core::fmt::Display>::fmt
Unexecuted instantiation: <regex::regex::string::Regex as core::fmt::Display>::fmt
111
}
112
113
impl core::fmt::Debug for Regex {
114
    /// Shows the original regular expression.
115
0
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
116
0
        f.debug_tuple("Regex").field(&self.as_str()).finish()
117
0
    }
Unexecuted instantiation: <regex::regex::string::Regex as core::fmt::Debug>::fmt
Unexecuted instantiation: <regex::regex::string::Regex as core::fmt::Debug>::fmt
118
}
119
120
impl core::str::FromStr for Regex {
121
    type Err = Error;
122
123
    /// Attempts to parse a string into a regular expression
124
0
    fn from_str(s: &str) -> Result<Regex, Error> {
125
0
        Regex::new(s)
126
0
    }
Unexecuted instantiation: <regex::regex::string::Regex as core::str::traits::FromStr>::from_str
Unexecuted instantiation: <regex::regex::string::Regex as core::str::traits::FromStr>::from_str
127
}
128
129
impl TryFrom<&str> for Regex {
130
    type Error = Error;
131
132
    /// Attempts to parse a string into a regular expression
133
0
    fn try_from(s: &str) -> Result<Regex, Error> {
134
0
        Regex::new(s)
135
0
    }
Unexecuted instantiation: <regex::regex::string::Regex as core::convert::TryFrom<&str>>::try_from
Unexecuted instantiation: <regex::regex::string::Regex as core::convert::TryFrom<&str>>::try_from
136
}
137
138
impl TryFrom<String> for Regex {
139
    type Error = Error;
140
141
    /// Attempts to parse a string into a regular expression
142
0
    fn try_from(s: String) -> Result<Regex, Error> {
143
0
        Regex::new(&s)
144
0
    }
Unexecuted instantiation: <regex::regex::string::Regex as core::convert::TryFrom<alloc::string::String>>::try_from
Unexecuted instantiation: <regex::regex::string::Regex as core::convert::TryFrom<alloc::string::String>>::try_from
145
}
146
147
/// Core regular expression methods.
148
impl Regex {
149
    /// Compiles a regular expression. Once compiled, it can be used repeatedly
150
    /// to search, split or replace substrings in a haystack.
151
    ///
152
    /// Note that regex compilation tends to be a somewhat expensive process,
153
    /// and unlike higher level environments, compilation is not automatically
154
    /// cached for you. One should endeavor to compile a regex once and then
155
    /// reuse it. For example, it's a bad idea to compile the same regex
156
    /// repeatedly in a loop.
157
    ///
158
    /// # Errors
159
    ///
160
    /// If an invalid pattern is given, then an error is returned.
161
    /// An error is also returned if the pattern is valid, but would
162
    /// produce a regex that is bigger than the configured size limit via
163
    /// [`RegexBuilder::size_limit`]. (A reasonable size limit is enabled by
164
    /// default.)
165
    ///
166
    /// # Example
167
    ///
168
    /// ```
169
    /// use regex::Regex;
170
    ///
171
    /// // An Invalid pattern because of an unclosed parenthesis
172
    /// assert!(Regex::new(r"foo(bar").is_err());
173
    /// // An invalid pattern because the regex would be too big
174
    /// // because Unicode tends to inflate things.
175
    /// assert!(Regex::new(r"\w{1000}").is_err());
176
    /// // Disabling Unicode can make the regex much smaller,
177
    /// // potentially by up to or more than an order of magnitude.
178
    /// assert!(Regex::new(r"(?-u:\w){1000}").is_ok());
179
    /// ```
180
7
    pub fn new(re: &str) -> Result<Regex, Error> {
181
7
        RegexBuilder::new(re).build()
182
7
    }
<regex::regex::string::Regex>::new
Line
Count
Source
180
6
    pub fn new(re: &str) -> Result<Regex, Error> {
181
6
        RegexBuilder::new(re).build()
182
6
    }
<regex::regex::string::Regex>::new
Line
Count
Source
180
1
    pub fn new(re: &str) -> Result<Regex, Error> {
181
1
        RegexBuilder::new(re).build()
182
1
    }
183
184
    /// Returns true if and only if there is a match for the regex anywhere
185
    /// in the haystack given.
186
    ///
187
    /// It is recommended to use this method if all you need to do is test
188
    /// whether a match exists, since the underlying matching engine may be
189
    /// able to do less work.
190
    ///
191
    /// # Example
192
    ///
193
    /// Test if some haystack contains at least one word with exactly 13
194
    /// Unicode word characters:
195
    ///
196
    /// ```
197
    /// use regex::Regex;
198
    ///
199
    /// let re = Regex::new(r"\b\w{13}\b").unwrap();
200
    /// let hay = "I categorically deny having triskaidekaphobia.";
201
    /// assert!(re.is_match(hay));
202
    /// ```
203
    #[inline]
204
0
    pub fn is_match(&self, haystack: &str) -> bool {
205
0
        self.is_match_at(haystack, 0)
206
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::is_match
Unexecuted instantiation: <regex::regex::string::Regex>::is_match
Unexecuted instantiation: <regex::regex::string::Regex>::is_match
207
208
    /// This routine searches for the first match of this regex in the
209
    /// haystack given, and if found, returns a [`Match`]. The `Match`
210
    /// provides access to both the byte offsets of the match and the actual
211
    /// substring that matched.
212
    ///
213
    /// Note that this should only be used if you want to find the entire
214
    /// match. If instead you just want to test the existence of a match,
215
    /// it's potentially faster to use `Regex::is_match(hay)` instead of
216
    /// `Regex::find(hay).is_some()`.
217
    ///
218
    /// # Example
219
    ///
220
    /// Find the first word with exactly 13 Unicode word characters:
221
    ///
222
    /// ```
223
    /// use regex::Regex;
224
    ///
225
    /// let re = Regex::new(r"\b\w{13}\b").unwrap();
226
    /// let hay = "I categorically deny having triskaidekaphobia.";
227
    /// let mat = re.find(hay).unwrap();
228
    /// assert_eq!(2..15, mat.range());
229
    /// assert_eq!("categorically", mat.as_str());
230
    /// ```
231
    #[inline]
232
0
    pub fn find<'h>(&self, haystack: &'h str) -> Option<Match<'h>> {
233
0
        self.find_at(haystack, 0)
234
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::find
Unexecuted instantiation: <regex::regex::string::Regex>::find
Unexecuted instantiation: <regex::regex::string::Regex>::find
235
236
    /// Returns an iterator that yields successive non-overlapping matches in
237
    /// the given haystack. The iterator yields values of type [`Match`].
238
    ///
239
    /// # Time complexity
240
    ///
241
    /// Note that since `find_iter` runs potentially many searches on the
242
    /// haystack and since each search has worst case `O(m * n)` time
243
    /// complexity, the overall worst case time complexity for iteration is
244
    /// `O(m * n^2)`.
245
    ///
246
    /// # Example
247
    ///
248
    /// Find every word with exactly 13 Unicode word characters:
249
    ///
250
    /// ```
251
    /// use regex::Regex;
252
    ///
253
    /// let re = Regex::new(r"\b\w{13}\b").unwrap();
254
    /// let hay = "Retroactively relinquishing remunerations is reprehensible.";
255
    /// let matches: Vec<_> = re.find_iter(hay).map(|m| m.as_str()).collect();
256
    /// assert_eq!(matches, vec![
257
    ///     "Retroactively",
258
    ///     "relinquishing",
259
    ///     "remunerations",
260
    ///     "reprehensible",
261
    /// ]);
262
    /// ```
263
    #[inline]
264
0
    pub fn find_iter<'r, 'h>(&'r self, haystack: &'h str) -> Matches<'r, 'h> {
265
0
        Matches { haystack, it: self.meta.find_iter(haystack) }
266
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::find_iter
Unexecuted instantiation: <regex::regex::string::Regex>::find_iter
Unexecuted instantiation: <regex::regex::string::Regex>::find_iter
Unexecuted instantiation: <regex::regex::string::Regex>::find_iter
Unexecuted instantiation: <regex::regex::string::Regex>::find_iter
Unexecuted instantiation: <regex::regex::string::Regex>::find_iter
Unexecuted instantiation: <regex::regex::string::Regex>::find_iter
Unexecuted instantiation: <regex::regex::string::Regex>::find_iter
267
268
    /// This routine searches for the first match of this regex in the haystack
269
    /// given, and if found, returns not only the overall match but also the
270
    /// matches of each capture group in the regex. If no match is found, then
271
    /// `None` is returned.
272
    ///
273
    /// Capture group `0` always corresponds to an implicit unnamed group that
274
    /// includes the entire match. If a match is found, this group is always
275
    /// present. Subsequent groups may be named and are numbered, starting
276
    /// at 1, by the order in which the opening parenthesis appears in the
277
    /// pattern. For example, in the pattern `(?<a>.(?<b>.))(?<c>.)`, `a`,
278
    /// `b` and `c` correspond to capture group indices `1`, `2` and `3`,
279
    /// respectively.
280
    ///
281
    /// You should only use `captures` if you need access to the capture group
282
    /// matches. Otherwise, [`Regex::find`] is generally faster for discovering
283
    /// just the overall match.
284
    ///
285
    /// # Example
286
    ///
287
    /// Say you have some haystack with movie names and their release years,
288
    /// like "'Citizen Kane' (1941)". It'd be nice if we could search for
289
    /// substrings looking like that, while also extracting the movie name and
290
    /// its release year separately. The example below shows how to do that.
291
    ///
292
    /// ```
293
    /// use regex::Regex;
294
    ///
295
    /// let re = Regex::new(r"'([^']+)'\s+\((\d{4})\)").unwrap();
296
    /// let hay = "Not my favorite movie: 'Citizen Kane' (1941).";
297
    /// let caps = re.captures(hay).unwrap();
298
    /// assert_eq!(caps.get(0).unwrap().as_str(), "'Citizen Kane' (1941)");
299
    /// assert_eq!(caps.get(1).unwrap().as_str(), "Citizen Kane");
300
    /// assert_eq!(caps.get(2).unwrap().as_str(), "1941");
301
    /// // You can also access the groups by index using the Index notation.
302
    /// // Note that this will panic on an invalid index. In this case, these
303
    /// // accesses are always correct because the overall regex will only
304
    /// // match when these capture groups match.
305
    /// assert_eq!(&caps[0], "'Citizen Kane' (1941)");
306
    /// assert_eq!(&caps[1], "Citizen Kane");
307
    /// assert_eq!(&caps[2], "1941");
308
    /// ```
309
    ///
310
    /// Note that the full match is at capture group `0`. Each subsequent
311
    /// capture group is indexed by the order of its opening `(`.
312
    ///
313
    /// We can make this example a bit clearer by using *named* capture groups:
314
    ///
315
    /// ```
316
    /// use regex::Regex;
317
    ///
318
    /// let re = Regex::new(r"'(?<title>[^']+)'\s+\((?<year>\d{4})\)").unwrap();
319
    /// let hay = "Not my favorite movie: 'Citizen Kane' (1941).";
320
    /// let caps = re.captures(hay).unwrap();
321
    /// assert_eq!(caps.get(0).unwrap().as_str(), "'Citizen Kane' (1941)");
322
    /// assert_eq!(caps.name("title").unwrap().as_str(), "Citizen Kane");
323
    /// assert_eq!(caps.name("year").unwrap().as_str(), "1941");
324
    /// // You can also access the groups by name using the Index notation.
325
    /// // Note that this will panic on an invalid group name. In this case,
326
    /// // these accesses are always correct because the overall regex will
327
    /// // only match when these capture groups match.
328
    /// assert_eq!(&caps[0], "'Citizen Kane' (1941)");
329
    /// assert_eq!(&caps["title"], "Citizen Kane");
330
    /// assert_eq!(&caps["year"], "1941");
331
    /// ```
332
    ///
333
    /// Here we name the capture groups, which we can access with the `name`
334
    /// method or the `Index` notation with a `&str`. Note that the named
335
    /// capture groups are still accessible with `get` or the `Index` notation
336
    /// with a `usize`.
337
    ///
338
    /// The `0`th capture group is always unnamed, so it must always be
339
    /// accessed with `get(0)` or `[0]`.
340
    ///
341
    /// Finally, one other way to to get the matched substrings is with the
342
    /// [`Captures::extract`] API:
343
    ///
344
    /// ```
345
    /// use regex::Regex;
346
    ///
347
    /// let re = Regex::new(r"'([^']+)'\s+\((\d{4})\)").unwrap();
348
    /// let hay = "Not my favorite movie: 'Citizen Kane' (1941).";
349
    /// let (full, [title, year]) = re.captures(hay).unwrap().extract();
350
    /// assert_eq!(full, "'Citizen Kane' (1941)");
351
    /// assert_eq!(title, "Citizen Kane");
352
    /// assert_eq!(year, "1941");
353
    /// ```
354
    #[inline]
355
33.6k
    pub fn captures<'h>(&self, haystack: &'h str) -> Option<Captures<'h>> {
356
33.6k
        self.captures_at(haystack, 0)
357
33.6k
    }
<regex::regex::string::Regex>::captures
Line
Count
Source
355
4.99k
    pub fn captures<'h>(&self, haystack: &'h str) -> Option<Captures<'h>> {
356
4.99k
        self.captures_at(haystack, 0)
357
4.99k
    }
Unexecuted instantiation: <regex::regex::string::Regex>::captures
<regex::regex::string::Regex>::captures
Line
Count
Source
355
1.30k
    pub fn captures<'h>(&self, haystack: &'h str) -> Option<Captures<'h>> {
356
1.30k
        self.captures_at(haystack, 0)
357
1.30k
    }
<regex::regex::string::Regex>::captures
Line
Count
Source
355
7.43k
    pub fn captures<'h>(&self, haystack: &'h str) -> Option<Captures<'h>> {
356
7.43k
        self.captures_at(haystack, 0)
357
7.43k
    }
<regex::regex::string::Regex>::captures
Line
Count
Source
355
1.56k
    pub fn captures<'h>(&self, haystack: &'h str) -> Option<Captures<'h>> {
356
1.56k
        self.captures_at(haystack, 0)
357
1.56k
    }
<regex::regex::string::Regex>::captures
Line
Count
Source
355
16.3k
    pub fn captures<'h>(&self, haystack: &'h str) -> Option<Captures<'h>> {
356
16.3k
        self.captures_at(haystack, 0)
357
16.3k
    }
Unexecuted instantiation: <regex::regex::string::Regex>::captures
<regex::regex::string::Regex>::captures
Line
Count
Source
355
1.98k
    pub fn captures<'h>(&self, haystack: &'h str) -> Option<Captures<'h>> {
356
1.98k
        self.captures_at(haystack, 0)
357
1.98k
    }
358
359
    /// Returns an iterator that yields successive non-overlapping matches in
360
    /// the given haystack. The iterator yields values of type [`Captures`].
361
    ///
362
    /// This is the same as [`Regex::find_iter`], but instead of only providing
363
    /// access to the overall match, each value yield includes access to the
364
    /// matches of all capture groups in the regex. Reporting this extra match
365
    /// data is potentially costly, so callers should only use `captures_iter`
366
    /// over `find_iter` when they actually need access to the capture group
367
    /// matches.
368
    ///
369
    /// # Time complexity
370
    ///
371
    /// Note that since `captures_iter` runs potentially many searches on the
372
    /// haystack and since each search has worst case `O(m * n)` time
373
    /// complexity, the overall worst case time complexity for iteration is
374
    /// `O(m * n^2)`.
375
    ///
376
    /// # Example
377
    ///
378
    /// We can use this to find all movie titles and their release years in
379
    /// some haystack, where the movie is formatted like "'Title' (xxxx)":
380
    ///
381
    /// ```
382
    /// use regex::Regex;
383
    ///
384
    /// let re = Regex::new(r"'([^']+)'\s+\(([0-9]{4})\)").unwrap();
385
    /// let hay = "'Citizen Kane' (1941), 'The Wizard of Oz' (1939), 'M' (1931).";
386
    /// let mut movies = vec![];
387
    /// for (_, [title, year]) in re.captures_iter(hay).map(|c| c.extract()) {
388
    ///     movies.push((title, year.parse::<i64>()?));
389
    /// }
390
    /// assert_eq!(movies, vec![
391
    ///     ("Citizen Kane", 1941),
392
    ///     ("The Wizard of Oz", 1939),
393
    ///     ("M", 1931),
394
    /// ]);
395
    /// # Ok::<(), Box<dyn std::error::Error>>(())
396
    /// ```
397
    ///
398
    /// Or with named groups:
399
    ///
400
    /// ```
401
    /// use regex::Regex;
402
    ///
403
    /// let re = Regex::new(r"'(?<title>[^']+)'\s+\((?<year>[0-9]{4})\)").unwrap();
404
    /// let hay = "'Citizen Kane' (1941), 'The Wizard of Oz' (1939), 'M' (1931).";
405
    /// let mut it = re.captures_iter(hay);
406
    ///
407
    /// let caps = it.next().unwrap();
408
    /// assert_eq!(&caps["title"], "Citizen Kane");
409
    /// assert_eq!(&caps["year"], "1941");
410
    ///
411
    /// let caps = it.next().unwrap();
412
    /// assert_eq!(&caps["title"], "The Wizard of Oz");
413
    /// assert_eq!(&caps["year"], "1939");
414
    ///
415
    /// let caps = it.next().unwrap();
416
    /// assert_eq!(&caps["title"], "M");
417
    /// assert_eq!(&caps["year"], "1931");
418
    /// ```
419
    #[inline]
420
0
    pub fn captures_iter<'r, 'h>(
421
0
        &'r self,
422
0
        haystack: &'h str,
423
0
    ) -> CaptureMatches<'r, 'h> {
424
0
        CaptureMatches { haystack, it: self.meta.captures_iter(haystack) }
425
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::captures_iter
Unexecuted instantiation: <regex::regex::string::Regex>::captures_iter
426
427
    /// Returns an iterator of substrings of the haystack given, delimited by a
428
    /// match of the regex. Namely, each element of the iterator corresponds to
429
    /// a part of the haystack that *isn't* matched by the regular expression.
430
    ///
431
    /// # Time complexity
432
    ///
433
    /// Since iterators over all matches requires running potentially many
434
    /// searches on the haystack, and since each search has worst case
435
    /// `O(m * n)` time complexity, the overall worst case time complexity for
436
    /// this routine is `O(m * n^2)`.
437
    ///
438
    /// # Example
439
    ///
440
    /// To split a string delimited by arbitrary amounts of spaces or tabs:
441
    ///
442
    /// ```
443
    /// use regex::Regex;
444
    ///
445
    /// let re = Regex::new(r"[ \t]+").unwrap();
446
    /// let hay = "a b \t  c\td    e";
447
    /// let fields: Vec<&str> = re.split(hay).collect();
448
    /// assert_eq!(fields, vec!["a", "b", "c", "d", "e"]);
449
    /// ```
450
    ///
451
    /// # Example: more cases
452
    ///
453
    /// Basic usage:
454
    ///
455
    /// ```
456
    /// use regex::Regex;
457
    ///
458
    /// let re = Regex::new(r" ").unwrap();
459
    /// let hay = "Mary had a little lamb";
460
    /// let got: Vec<&str> = re.split(hay).collect();
461
    /// assert_eq!(got, vec!["Mary", "had", "a", "little", "lamb"]);
462
    ///
463
    /// let re = Regex::new(r"X").unwrap();
464
    /// let hay = "";
465
    /// let got: Vec<&str> = re.split(hay).collect();
466
    /// assert_eq!(got, vec![""]);
467
    ///
468
    /// let re = Regex::new(r"X").unwrap();
469
    /// let hay = "lionXXtigerXleopard";
470
    /// let got: Vec<&str> = re.split(hay).collect();
471
    /// assert_eq!(got, vec!["lion", "", "tiger", "leopard"]);
472
    ///
473
    /// let re = Regex::new(r"::").unwrap();
474
    /// let hay = "lion::tiger::leopard";
475
    /// let got: Vec<&str> = re.split(hay).collect();
476
    /// assert_eq!(got, vec!["lion", "tiger", "leopard"]);
477
    /// ```
478
    ///
479
    /// If a haystack contains multiple contiguous matches, you will end up
480
    /// with empty spans yielded by the iterator:
481
    ///
482
    /// ```
483
    /// use regex::Regex;
484
    ///
485
    /// let re = Regex::new(r"X").unwrap();
486
    /// let hay = "XXXXaXXbXc";
487
    /// let got: Vec<&str> = re.split(hay).collect();
488
    /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
489
    ///
490
    /// let re = Regex::new(r"/").unwrap();
491
    /// let hay = "(///)";
492
    /// let got: Vec<&str> = re.split(hay).collect();
493
    /// assert_eq!(got, vec!["(", "", "", ")"]);
494
    /// ```
495
    ///
496
    /// Separators at the start or end of a haystack are neighbored by empty
497
    /// substring.
498
    ///
499
    /// ```
500
    /// use regex::Regex;
501
    ///
502
    /// let re = Regex::new(r"0").unwrap();
503
    /// let hay = "010";
504
    /// let got: Vec<&str> = re.split(hay).collect();
505
    /// assert_eq!(got, vec!["", "1", ""]);
506
    /// ```
507
    ///
508
    /// When the empty string is used as a regex, it splits at every valid
509
    /// UTF-8 boundary by default (which includes the beginning and end of the
510
    /// haystack):
511
    ///
512
    /// ```
513
    /// use regex::Regex;
514
    ///
515
    /// let re = Regex::new(r"").unwrap();
516
    /// let hay = "rust";
517
    /// let got: Vec<&str> = re.split(hay).collect();
518
    /// assert_eq!(got, vec!["", "r", "u", "s", "t", ""]);
519
    ///
520
    /// // Splitting by an empty string is UTF-8 aware by default!
521
    /// let re = Regex::new(r"").unwrap();
522
    /// let hay = "☃";
523
    /// let got: Vec<&str> = re.split(hay).collect();
524
    /// assert_eq!(got, vec!["", "☃", ""]);
525
    /// ```
526
    ///
527
    /// Contiguous separators (commonly shows up with whitespace), can lead to
528
    /// possibly surprising behavior. For example, this code is correct:
529
    ///
530
    /// ```
531
    /// use regex::Regex;
532
    ///
533
    /// let re = Regex::new(r" ").unwrap();
534
    /// let hay = "    a  b c";
535
    /// let got: Vec<&str> = re.split(hay).collect();
536
    /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
537
    /// ```
538
    ///
539
    /// It does *not* give you `["a", "b", "c"]`. For that behavior, you'd want
540
    /// to match contiguous space characters:
541
    ///
542
    /// ```
543
    /// use regex::Regex;
544
    ///
545
    /// let re = Regex::new(r" +").unwrap();
546
    /// let hay = "    a  b c";
547
    /// let got: Vec<&str> = re.split(hay).collect();
548
    /// // N.B. This does still include a leading empty span because ' +'
549
    /// // matches at the beginning of the haystack.
550
    /// assert_eq!(got, vec!["", "a", "b", "c"]);
551
    /// ```
552
    #[inline]
553
0
    pub fn split<'r, 'h>(&'r self, haystack: &'h str) -> Split<'r, 'h> {
554
0
        Split { haystack, it: self.meta.split(haystack) }
555
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::split
Unexecuted instantiation: <regex::regex::string::Regex>::split
556
557
    /// Returns an iterator of at most `limit` substrings of the haystack
558
    /// given, delimited by a match of the regex. (A `limit` of `0` will return
559
    /// no substrings.) Namely, each element of the iterator corresponds to a
560
    /// part of the haystack that *isn't* matched by the regular expression.
561
    /// The remainder of the haystack that is not split will be the last
562
    /// element in the iterator.
563
    ///
564
    /// # Time complexity
565
    ///
566
    /// Since iterators over all matches requires running potentially many
567
    /// searches on the haystack, and since each search has worst case
568
    /// `O(m * n)` time complexity, the overall worst case time complexity for
569
    /// this routine is `O(m * n^2)`.
570
    ///
571
    /// Although note that the worst case time here has an upper bound given
572
    /// by the `limit` parameter.
573
    ///
574
    /// # Example
575
    ///
576
    /// Get the first two words in some haystack:
577
    ///
578
    /// ```
579
    /// use regex::Regex;
580
    ///
581
    /// let re = Regex::new(r"\W+").unwrap();
582
    /// let hay = "Hey! How are you?";
583
    /// let fields: Vec<&str> = re.splitn(hay, 3).collect();
584
    /// assert_eq!(fields, vec!["Hey", "How", "are you?"]);
585
    /// ```
586
    ///
587
    /// # Examples: more cases
588
    ///
589
    /// ```
590
    /// use regex::Regex;
591
    ///
592
    /// let re = Regex::new(r" ").unwrap();
593
    /// let hay = "Mary had a little lamb";
594
    /// let got: Vec<&str> = re.splitn(hay, 3).collect();
595
    /// assert_eq!(got, vec!["Mary", "had", "a little lamb"]);
596
    ///
597
    /// let re = Regex::new(r"X").unwrap();
598
    /// let hay = "";
599
    /// let got: Vec<&str> = re.splitn(hay, 3).collect();
600
    /// assert_eq!(got, vec![""]);
601
    ///
602
    /// let re = Regex::new(r"X").unwrap();
603
    /// let hay = "lionXXtigerXleopard";
604
    /// let got: Vec<&str> = re.splitn(hay, 3).collect();
605
    /// assert_eq!(got, vec!["lion", "", "tigerXleopard"]);
606
    ///
607
    /// let re = Regex::new(r"::").unwrap();
608
    /// let hay = "lion::tiger::leopard";
609
    /// let got: Vec<&str> = re.splitn(hay, 2).collect();
610
    /// assert_eq!(got, vec!["lion", "tiger::leopard"]);
611
    ///
612
    /// let re = Regex::new(r"X").unwrap();
613
    /// let hay = "abcXdef";
614
    /// let got: Vec<&str> = re.splitn(hay, 1).collect();
615
    /// assert_eq!(got, vec!["abcXdef"]);
616
    ///
617
    /// let re = Regex::new(r"X").unwrap();
618
    /// let hay = "abcdef";
619
    /// let got: Vec<&str> = re.splitn(hay, 2).collect();
620
    /// assert_eq!(got, vec!["abcdef"]);
621
    ///
622
    /// let re = Regex::new(r"X").unwrap();
623
    /// let hay = "abcXdef";
624
    /// let got: Vec<&str> = re.splitn(hay, 0).collect();
625
    /// assert!(got.is_empty());
626
    /// ```
627
    #[inline]
628
0
    pub fn splitn<'r, 'h>(
629
0
        &'r self,
630
0
        haystack: &'h str,
631
0
        limit: usize,
632
0
    ) -> SplitN<'r, 'h> {
633
0
        SplitN { haystack, it: self.meta.splitn(haystack, limit) }
634
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::splitn
Unexecuted instantiation: <regex::regex::string::Regex>::splitn
635
636
    /// Replaces the leftmost-first match in the given haystack with the
637
    /// replacement provided. The replacement can be a regular string (where
638
    /// `$N` and `$name` are expanded to match capture groups) or a function
639
    /// that takes a [`Captures`] and returns the replaced string.
640
    ///
641
    /// If no match is found, then the haystack is returned unchanged. In that
642
    /// case, this implementation will likely return a `Cow::Borrowed` value
643
    /// such that no allocation is performed.
644
    ///
645
    /// When a `Cow::Borrowed` is returned, the value returned is guaranteed
646
    /// to be equivalent to the `haystack` given.
647
    ///
648
    /// # Replacement string syntax
649
    ///
650
    /// All instances of `$ref` in the replacement string are replaced with
651
    /// the substring corresponding to the capture group identified by `ref`.
652
    ///
653
    /// `ref` may be an integer corresponding to the index of the capture group
654
    /// (counted by order of opening parenthesis where `0` is the entire match)
655
    /// or it can be a name (consisting of letters, digits or underscores)
656
    /// corresponding to a named capture group.
657
    ///
658
    /// If `ref` isn't a valid capture group (whether the name doesn't exist or
659
    /// isn't a valid index), then it is replaced with the empty string.
660
    ///
661
    /// The longest possible name is used. For example, `$1a` looks up the
662
    /// capture group named `1a` and not the capture group at index `1`. To
663
    /// exert more precise control over the name, use braces, e.g., `${1}a`.
664
    ///
665
    /// To write a literal `$` use `$$`.
666
    ///
667
    /// # Example
668
    ///
669
    /// Note that this function is polymorphic with respect to the replacement.
670
    /// In typical usage, this can just be a normal string:
671
    ///
672
    /// ```
673
    /// use regex::Regex;
674
    ///
675
    /// let re = Regex::new(r"[^01]+").unwrap();
676
    /// assert_eq!(re.replace("1078910", ""), "1010");
677
    /// ```
678
    ///
679
    /// But anything satisfying the [`Replacer`] trait will work. For example,
680
    /// a closure of type `|&Captures| -> String` provides direct access to the
681
    /// captures corresponding to a match. This allows one to access capturing
682
    /// group matches easily:
683
    ///
684
    /// ```
685
    /// use regex::{Captures, Regex};
686
    ///
687
    /// let re = Regex::new(r"([^,\s]+),\s+(\S+)").unwrap();
688
    /// let result = re.replace("Springsteen, Bruce", |caps: &Captures| {
689
    ///     format!("{} {}", &caps[2], &caps[1])
690
    /// });
691
    /// assert_eq!(result, "Bruce Springsteen");
692
    /// ```
693
    ///
694
    /// But this is a bit cumbersome to use all the time. Instead, a simple
695
    /// syntax is supported (as described above) that expands `$name` into the
696
    /// corresponding capture group. Here's the last example, but using this
697
    /// expansion technique with named capture groups:
698
    ///
699
    /// ```
700
    /// use regex::Regex;
701
    ///
702
    /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(?<first>\S+)").unwrap();
703
    /// let result = re.replace("Springsteen, Bruce", "$first $last");
704
    /// assert_eq!(result, "Bruce Springsteen");
705
    /// ```
706
    ///
707
    /// Note that using `$2` instead of `$first` or `$1` instead of `$last`
708
    /// would produce the same result. To write a literal `$` use `$$`.
709
    ///
710
    /// Sometimes the replacement string requires use of curly braces to
711
    /// delineate a capture group replacement when it is adjacent to some other
712
    /// literal text. For example, if we wanted to join two words together with
713
    /// an underscore:
714
    ///
715
    /// ```
716
    /// use regex::Regex;
717
    ///
718
    /// let re = Regex::new(r"(?<first>\w+)\s+(?<second>\w+)").unwrap();
719
    /// let result = re.replace("deep fried", "${first}_$second");
720
    /// assert_eq!(result, "deep_fried");
721
    /// ```
722
    ///
723
    /// Without the curly braces, the capture group name `first_` would be
724
    /// used, and since it doesn't exist, it would be replaced with the empty
725
    /// string.
726
    ///
727
    /// Finally, sometimes you just want to replace a literal string with no
728
    /// regard for capturing group expansion. This can be done by wrapping a
729
    /// string with [`NoExpand`]:
730
    ///
731
    /// ```
732
    /// use regex::{NoExpand, Regex};
733
    ///
734
    /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(\S+)").unwrap();
735
    /// let result = re.replace("Springsteen, Bruce", NoExpand("$2 $last"));
736
    /// assert_eq!(result, "$2 $last");
737
    /// ```
738
    ///
739
    /// Using `NoExpand` may also be faster, since the replacement string won't
740
    /// need to be parsed for the `$` syntax.
741
    #[inline]
742
0
    pub fn replace<'h, R: Replacer>(
743
0
        &self,
744
0
        haystack: &'h str,
745
0
        rep: R,
746
0
    ) -> Cow<'h, str> {
747
0
        self.replacen(haystack, 1, rep)
748
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::replace::<_>
Unexecuted instantiation: <regex::regex::string::Regex>::replace::<_>
749
750
    /// Replaces all non-overlapping matches in the haystack with the
751
    /// replacement provided. This is the same as calling `replacen` with
752
    /// `limit` set to `0`.
753
    ///
754
    /// If no match is found, then the haystack is returned unchanged. In that
755
    /// case, this implementation will likely return a `Cow::Borrowed` value
756
    /// such that no allocation is performed.
757
    ///
758
    /// When a `Cow::Borrowed` is returned, the value returned is guaranteed
759
    /// to be equivalent to the `haystack` given.
760
    ///
761
    /// The documentation for [`Regex::replace`] goes into more detail about
762
    /// what kinds of replacement strings are supported.
763
    ///
764
    /// # Time complexity
765
    ///
766
    /// Since iterators over all matches requires running potentially many
767
    /// searches on the haystack, and since each search has worst case
768
    /// `O(m * n)` time complexity, the overall worst case time complexity for
769
    /// this routine is `O(m * n^2)`.
770
    ///
771
    /// # Fallibility
772
    ///
773
    /// If you need to write a replacement routine where any individual
774
    /// replacement might "fail," doing so with this API isn't really feasible
775
    /// because there's no way to stop the search process if a replacement
776
    /// fails. Instead, if you need this functionality, you should consider
777
    /// implementing your own replacement routine:
778
    ///
779
    /// ```
780
    /// use regex::{Captures, Regex};
781
    ///
782
    /// fn replace_all<E>(
783
    ///     re: &Regex,
784
    ///     haystack: &str,
785
    ///     replacement: impl Fn(&Captures) -> Result<String, E>,
786
    /// ) -> Result<String, E> {
787
    ///     let mut new = String::with_capacity(haystack.len());
788
    ///     let mut last_match = 0;
789
    ///     for caps in re.captures_iter(haystack) {
790
    ///         let m = caps.get(0).unwrap();
791
    ///         new.push_str(&haystack[last_match..m.start()]);
792
    ///         new.push_str(&replacement(&caps)?);
793
    ///         last_match = m.end();
794
    ///     }
795
    ///     new.push_str(&haystack[last_match..]);
796
    ///     Ok(new)
797
    /// }
798
    ///
799
    /// // Let's replace each word with the number of bytes in that word.
800
    /// // But if we see a word that is "too long," we'll give up.
801
    /// let re = Regex::new(r"\w+").unwrap();
802
    /// let replacement = |caps: &Captures| -> Result<String, &'static str> {
803
    ///     if caps[0].len() >= 5 {
804
    ///         return Err("word too long");
805
    ///     }
806
    ///     Ok(caps[0].len().to_string())
807
    /// };
808
    /// assert_eq!(
809
    ///     Ok("2 3 3 3?".to_string()),
810
    ///     replace_all(&re, "hi how are you?", &replacement),
811
    /// );
812
    /// assert!(replace_all(&re, "hi there", &replacement).is_err());
813
    /// ```
814
    ///
815
    /// # Example
816
    ///
817
    /// This example shows how to flip the order of whitespace (excluding line
818
    /// terminators) delimited fields, and normalizes the whitespace that
819
    /// delimits the fields:
820
    ///
821
    /// ```
822
    /// use regex::Regex;
823
    ///
824
    /// let re = Regex::new(r"(?m)^(\S+)[\s--\r\n]+(\S+)$").unwrap();
825
    /// let hay = "
826
    /// Greetings  1973
827
    /// Wild\t1973
828
    /// BornToRun\t\t\t\t1975
829
    /// Darkness                    1978
830
    /// TheRiver 1980
831
    /// ";
832
    /// let new = re.replace_all(hay, "$2 $1");
833
    /// assert_eq!(new, "
834
    /// 1973 Greetings
835
    /// 1973 Wild
836
    /// 1975 BornToRun
837
    /// 1978 Darkness
838
    /// 1980 TheRiver
839
    /// ");
840
    /// ```
841
    #[inline]
842
0
    pub fn replace_all<'h, R: Replacer>(
843
0
        &self,
844
0
        haystack: &'h str,
845
0
        rep: R,
846
0
    ) -> Cow<'h, str> {
847
0
        self.replacen(haystack, 0, rep)
848
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::replace_all::<_>
Unexecuted instantiation: <regex::regex::string::Regex>::replace_all::<_>
849
850
    /// Replaces at most `limit` non-overlapping matches in the haystack with
851
    /// the replacement provided. If `limit` is `0`, then all non-overlapping
852
    /// matches are replaced. That is, `Regex::replace_all(hay, rep)` is
853
    /// equivalent to `Regex::replacen(hay, 0, rep)`.
854
    ///
855
    /// If no match is found, then the haystack is returned unchanged. In that
856
    /// case, this implementation will likely return a `Cow::Borrowed` value
857
    /// such that no allocation is performed.
858
    ///
859
    /// When a `Cow::Borrowed` is returned, the value returned is guaranteed
860
    /// to be equivalent to the `haystack` given.
861
    ///
862
    /// The documentation for [`Regex::replace`] goes into more detail about
863
    /// what kinds of replacement strings are supported.
864
    ///
865
    /// # Time complexity
866
    ///
867
    /// Since iterators over all matches requires running potentially many
868
    /// searches on the haystack, and since each search has worst case
869
    /// `O(m * n)` time complexity, the overall worst case time complexity for
870
    /// this routine is `O(m * n^2)`.
871
    ///
872
    /// Although note that the worst case time here has an upper bound given
873
    /// by the `limit` parameter.
874
    ///
875
    /// # Fallibility
876
    ///
877
    /// See the corresponding section in the docs for [`Regex::replace_all`]
878
    /// for tips on how to deal with a replacement routine that can fail.
879
    ///
880
    /// # Example
881
    ///
882
    /// This example shows how to flip the order of whitespace (excluding line
883
    /// terminators) delimited fields, and normalizes the whitespace that
884
    /// delimits the fields. But we only do it for the first two matches.
885
    ///
886
    /// ```
887
    /// use regex::Regex;
888
    ///
889
    /// let re = Regex::new(r"(?m)^(\S+)[\s--\r\n]+(\S+)$").unwrap();
890
    /// let hay = "
891
    /// Greetings  1973
892
    /// Wild\t1973
893
    /// BornToRun\t\t\t\t1975
894
    /// Darkness                    1978
895
    /// TheRiver 1980
896
    /// ";
897
    /// let new = re.replacen(hay, 2, "$2 $1");
898
    /// assert_eq!(new, "
899
    /// 1973 Greetings
900
    /// 1973 Wild
901
    /// BornToRun\t\t\t\t1975
902
    /// Darkness                    1978
903
    /// TheRiver 1980
904
    /// ");
905
    /// ```
906
    #[inline]
907
0
    pub fn replacen<'h, R: Replacer>(
908
0
        &self,
909
0
        haystack: &'h str,
910
0
        limit: usize,
911
0
        mut rep: R,
912
0
    ) -> Cow<'h, str> {
913
        // If we know that the replacement doesn't have any capture expansions,
914
        // then we can use the fast path. The fast path can make a tremendous
915
        // difference:
916
        //
917
        //   1) We use `find_iter` instead of `captures_iter`. Not asking for
918
        //      captures generally makes the regex engines faster.
919
        //   2) We don't need to look up all of the capture groups and do
920
        //      replacements inside the replacement string. We just push it
921
        //      at each match and be done with it.
922
0
        if let Some(rep) = rep.no_expansion() {
923
0
            let mut it = self.find_iter(haystack).enumerate().peekable();
924
0
            if it.peek().is_none() {
925
0
                return Cow::Borrowed(haystack);
926
0
            }
927
0
            let mut new = String::with_capacity(haystack.len());
928
0
            let mut last_match = 0;
929
0
            for (i, m) in it {
930
0
                new.push_str(&haystack[last_match..m.start()]);
931
0
                new.push_str(&rep);
932
0
                last_match = m.end();
933
0
                if limit > 0 && i >= limit - 1 {
934
0
                    break;
935
0
                }
936
            }
937
0
            new.push_str(&haystack[last_match..]);
938
0
            return Cow::Owned(new);
939
0
        }
940
0
941
0
        // The slower path, which we use if the replacement may need access to
942
0
        // capture groups.
943
0
        let mut it = self.captures_iter(haystack).enumerate().peekable();
944
0
        if it.peek().is_none() {
945
0
            return Cow::Borrowed(haystack);
946
0
        }
947
0
        let mut new = String::with_capacity(haystack.len());
948
0
        let mut last_match = 0;
949
0
        for (i, cap) in it {
950
            // unwrap on 0 is OK because captures only reports matches
951
0
            let m = cap.get(0).unwrap();
952
0
            new.push_str(&haystack[last_match..m.start()]);
953
0
            rep.replace_append(&cap, &mut new);
954
0
            last_match = m.end();
955
0
            if limit > 0 && i >= limit - 1 {
956
0
                break;
957
0
            }
958
        }
959
0
        new.push_str(&haystack[last_match..]);
960
0
        Cow::Owned(new)
961
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::replacen::<_>
Unexecuted instantiation: <regex::regex::string::Regex>::replacen::<_>
962
}
963
964
/// A group of advanced or "lower level" search methods. Some methods permit
965
/// starting the search at a position greater than `0` in the haystack. Other
966
/// methods permit reusing allocations, for example, when extracting the
967
/// matches for capture groups.
968
impl Regex {
969
    /// Returns the end byte offset of the first match in the haystack given.
970
    ///
971
    /// This method may have the same performance characteristics as
972
    /// `is_match`. Behaviorlly, it doesn't just report whether it match
973
    /// occurs, but also the end offset for a match. In particular, the offset
974
    /// returned *may be shorter* than the proper end of the leftmost-first
975
    /// match that you would find via [`Regex::find`].
976
    ///
977
    /// Note that it is not guaranteed that this routine finds the shortest or
978
    /// "earliest" possible match. Instead, the main idea of this API is that
979
    /// it returns the offset at the point at which the internal regex engine
980
    /// has determined that a match has occurred. This may vary depending on
981
    /// which internal regex engine is used, and thus, the offset itself may
982
    /// change based on internal heuristics.
983
    ///
984
    /// # Example
985
    ///
986
    /// Typically, `a+` would match the entire first sequence of `a` in some
987
    /// haystack, but `shortest_match` *may* give up as soon as it sees the
988
    /// first `a`.
989
    ///
990
    /// ```
991
    /// use regex::Regex;
992
    ///
993
    /// let re = Regex::new(r"a+").unwrap();
994
    /// let offset = re.shortest_match("aaaaa").unwrap();
995
    /// assert_eq!(offset, 1);
996
    /// ```
997
    #[inline]
998
0
    pub fn shortest_match(&self, haystack: &str) -> Option<usize> {
999
0
        self.shortest_match_at(haystack, 0)
1000
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::shortest_match
Unexecuted instantiation: <regex::regex::string::Regex>::shortest_match
1001
1002
    /// Returns the same as [`Regex::shortest_match`], but starts the search at
1003
    /// the given offset.
1004
    ///
1005
    /// The significance of the starting point is that it takes the surrounding
1006
    /// context into consideration. For example, the `\A` anchor can only match
1007
    /// when `start == 0`.
1008
    ///
1009
    /// If a match is found, the offset returned is relative to the beginning
1010
    /// of the haystack, not the beginning of the search.
1011
    ///
1012
    /// # Panics
1013
    ///
1014
    /// This panics when `start >= haystack.len() + 1`.
1015
    ///
1016
    /// # Example
1017
    ///
1018
    /// This example shows the significance of `start` by demonstrating how it
1019
    /// can be used to permit look-around assertions in a regex to take the
1020
    /// surrounding context into account.
1021
    ///
1022
    /// ```
1023
    /// use regex::Regex;
1024
    ///
1025
    /// let re = Regex::new(r"\bchew\b").unwrap();
1026
    /// let hay = "eschew";
1027
    /// // We get a match here, but it's probably not intended.
1028
    /// assert_eq!(re.shortest_match(&hay[2..]), Some(4));
1029
    /// // No match because the  assertions take the context into account.
1030
    /// assert_eq!(re.shortest_match_at(hay, 2), None);
1031
    /// ```
1032
    #[inline]
1033
0
    pub fn shortest_match_at(
1034
0
        &self,
1035
0
        haystack: &str,
1036
0
        start: usize,
1037
0
    ) -> Option<usize> {
1038
0
        let input =
1039
0
            Input::new(haystack).earliest(true).span(start..haystack.len());
1040
0
        self.meta.search_half(&input).map(|hm| hm.offset())
Unexecuted instantiation: <regex::regex::string::Regex>::shortest_match_at::{closure#0}
Unexecuted instantiation: <regex::regex::string::Regex>::shortest_match_at::{closure#0}
1041
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::shortest_match_at
Unexecuted instantiation: <regex::regex::string::Regex>::shortest_match_at
1042
1043
    /// Returns the same as [`Regex::is_match`], but starts the search at the
1044
    /// given offset.
1045
    ///
1046
    /// The significance of the starting point is that it takes the surrounding
1047
    /// context into consideration. For example, the `\A` anchor can only
1048
    /// match when `start == 0`.
1049
    ///
1050
    /// # Panics
1051
    ///
1052
    /// This panics when `start >= haystack.len() + 1`.
1053
    ///
1054
    /// # Example
1055
    ///
1056
    /// This example shows the significance of `start` by demonstrating how it
1057
    /// can be used to permit look-around assertions in a regex to take the
1058
    /// surrounding context into account.
1059
    ///
1060
    /// ```
1061
    /// use regex::Regex;
1062
    ///
1063
    /// let re = Regex::new(r"\bchew\b").unwrap();
1064
    /// let hay = "eschew";
1065
    /// // We get a match here, but it's probably not intended.
1066
    /// assert!(re.is_match(&hay[2..]));
1067
    /// // No match because the  assertions take the context into account.
1068
    /// assert!(!re.is_match_at(hay, 2));
1069
    /// ```
1070
    #[inline]
1071
0
    pub fn is_match_at(&self, haystack: &str, start: usize) -> bool {
1072
0
        let input =
1073
0
            Input::new(haystack).earliest(true).span(start..haystack.len());
1074
0
        self.meta.search_half(&input).is_some()
1075
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::is_match_at
Unexecuted instantiation: <regex::regex::string::Regex>::is_match_at
Unexecuted instantiation: <regex::regex::string::Regex>::is_match_at
1076
1077
    /// Returns the same as [`Regex::find`], but starts the search at the given
1078
    /// offset.
1079
    ///
1080
    /// The significance of the starting point is that it takes the surrounding
1081
    /// context into consideration. For example, the `\A` anchor can only
1082
    /// match when `start == 0`.
1083
    ///
1084
    /// # Panics
1085
    ///
1086
    /// This panics when `start >= haystack.len() + 1`.
1087
    ///
1088
    /// # Example
1089
    ///
1090
    /// This example shows the significance of `start` by demonstrating how it
1091
    /// can be used to permit look-around assertions in a regex to take the
1092
    /// surrounding context into account.
1093
    ///
1094
    /// ```
1095
    /// use regex::Regex;
1096
    ///
1097
    /// let re = Regex::new(r"\bchew\b").unwrap();
1098
    /// let hay = "eschew";
1099
    /// // We get a match here, but it's probably not intended.
1100
    /// assert_eq!(re.find(&hay[2..]).map(|m| m.range()), Some(0..4));
1101
    /// // No match because the  assertions take the context into account.
1102
    /// assert_eq!(re.find_at(hay, 2), None);
1103
    /// ```
1104
    #[inline]
1105
0
    pub fn find_at<'h>(
1106
0
        &self,
1107
0
        haystack: &'h str,
1108
0
        start: usize,
1109
0
    ) -> Option<Match<'h>> {
1110
0
        let input = Input::new(haystack).span(start..haystack.len());
1111
0
        self.meta
1112
0
            .search(&input)
1113
0
            .map(|m| Match::new(haystack, m.start(), m.end()))
Unexecuted instantiation: <regex::regex::string::Regex>::find_at::{closure#0}
Unexecuted instantiation: <regex::regex::string::Regex>::find_at::{closure#0}
Unexecuted instantiation: <regex::regex::string::Regex>::find_at::{closure#0}
1114
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::find_at
Unexecuted instantiation: <regex::regex::string::Regex>::find_at
Unexecuted instantiation: <regex::regex::string::Regex>::find_at
1115
1116
    /// Returns the same as [`Regex::captures`], but starts the search at the
1117
    /// given offset.
1118
    ///
1119
    /// The significance of the starting point is that it takes the surrounding
1120
    /// context into consideration. For example, the `\A` anchor can only
1121
    /// match when `start == 0`.
1122
    ///
1123
    /// # Panics
1124
    ///
1125
    /// This panics when `start >= haystack.len() + 1`.
1126
    ///
1127
    /// # Example
1128
    ///
1129
    /// This example shows the significance of `start` by demonstrating how it
1130
    /// can be used to permit look-around assertions in a regex to take the
1131
    /// surrounding context into account.
1132
    ///
1133
    /// ```
1134
    /// use regex::Regex;
1135
    ///
1136
    /// let re = Regex::new(r"\bchew\b").unwrap();
1137
    /// let hay = "eschew";
1138
    /// // We get a match here, but it's probably not intended.
1139
    /// assert_eq!(&re.captures(&hay[2..]).unwrap()[0], "chew");
1140
    /// // No match because the  assertions take the context into account.
1141
    /// assert!(re.captures_at(hay, 2).is_none());
1142
    /// ```
1143
    #[inline]
1144
33.6k
    pub fn captures_at<'h>(
1145
33.6k
        &self,
1146
33.6k
        haystack: &'h str,
1147
33.6k
        start: usize,
1148
33.6k
    ) -> Option<Captures<'h>> {
1149
33.6k
        let input = Input::new(haystack).span(start..haystack.len());
1150
33.6k
        let mut caps = self.meta.create_captures();
1151
33.6k
        self.meta.search_captures(&input, &mut caps);
1152
33.6k
        if caps.is_match() {
1153
33.6k
            let static_captures_len = self.static_captures_len();
1154
33.6k
            Some(Captures { haystack, caps, static_captures_len })
1155
        } else {
1156
0
            None
1157
        }
1158
33.6k
    }
<regex::regex::string::Regex>::captures_at
Line
Count
Source
1144
4.99k
    pub fn captures_at<'h>(
1145
4.99k
        &self,
1146
4.99k
        haystack: &'h str,
1147
4.99k
        start: usize,
1148
4.99k
    ) -> Option<Captures<'h>> {
1149
4.99k
        let input = Input::new(haystack).span(start..haystack.len());
1150
4.99k
        let mut caps = self.meta.create_captures();
1151
4.99k
        self.meta.search_captures(&input, &mut caps);
1152
4.99k
        if caps.is_match() {
1153
4.99k
            let static_captures_len = self.static_captures_len();
1154
4.99k
            Some(Captures { haystack, caps, static_captures_len })
1155
        } else {
1156
0
            None
1157
        }
1158
4.99k
    }
Unexecuted instantiation: <regex::regex::string::Regex>::captures_at
<regex::regex::string::Regex>::captures_at
Line
Count
Source
1144
1.30k
    pub fn captures_at<'h>(
1145
1.30k
        &self,
1146
1.30k
        haystack: &'h str,
1147
1.30k
        start: usize,
1148
1.30k
    ) -> Option<Captures<'h>> {
1149
1.30k
        let input = Input::new(haystack).span(start..haystack.len());
1150
1.30k
        let mut caps = self.meta.create_captures();
1151
1.30k
        self.meta.search_captures(&input, &mut caps);
1152
1.30k
        if caps.is_match() {
1153
1.30k
            let static_captures_len = self.static_captures_len();
1154
1.30k
            Some(Captures { haystack, caps, static_captures_len })
1155
        } else {
1156
0
            None
1157
        }
1158
1.30k
    }
<regex::regex::string::Regex>::captures_at
Line
Count
Source
1144
7.43k
    pub fn captures_at<'h>(
1145
7.43k
        &self,
1146
7.43k
        haystack: &'h str,
1147
7.43k
        start: usize,
1148
7.43k
    ) -> Option<Captures<'h>> {
1149
7.43k
        let input = Input::new(haystack).span(start..haystack.len());
1150
7.43k
        let mut caps = self.meta.create_captures();
1151
7.43k
        self.meta.search_captures(&input, &mut caps);
1152
7.43k
        if caps.is_match() {
1153
7.43k
            let static_captures_len = self.static_captures_len();
1154
7.43k
            Some(Captures { haystack, caps, static_captures_len })
1155
        } else {
1156
0
            None
1157
        }
1158
7.43k
    }
<regex::regex::string::Regex>::captures_at
Line
Count
Source
1144
1.56k
    pub fn captures_at<'h>(
1145
1.56k
        &self,
1146
1.56k
        haystack: &'h str,
1147
1.56k
        start: usize,
1148
1.56k
    ) -> Option<Captures<'h>> {
1149
1.56k
        let input = Input::new(haystack).span(start..haystack.len());
1150
1.56k
        let mut caps = self.meta.create_captures();
1151
1.56k
        self.meta.search_captures(&input, &mut caps);
1152
1.56k
        if caps.is_match() {
1153
1.56k
            let static_captures_len = self.static_captures_len();
1154
1.56k
            Some(Captures { haystack, caps, static_captures_len })
1155
        } else {
1156
0
            None
1157
        }
1158
1.56k
    }
<regex::regex::string::Regex>::captures_at
Line
Count
Source
1144
16.3k
    pub fn captures_at<'h>(
1145
16.3k
        &self,
1146
16.3k
        haystack: &'h str,
1147
16.3k
        start: usize,
1148
16.3k
    ) -> Option<Captures<'h>> {
1149
16.3k
        let input = Input::new(haystack).span(start..haystack.len());
1150
16.3k
        let mut caps = self.meta.create_captures();
1151
16.3k
        self.meta.search_captures(&input, &mut caps);
1152
16.3k
        if caps.is_match() {
1153
16.3k
            let static_captures_len = self.static_captures_len();
1154
16.3k
            Some(Captures { haystack, caps, static_captures_len })
1155
        } else {
1156
0
            None
1157
        }
1158
16.3k
    }
Unexecuted instantiation: <regex::regex::string::Regex>::captures_at
<regex::regex::string::Regex>::captures_at
Line
Count
Source
1144
1.98k
    pub fn captures_at<'h>(
1145
1.98k
        &self,
1146
1.98k
        haystack: &'h str,
1147
1.98k
        start: usize,
1148
1.98k
    ) -> Option<Captures<'h>> {
1149
1.98k
        let input = Input::new(haystack).span(start..haystack.len());
1150
1.98k
        let mut caps = self.meta.create_captures();
1151
1.98k
        self.meta.search_captures(&input, &mut caps);
1152
1.98k
        if caps.is_match() {
1153
1.98k
            let static_captures_len = self.static_captures_len();
1154
1.98k
            Some(Captures { haystack, caps, static_captures_len })
1155
        } else {
1156
0
            None
1157
        }
1158
1.98k
    }
1159
1160
    /// This is like [`Regex::captures`], but writes the byte offsets of each
1161
    /// capture group match into the locations given.
1162
    ///
1163
    /// A [`CaptureLocations`] stores the same byte offsets as a [`Captures`],
1164
    /// but does *not* store a reference to the haystack. This makes its API
1165
    /// a bit lower level and less convenient. But in exchange, callers
1166
    /// may allocate their own `CaptureLocations` and reuse it for multiple
1167
    /// searches. This may be helpful if allocating a `Captures` shows up in a
1168
    /// profile as too costly.
1169
    ///
1170
    /// To create a `CaptureLocations` value, use the
1171
    /// [`Regex::capture_locations`] method.
1172
    ///
1173
    /// This also returns the overall match if one was found. When a match is
1174
    /// found, its offsets are also always stored in `locs` at index `0`.
1175
    ///
1176
    /// # Panics
1177
    ///
1178
    /// This routine may panic if the given `CaptureLocations` was not created
1179
    /// by this regex.
1180
    ///
1181
    /// # Example
1182
    ///
1183
    /// ```
1184
    /// use regex::Regex;
1185
    ///
1186
    /// let re = Regex::new(r"^([a-z]+)=(\S*)$").unwrap();
1187
    /// let mut locs = re.capture_locations();
1188
    /// assert!(re.captures_read(&mut locs, "id=foo123").is_some());
1189
    /// assert_eq!(Some((0, 9)), locs.get(0));
1190
    /// assert_eq!(Some((0, 2)), locs.get(1));
1191
    /// assert_eq!(Some((3, 9)), locs.get(2));
1192
    /// ```
1193
    #[inline]
1194
0
    pub fn captures_read<'h>(
1195
0
        &self,
1196
0
        locs: &mut CaptureLocations,
1197
0
        haystack: &'h str,
1198
0
    ) -> Option<Match<'h>> {
1199
0
        self.captures_read_at(locs, haystack, 0)
1200
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::captures_read
Unexecuted instantiation: <regex::regex::string::Regex>::captures_read
1201
1202
    /// Returns the same as [`Regex::captures_read`], but starts the search at
1203
    /// the given offset.
1204
    ///
1205
    /// The significance of the starting point is that it takes the surrounding
1206
    /// context into consideration. For example, the `\A` anchor can only
1207
    /// match when `start == 0`.
1208
    ///
1209
    /// # Panics
1210
    ///
1211
    /// This panics when `start >= haystack.len() + 1`.
1212
    ///
1213
    /// This routine may also panic if the given `CaptureLocations` was not
1214
    /// created by this regex.
1215
    ///
1216
    /// # Example
1217
    ///
1218
    /// This example shows the significance of `start` by demonstrating how it
1219
    /// can be used to permit look-around assertions in a regex to take the
1220
    /// surrounding context into account.
1221
    ///
1222
    /// ```
1223
    /// use regex::Regex;
1224
    ///
1225
    /// let re = Regex::new(r"\bchew\b").unwrap();
1226
    /// let hay = "eschew";
1227
    /// let mut locs = re.capture_locations();
1228
    /// // We get a match here, but it's probably not intended.
1229
    /// assert!(re.captures_read(&mut locs, &hay[2..]).is_some());
1230
    /// // No match because the  assertions take the context into account.
1231
    /// assert!(re.captures_read_at(&mut locs, hay, 2).is_none());
1232
    /// ```
1233
    #[inline]
1234
0
    pub fn captures_read_at<'h>(
1235
0
        &self,
1236
0
        locs: &mut CaptureLocations,
1237
0
        haystack: &'h str,
1238
0
        start: usize,
1239
0
    ) -> Option<Match<'h>> {
1240
0
        let input = Input::new(haystack).span(start..haystack.len());
1241
0
        self.meta.search_captures(&input, &mut locs.0);
1242
0
        locs.0.get_match().map(|m| Match::new(haystack, m.start(), m.end()))
Unexecuted instantiation: <regex::regex::string::Regex>::captures_read_at::{closure#0}
Unexecuted instantiation: <regex::regex::string::Regex>::captures_read_at::{closure#0}
1243
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::captures_read_at
Unexecuted instantiation: <regex::regex::string::Regex>::captures_read_at
1244
1245
    /// An undocumented alias for `captures_read_at`.
1246
    ///
1247
    /// The `regex-capi` crate previously used this routine, so to avoid
1248
    /// breaking that crate, we continue to provide the name as an undocumented
1249
    /// alias.
1250
    #[doc(hidden)]
1251
    #[inline]
1252
0
    pub fn read_captures_at<'h>(
1253
0
        &self,
1254
0
        locs: &mut CaptureLocations,
1255
0
        haystack: &'h str,
1256
0
        start: usize,
1257
0
    ) -> Option<Match<'h>> {
1258
0
        self.captures_read_at(locs, haystack, start)
1259
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::read_captures_at
Unexecuted instantiation: <regex::regex::string::Regex>::read_captures_at
1260
}
1261
1262
/// Auxiliary methods.
1263
impl Regex {
1264
    /// Returns the original string of this regex.
1265
    ///
1266
    /// # Example
1267
    ///
1268
    /// ```
1269
    /// use regex::Regex;
1270
    ///
1271
    /// let re = Regex::new(r"foo\w+bar").unwrap();
1272
    /// assert_eq!(re.as_str(), r"foo\w+bar");
1273
    /// ```
1274
    #[inline]
1275
0
    pub fn as_str(&self) -> &str {
1276
0
        &self.pattern
1277
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::as_str
Unexecuted instantiation: <regex::regex::string::Regex>::as_str
Unexecuted instantiation: <regex::regex::string::Regex>::as_str
Unexecuted instantiation: <regex::regex::string::Regex>::as_str
1278
1279
    /// Returns an iterator over the capture names in this regex.
1280
    ///
1281
    /// The iterator returned yields elements of type `Option<&str>`. That is,
1282
    /// the iterator yields values for all capture groups, even ones that are
1283
    /// unnamed. The order of the groups corresponds to the order of the group's
1284
    /// corresponding opening parenthesis.
1285
    ///
1286
    /// The first element of the iterator always yields the group corresponding
1287
    /// to the overall match, and this group is always unnamed. Therefore, the
1288
    /// iterator always yields at least one group.
1289
    ///
1290
    /// # Example
1291
    ///
1292
    /// This shows basic usage with a mix of named and unnamed capture groups:
1293
    ///
1294
    /// ```
1295
    /// use regex::Regex;
1296
    ///
1297
    /// let re = Regex::new(r"(?<a>.(?<b>.))(.)(?:.)(?<c>.)").unwrap();
1298
    /// let mut names = re.capture_names();
1299
    /// assert_eq!(names.next(), Some(None));
1300
    /// assert_eq!(names.next(), Some(Some("a")));
1301
    /// assert_eq!(names.next(), Some(Some("b")));
1302
    /// assert_eq!(names.next(), Some(None));
1303
    /// // the '(?:.)' group is non-capturing and so doesn't appear here!
1304
    /// assert_eq!(names.next(), Some(Some("c")));
1305
    /// assert_eq!(names.next(), None);
1306
    /// ```
1307
    ///
1308
    /// The iterator always yields at least one element, even for regexes with
1309
    /// no capture groups and even for regexes that can never match:
1310
    ///
1311
    /// ```
1312
    /// use regex::Regex;
1313
    ///
1314
    /// let re = Regex::new(r"").unwrap();
1315
    /// let mut names = re.capture_names();
1316
    /// assert_eq!(names.next(), Some(None));
1317
    /// assert_eq!(names.next(), None);
1318
    ///
1319
    /// let re = Regex::new(r"[a&&b]").unwrap();
1320
    /// let mut names = re.capture_names();
1321
    /// assert_eq!(names.next(), Some(None));
1322
    /// assert_eq!(names.next(), None);
1323
    /// ```
1324
    #[inline]
1325
0
    pub fn capture_names(&self) -> CaptureNames<'_> {
1326
0
        CaptureNames(self.meta.group_info().pattern_names(PatternID::ZERO))
1327
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::capture_names
Unexecuted instantiation: <regex::regex::string::Regex>::capture_names
1328
1329
    /// Returns the number of captures groups in this regex.
1330
    ///
1331
    /// This includes all named and unnamed groups, including the implicit
1332
    /// unnamed group that is always present and corresponds to the entire
1333
    /// match.
1334
    ///
1335
    /// Since the implicit unnamed group is always included in this length, the
1336
    /// length returned is guaranteed to be greater than zero.
1337
    ///
1338
    /// # Example
1339
    ///
1340
    /// ```
1341
    /// use regex::Regex;
1342
    ///
1343
    /// let re = Regex::new(r"foo").unwrap();
1344
    /// assert_eq!(1, re.captures_len());
1345
    ///
1346
    /// let re = Regex::new(r"(foo)").unwrap();
1347
    /// assert_eq!(2, re.captures_len());
1348
    ///
1349
    /// let re = Regex::new(r"(?<a>.(?<b>.))(.)(?:.)(?<c>.)").unwrap();
1350
    /// assert_eq!(5, re.captures_len());
1351
    ///
1352
    /// let re = Regex::new(r"[a&&b]").unwrap();
1353
    /// assert_eq!(1, re.captures_len());
1354
    /// ```
1355
    #[inline]
1356
0
    pub fn captures_len(&self) -> usize {
1357
0
        self.meta.group_info().group_len(PatternID::ZERO)
1358
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::captures_len
Unexecuted instantiation: <regex::regex::string::Regex>::captures_len
1359
1360
    /// Returns the total number of capturing groups that appear in every
1361
    /// possible match.
1362
    ///
1363
    /// If the number of capture groups can vary depending on the match, then
1364
    /// this returns `None`. That is, a value is only returned when the number
1365
    /// of matching groups is invariant or "static."
1366
    ///
1367
    /// Note that like [`Regex::captures_len`], this **does** include the
1368
    /// implicit capturing group corresponding to the entire match. Therefore,
1369
    /// when a non-None value is returned, it is guaranteed to be at least `1`.
1370
    /// Stated differently, a return value of `Some(0)` is impossible.
1371
    ///
1372
    /// # Example
1373
    ///
1374
    /// This shows a few cases where a static number of capture groups is
1375
    /// available and a few cases where it is not.
1376
    ///
1377
    /// ```
1378
    /// use regex::Regex;
1379
    ///
1380
    /// let len = |pattern| {
1381
    ///     Regex::new(pattern).map(|re| re.static_captures_len())
1382
    /// };
1383
    ///
1384
    /// assert_eq!(Some(1), len("a")?);
1385
    /// assert_eq!(Some(2), len("(a)")?);
1386
    /// assert_eq!(Some(2), len("(a)|(b)")?);
1387
    /// assert_eq!(Some(3), len("(a)(b)|(c)(d)")?);
1388
    /// assert_eq!(None, len("(a)|b")?);
1389
    /// assert_eq!(None, len("a|(b)")?);
1390
    /// assert_eq!(None, len("(b)*")?);
1391
    /// assert_eq!(Some(2), len("(b)+")?);
1392
    ///
1393
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1394
    /// ```
1395
    #[inline]
1396
33.6k
    pub fn static_captures_len(&self) -> Option<usize> {
1397
33.6k
        self.meta.static_captures_len()
1398
33.6k
    }
<regex::regex::string::Regex>::static_captures_len
Line
Count
Source
1396
4.99k
    pub fn static_captures_len(&self) -> Option<usize> {
1397
4.99k
        self.meta.static_captures_len()
1398
4.99k
    }
Unexecuted instantiation: <regex::regex::string::Regex>::static_captures_len
<regex::regex::string::Regex>::static_captures_len
Line
Count
Source
1396
1.30k
    pub fn static_captures_len(&self) -> Option<usize> {
1397
1.30k
        self.meta.static_captures_len()
1398
1.30k
    }
<regex::regex::string::Regex>::static_captures_len
Line
Count
Source
1396
7.43k
    pub fn static_captures_len(&self) -> Option<usize> {
1397
7.43k
        self.meta.static_captures_len()
1398
7.43k
    }
<regex::regex::string::Regex>::static_captures_len
Line
Count
Source
1396
1.56k
    pub fn static_captures_len(&self) -> Option<usize> {
1397
1.56k
        self.meta.static_captures_len()
1398
1.56k
    }
<regex::regex::string::Regex>::static_captures_len
Line
Count
Source
1396
16.3k
    pub fn static_captures_len(&self) -> Option<usize> {
1397
16.3k
        self.meta.static_captures_len()
1398
16.3k
    }
Unexecuted instantiation: <regex::regex::string::Regex>::static_captures_len
<regex::regex::string::Regex>::static_captures_len
Line
Count
Source
1396
1.98k
    pub fn static_captures_len(&self) -> Option<usize> {
1397
1.98k
        self.meta.static_captures_len()
1398
1.98k
    }
1399
1400
    /// Returns a fresh allocated set of capture locations that can
1401
    /// be reused in multiple calls to [`Regex::captures_read`] or
1402
    /// [`Regex::captures_read_at`].
1403
    ///
1404
    /// The returned locations can be used for any subsequent search for this
1405
    /// particular regex. There is no guarantee that it is correct to use for
1406
    /// other regexes, even if they have the same number of capture groups.
1407
    ///
1408
    /// # Example
1409
    ///
1410
    /// ```
1411
    /// use regex::Regex;
1412
    ///
1413
    /// let re = Regex::new(r"(.)(.)(\w+)").unwrap();
1414
    /// let mut locs = re.capture_locations();
1415
    /// assert!(re.captures_read(&mut locs, "Padron").is_some());
1416
    /// assert_eq!(locs.get(0), Some((0, 6)));
1417
    /// assert_eq!(locs.get(1), Some((0, 1)));
1418
    /// assert_eq!(locs.get(2), Some((1, 2)));
1419
    /// assert_eq!(locs.get(3), Some((2, 6)));
1420
    /// ```
1421
    #[inline]
1422
0
    pub fn capture_locations(&self) -> CaptureLocations {
1423
0
        CaptureLocations(self.meta.create_captures())
1424
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::capture_locations
Unexecuted instantiation: <regex::regex::string::Regex>::capture_locations
1425
1426
    /// An alias for `capture_locations` to preserve backward compatibility.
1427
    ///
1428
    /// The `regex-capi` crate used this method, so to avoid breaking that
1429
    /// crate, we continue to export it as an undocumented API.
1430
    #[doc(hidden)]
1431
    #[inline]
1432
0
    pub fn locations(&self) -> CaptureLocations {
1433
0
        self.capture_locations()
1434
0
    }
Unexecuted instantiation: <regex::regex::string::Regex>::locations
Unexecuted instantiation: <regex::regex::string::Regex>::locations
1435
}
1436
1437
/// Represents a single match of a regex in a haystack.
1438
///
1439
/// A `Match` contains both the start and end byte offsets of the match and the
1440
/// actual substring corresponding to the range of those byte offsets. It is
1441
/// guaranteed that `start <= end`. When `start == end`, the match is empty.
1442
///
1443
/// Since this `Match` can only be produced by the top-level `Regex` APIs
1444
/// that only support searching UTF-8 encoded strings, the byte offsets for a
1445
/// `Match` are guaranteed to fall on valid UTF-8 codepoint boundaries. That
1446
/// is, slicing a `&str` with [`Match::range`] is guaranteed to never panic.
1447
///
1448
/// Values with this type are created by [`Regex::find`] or
1449
/// [`Regex::find_iter`]. Other APIs can create `Match` values too. For
1450
/// example, [`Captures::get`].
1451
///
1452
/// The lifetime parameter `'h` refers to the lifetime of the matched of the
1453
/// haystack that this match was produced from.
1454
///
1455
/// # Numbering
1456
///
1457
/// The byte offsets in a `Match` form a half-open interval. That is, the
1458
/// start of the range is inclusive and the end of the range is exclusive.
1459
/// For example, given a haystack `abcFOOxyz` and a match of `FOO`, its byte
1460
/// offset range starts at `3` and ends at `6`. `3` corresponds to `F` and
1461
/// `6` corresponds to `x`, which is one past the end of the match. This
1462
/// corresponds to the same kind of slicing that Rust uses.
1463
///
1464
/// For more on why this was chosen over other schemes (aside from being
1465
/// consistent with how Rust the language works), see [this discussion] and
1466
/// [Dijkstra's note on a related topic][note].
1467
///
1468
/// [this discussion]: https://github.com/rust-lang/regex/discussions/866
1469
/// [note]: https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html
1470
///
1471
/// # Example
1472
///
1473
/// This example shows the value of each of the methods on `Match` for a
1474
/// particular search.
1475
///
1476
/// ```
1477
/// use regex::Regex;
1478
///
1479
/// let re = Regex::new(r"\p{Greek}+").unwrap();
1480
/// let hay = "Greek: αβγδ";
1481
/// let m = re.find(hay).unwrap();
1482
/// assert_eq!(7, m.start());
1483
/// assert_eq!(15, m.end());
1484
/// assert!(!m.is_empty());
1485
/// assert_eq!(8, m.len());
1486
/// assert_eq!(7..15, m.range());
1487
/// assert_eq!("αβγδ", m.as_str());
1488
/// ```
1489
#[derive(Copy, Clone, Eq, PartialEq)]
1490
pub struct Match<'h> {
1491
    haystack: &'h str,
1492
    start: usize,
1493
    end: usize,
1494
}
1495
1496
impl<'h> Match<'h> {
1497
    /// Returns the byte offset of the start of the match in the haystack. The
1498
    /// start of the match corresponds to the position where the match begins
1499
    /// and includes the first byte in the match.
1500
    ///
1501
    /// It is guaranteed that `Match::start() <= Match::end()`.
1502
    ///
1503
    /// This is guaranteed to fall on a valid UTF-8 codepoint boundary. That
1504
    /// is, it will never be an offset that appears between the UTF-8 code
1505
    /// units of a UTF-8 encoded Unicode scalar value. Consequently, it is
1506
    /// always safe to slice the corresponding haystack using this offset.
1507
    #[inline]
1508
0
    pub fn start(&self) -> usize {
1509
0
        self.start
1510
0
    }
Unexecuted instantiation: <regex::regex::string::Match>::start
Unexecuted instantiation: <regex::regex::string::Match>::start
Unexecuted instantiation: <regex::regex::string::Match>::start
1511
1512
    /// Returns the byte offset of the end of the match in the haystack. The
1513
    /// end of the match corresponds to the byte immediately following the last
1514
    /// byte in the match. This means that `&slice[start..end]` works as one
1515
    /// would expect.
1516
    ///
1517
    /// It is guaranteed that `Match::start() <= Match::end()`.
1518
    ///
1519
    /// This is guaranteed to fall on a valid UTF-8 codepoint boundary. That
1520
    /// is, it will never be an offset that appears between the UTF-8 code
1521
    /// units of a UTF-8 encoded Unicode scalar value. Consequently, it is
1522
    /// always safe to slice the corresponding haystack using this offset.
1523
    #[inline]
1524
0
    pub fn end(&self) -> usize {
1525
0
        self.end
1526
0
    }
Unexecuted instantiation: <regex::regex::string::Match>::end
Unexecuted instantiation: <regex::regex::string::Match>::end
Unexecuted instantiation: <regex::regex::string::Match>::end
1527
1528
    /// Returns true if and only if this match has a length of zero.
1529
    ///
1530
    /// Note that an empty match can only occur when the regex itself can
1531
    /// match the empty string. Here are some examples of regexes that can
1532
    /// all match the empty string: `^`, `^$`, `\b`, `a?`, `a*`, `a{0}`,
1533
    /// `(foo|\d+|quux)?`.
1534
    #[inline]
1535
0
    pub fn is_empty(&self) -> bool {
1536
0
        self.start == self.end
1537
0
    }
Unexecuted instantiation: <regex::regex::string::Match>::is_empty
Unexecuted instantiation: <regex::regex::string::Match>::is_empty
1538
1539
    /// Returns the length, in bytes, of this match.
1540
    #[inline]
1541
0
    pub fn len(&self) -> usize {
1542
0
        self.end - self.start
1543
0
    }
Unexecuted instantiation: <regex::regex::string::Match>::len
Unexecuted instantiation: <regex::regex::string::Match>::len
1544
1545
    /// Returns the range over the starting and ending byte offsets of the
1546
    /// match in the haystack.
1547
    ///
1548
    /// It is always correct to slice the original haystack searched with this
1549
    /// range. That is, because the offsets are guaranteed to fall on valid
1550
    /// UTF-8 boundaries, the range returned is always valid.
1551
    #[inline]
1552
50.4k
    pub fn range(&self) -> core::ops::Range<usize> {
1553
50.4k
        self.start..self.end
1554
50.4k
    }
<regex::regex::string::Match>::range
Line
Count
Source
1552
7.48k
    pub fn range(&self) -> core::ops::Range<usize> {
1553
7.48k
        self.start..self.end
1554
7.48k
    }
Unexecuted instantiation: <regex::regex::string::Match>::range
<regex::regex::string::Match>::range
Line
Count
Source
1552
1.95k
    pub fn range(&self) -> core::ops::Range<usize> {
1553
1.95k
        self.start..self.end
1554
1.95k
    }
<regex::regex::string::Match>::range
Line
Count
Source
1552
11.1k
    pub fn range(&self) -> core::ops::Range<usize> {
1553
11.1k
        self.start..self.end
1554
11.1k
    }
<regex::regex::string::Match>::range
Line
Count
Source
1552
2.35k
    pub fn range(&self) -> core::ops::Range<usize> {
1553
2.35k
        self.start..self.end
1554
2.35k
    }
<regex::regex::string::Match>::range
Line
Count
Source
1552
24.5k
    pub fn range(&self) -> core::ops::Range<usize> {
1553
24.5k
        self.start..self.end
1554
24.5k
    }
Unexecuted instantiation: <regex::regex::string::Match>::range
<regex::regex::string::Match>::range
Line
Count
Source
1552
2.97k
    pub fn range(&self) -> core::ops::Range<usize> {
1553
2.97k
        self.start..self.end
1554
2.97k
    }
1555
1556
    /// Returns the substring of the haystack that matched.
1557
    #[inline]
1558
50.4k
    pub fn as_str(&self) -> &'h str {
1559
50.4k
        &self.haystack[self.range()]
1560
50.4k
    }
<regex::regex::string::Match>::as_str
Line
Count
Source
1558
7.48k
    pub fn as_str(&self) -> &'h str {
1559
7.48k
        &self.haystack[self.range()]
1560
7.48k
    }
Unexecuted instantiation: <regex::regex::string::Match>::as_str
<regex::regex::string::Match>::as_str
Line
Count
Source
1558
1.95k
    pub fn as_str(&self) -> &'h str {
1559
1.95k
        &self.haystack[self.range()]
1560
1.95k
    }
<regex::regex::string::Match>::as_str
Line
Count
Source
1558
11.1k
    pub fn as_str(&self) -> &'h str {
1559
11.1k
        &self.haystack[self.range()]
1560
11.1k
    }
<regex::regex::string::Match>::as_str
Line
Count
Source
1558
2.35k
    pub fn as_str(&self) -> &'h str {
1559
2.35k
        &self.haystack[self.range()]
1560
2.35k
    }
<regex::regex::string::Match>::as_str
Line
Count
Source
1558
24.5k
    pub fn as_str(&self) -> &'h str {
1559
24.5k
        &self.haystack[self.range()]
1560
24.5k
    }
Unexecuted instantiation: <regex::regex::string::Match>::as_str
<regex::regex::string::Match>::as_str
Line
Count
Source
1558
2.97k
    pub fn as_str(&self) -> &'h str {
1559
2.97k
        &self.haystack[self.range()]
1560
2.97k
    }
1561
1562
    /// Creates a new match from the given haystack and byte offsets.
1563
    #[inline]
1564
50.4k
    fn new(haystack: &'h str, start: usize, end: usize) -> Match<'h> {
1565
50.4k
        Match { haystack, start, end }
1566
50.4k
    }
Unexecuted instantiation: <regex::regex::string::Match>::new
<regex::regex::string::Match>::new
Line
Count
Source
1564
25.9k
    fn new(haystack: &'h str, start: usize, end: usize) -> Match<'h> {
1565
25.9k
        Match { haystack, start, end }
1566
25.9k
    }
Unexecuted instantiation: <regex::regex::string::Match>::new
Unexecuted instantiation: <regex::regex::string::Match>::new
Unexecuted instantiation: <regex::regex::string::Match>::new
Unexecuted instantiation: <regex::regex::string::Match>::new
Unexecuted instantiation: <regex::regex::string::Match>::new
<regex::regex::string::Match>::new
Line
Count
Source
1564
24.5k
    fn new(haystack: &'h str, start: usize, end: usize) -> Match<'h> {
1565
24.5k
        Match { haystack, start, end }
1566
24.5k
    }
Unexecuted instantiation: <regex::regex::string::Match>::new
1567
}
1568
1569
impl<'h> core::fmt::Debug for Match<'h> {
1570
0
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1571
0
        f.debug_struct("Match")
1572
0
            .field("start", &self.start)
1573
0
            .field("end", &self.end)
1574
0
            .field("string", &self.as_str())
1575
0
            .finish()
1576
0
    }
Unexecuted instantiation: <regex::regex::string::Match as core::fmt::Debug>::fmt
Unexecuted instantiation: <regex::regex::string::Match as core::fmt::Debug>::fmt
1577
}
1578
1579
impl<'h> From<Match<'h>> for &'h str {
1580
0
    fn from(m: Match<'h>) -> &'h str {
1581
0
        m.as_str()
1582
0
    }
Unexecuted instantiation: <&str as core::convert::From<regex::regex::string::Match>>::from
Unexecuted instantiation: <&str as core::convert::From<regex::regex::string::Match>>::from
1583
}
1584
1585
impl<'h> From<Match<'h>> for core::ops::Range<usize> {
1586
0
    fn from(m: Match<'h>) -> core::ops::Range<usize> {
1587
0
        m.range()
1588
0
    }
Unexecuted instantiation: <core::ops::range::Range<usize> as core::convert::From<regex::regex::string::Match>>::from
Unexecuted instantiation: <core::ops::range::Range<usize> as core::convert::From<regex::regex::string::Match>>::from
1589
}
1590
1591
/// Represents the capture groups for a single match.
1592
///
1593
/// Capture groups refer to parts of a regex enclosed in parentheses. They
1594
/// can be optionally named. The purpose of capture groups is to be able to
1595
/// reference different parts of a match based on the original pattern. In
1596
/// essence, a `Captures` is a container of [`Match`] values for each group
1597
/// that participated in a regex match. Each `Match` can be looked up by either
1598
/// its capture group index or name (if it has one).
1599
///
1600
/// For example, say you want to match the individual letters in a 5-letter
1601
/// word:
1602
///
1603
/// ```text
1604
/// (?<first>\w)(\w)(?:\w)\w(?<last>\w)
1605
/// ```
1606
///
1607
/// This regex has 4 capture groups:
1608
///
1609
/// * The group at index `0` corresponds to the overall match. It is always
1610
/// present in every match and never has a name.
1611
/// * The group at index `1` with name `first` corresponding to the first
1612
/// letter.
1613
/// * The group at index `2` with no name corresponding to the second letter.
1614
/// * The group at index `3` with name `last` corresponding to the fifth and
1615
/// last letter.
1616
///
1617
/// Notice that `(?:\w)` was not listed above as a capture group despite it
1618
/// being enclosed in parentheses. That's because `(?:pattern)` is a special
1619
/// syntax that permits grouping but *without* capturing. The reason for not
1620
/// treating it as a capture is that tracking and reporting capture groups
1621
/// requires additional state that may lead to slower searches. So using as few
1622
/// capture groups as possible can help performance. (Although the difference
1623
/// in performance of a couple of capture groups is likely immaterial.)
1624
///
1625
/// Values with this type are created by [`Regex::captures`] or
1626
/// [`Regex::captures_iter`].
1627
///
1628
/// `'h` is the lifetime of the haystack that these captures were matched from.
1629
///
1630
/// # Example
1631
///
1632
/// ```
1633
/// use regex::Regex;
1634
///
1635
/// let re = Regex::new(r"(?<first>\w)(\w)(?:\w)\w(?<last>\w)").unwrap();
1636
/// let caps = re.captures("toady").unwrap();
1637
/// assert_eq!("toady", &caps[0]);
1638
/// assert_eq!("t", &caps["first"]);
1639
/// assert_eq!("o", &caps[2]);
1640
/// assert_eq!("y", &caps["last"]);
1641
/// ```
1642
pub struct Captures<'h> {
1643
    haystack: &'h str,
1644
    caps: captures::Captures,
1645
    static_captures_len: Option<usize>,
1646
}
1647
1648
impl<'h> Captures<'h> {
1649
    /// Returns the `Match` associated with the capture group at index `i`. If
1650
    /// `i` does not correspond to a capture group, or if the capture group did
1651
    /// not participate in the match, then `None` is returned.
1652
    ///
1653
    /// When `i == 0`, this is guaranteed to return a non-`None` value.
1654
    ///
1655
    /// # Examples
1656
    ///
1657
    /// Get the substring that matched with a default of an empty string if the
1658
    /// group didn't participate in the match:
1659
    ///
1660
    /// ```
1661
    /// use regex::Regex;
1662
    ///
1663
    /// let re = Regex::new(r"[a-z]+(?:([0-9]+)|([A-Z]+))").unwrap();
1664
    /// let caps = re.captures("abc123").unwrap();
1665
    ///
1666
    /// let substr1 = caps.get(1).map_or("", |m| m.as_str());
1667
    /// let substr2 = caps.get(2).map_or("", |m| m.as_str());
1668
    /// assert_eq!(substr1, "123");
1669
    /// assert_eq!(substr2, "");
1670
    /// ```
1671
    #[inline]
1672
0
    pub fn get(&self, i: usize) -> Option<Match<'h>> {
1673
0
        self.caps
1674
0
            .get_group(i)
1675
0
            .map(|sp| Match::new(self.haystack, sp.start, sp.end))
Unexecuted instantiation: <regex::regex::string::Captures>::get::{closure#0}
Unexecuted instantiation: <regex::regex::string::Captures>::get::{closure#0}
1676
0
    }
Unexecuted instantiation: <regex::regex::string::Captures>::get
Unexecuted instantiation: <regex::regex::string::Captures>::get
1677
1678
    /// Returns the `Match` associated with the capture group named `name`. If
1679
    /// `name` isn't a valid capture group or it refers to a group that didn't
1680
    /// match, then `None` is returned.
1681
    ///
1682
    /// Note that unlike `caps["name"]`, this returns a `Match` whose lifetime
1683
    /// matches the lifetime of the haystack in this `Captures` value.
1684
    /// Conversely, the substring returned by `caps["name"]` has a lifetime
1685
    /// of the `Captures` value, which is likely shorter than the lifetime of
1686
    /// the haystack. In some cases, it may be necessary to use this method to
1687
    /// access the matching substring instead of the `caps["name"]` notation.
1688
    ///
1689
    /// # Examples
1690
    ///
1691
    /// Get the substring that matched with a default of an empty string if the
1692
    /// group didn't participate in the match:
1693
    ///
1694
    /// ```
1695
    /// use regex::Regex;
1696
    ///
1697
    /// let re = Regex::new(
1698
    ///     r"[a-z]+(?:(?<numbers>[0-9]+)|(?<letters>[A-Z]+))",
1699
    /// ).unwrap();
1700
    /// let caps = re.captures("abc123").unwrap();
1701
    ///
1702
    /// let numbers = caps.name("numbers").map_or("", |m| m.as_str());
1703
    /// let letters = caps.name("letters").map_or("", |m| m.as_str());
1704
    /// assert_eq!(numbers, "123");
1705
    /// assert_eq!(letters, "");
1706
    /// ```
1707
    #[inline]
1708
84.1k
    pub fn name(&self, name: &str) -> Option<Match<'h>> {
1709
84.1k
        self.caps
1710
84.1k
            .get_group_by_name(name)
1711
84.1k
            .map(|sp| Match::new(self.haystack, sp.start, sp.end))
<regex::regex::string::Captures>::name::{closure#0}
Line
Count
Source
1711
25.9k
            .map(|sp| Match::new(self.haystack, sp.start, sp.end))
<regex::regex::string::Captures>::name::{closure#0}
Line
Count
Source
1711
24.5k
            .map(|sp| Match::new(self.haystack, sp.start, sp.end))
1712
84.1k
    }
<regex::regex::string::Captures>::name
Line
Count
Source
1708
12.4k
    pub fn name(&self, name: &str) -> Option<Match<'h>> {
1709
12.4k
        self.caps
1710
12.4k
            .get_group_by_name(name)
1711
12.4k
            .map(|sp| Match::new(self.haystack, sp.start, sp.end))
1712
12.4k
    }
Unexecuted instantiation: <regex::regex::string::Captures>::name
<regex::regex::string::Captures>::name
Line
Count
Source
1708
3.26k
    pub fn name(&self, name: &str) -> Option<Match<'h>> {
1709
3.26k
        self.caps
1710
3.26k
            .get_group_by_name(name)
1711
3.26k
            .map(|sp| Match::new(self.haystack, sp.start, sp.end))
1712
3.26k
    }
<regex::regex::string::Captures>::name
Line
Count
Source
1708
18.5k
    pub fn name(&self, name: &str) -> Option<Match<'h>> {
1709
18.5k
        self.caps
1710
18.5k
            .get_group_by_name(name)
1711
18.5k
            .map(|sp| Match::new(self.haystack, sp.start, sp.end))
1712
18.5k
    }
<regex::regex::string::Captures>::name
Line
Count
Source
1708
3.92k
    pub fn name(&self, name: &str) -> Option<Match<'h>> {
1709
3.92k
        self.caps
1710
3.92k
            .get_group_by_name(name)
1711
3.92k
            .map(|sp| Match::new(self.haystack, sp.start, sp.end))
1712
3.92k
    }
<regex::regex::string::Captures>::name
Line
Count
Source
1708
40.9k
    pub fn name(&self, name: &str) -> Option<Match<'h>> {
1709
40.9k
        self.caps
1710
40.9k
            .get_group_by_name(name)
1711
40.9k
            .map(|sp| Match::new(self.haystack, sp.start, sp.end))
1712
40.9k
    }
Unexecuted instantiation: <regex::regex::string::Captures>::name
<regex::regex::string::Captures>::name
Line
Count
Source
1708
4.95k
    pub fn name(&self, name: &str) -> Option<Match<'h>> {
1709
4.95k
        self.caps
1710
4.95k
            .get_group_by_name(name)
1711
4.95k
            .map(|sp| Match::new(self.haystack, sp.start, sp.end))
1712
4.95k
    }
1713
1714
    /// This is a convenience routine for extracting the substrings
1715
    /// corresponding to matching capture groups.
1716
    ///
1717
    /// This returns a tuple where the first element corresponds to the full
1718
    /// substring of the haystack that matched the regex. The second element is
1719
    /// an array of substrings, with each corresponding to the substring that
1720
    /// matched for a particular capture group.
1721
    ///
1722
    /// # Panics
1723
    ///
1724
    /// This panics if the number of possible matching groups in this
1725
    /// `Captures` value is not fixed to `N` in all circumstances.
1726
    /// More precisely, this routine only works when `N` is equivalent to
1727
    /// [`Regex::static_captures_len`].
1728
    ///
1729
    /// Stated more plainly, if the number of matching capture groups in a
1730
    /// regex can vary from match to match, then this function always panics.
1731
    ///
1732
    /// For example, `(a)(b)|(c)` could produce two matching capture groups
1733
    /// or one matching capture group for any given match. Therefore, one
1734
    /// cannot use `extract` with such a pattern.
1735
    ///
1736
    /// But a pattern like `(a)(b)|(c)(d)` can be used with `extract` because
1737
    /// the number of capture groups in every match is always equivalent,
1738
    /// even if the capture _indices_ in each match are not.
1739
    ///
1740
    /// # Example
1741
    ///
1742
    /// ```
1743
    /// use regex::Regex;
1744
    ///
1745
    /// let re = Regex::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})").unwrap();
1746
    /// let hay = "On 2010-03-14, I became a Tenneessee lamb.";
1747
    /// let Some((full, [year, month, day])) =
1748
    ///     re.captures(hay).map(|caps| caps.extract()) else { return };
1749
    /// assert_eq!("2010-03-14", full);
1750
    /// assert_eq!("2010", year);
1751
    /// assert_eq!("03", month);
1752
    /// assert_eq!("14", day);
1753
    /// ```
1754
    ///
1755
    /// # Example: iteration
1756
    ///
1757
    /// This example shows how to use this method when iterating over all
1758
    /// `Captures` matches in a haystack.
1759
    ///
1760
    /// ```
1761
    /// use regex::Regex;
1762
    ///
1763
    /// let re = Regex::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})").unwrap();
1764
    /// let hay = "1973-01-05, 1975-08-25 and 1980-10-18";
1765
    ///
1766
    /// let mut dates: Vec<(&str, &str, &str)> = vec![];
1767
    /// for (_, [y, m, d]) in re.captures_iter(hay).map(|c| c.extract()) {
1768
    ///     dates.push((y, m, d));
1769
    /// }
1770
    /// assert_eq!(dates, vec![
1771
    ///     ("1973", "01", "05"),
1772
    ///     ("1975", "08", "25"),
1773
    ///     ("1980", "10", "18"),
1774
    /// ]);
1775
    /// ```
1776
    ///
1777
    /// # Example: parsing different formats
1778
    ///
1779
    /// This API is particularly useful when you need to extract a particular
1780
    /// value that might occur in a different format. Consider, for example,
1781
    /// an identifier that might be in double quotes or single quotes:
1782
    ///
1783
    /// ```
1784
    /// use regex::Regex;
1785
    ///
1786
    /// let re = Regex::new(r#"id:(?:"([^"]+)"|'([^']+)')"#).unwrap();
1787
    /// let hay = r#"The first is id:"foo" and the second is id:'bar'."#;
1788
    /// let mut ids = vec![];
1789
    /// for (_, [id]) in re.captures_iter(hay).map(|c| c.extract()) {
1790
    ///     ids.push(id);
1791
    /// }
1792
    /// assert_eq!(ids, vec!["foo", "bar"]);
1793
    /// ```
1794
0
    pub fn extract<const N: usize>(&self) -> (&'h str, [&'h str; N]) {
1795
0
        let len = self
1796
0
            .static_captures_len
1797
0
            .expect("number of capture groups can vary in a match")
1798
0
            .checked_sub(1)
1799
0
            .expect("number of groups is always greater than zero");
1800
0
        assert_eq!(N, len, "asked for {} groups, but must ask for {}", N, len);
1801
        // The regex-automata variant of extract is a bit more permissive.
1802
        // It doesn't require the number of matching capturing groups to be
1803
        // static, and you can even request fewer groups than what's there. So
1804
        // this is guaranteed to never panic because we've asserted above that
1805
        // the user has requested precisely the number of groups that must be
1806
        // present in any match for this regex.
1807
0
        self.caps.extract(self.haystack)
1808
0
    }
Unexecuted instantiation: <regex::regex::string::Captures>::extract::<_>
Unexecuted instantiation: <regex::regex::string::Captures>::extract::<_>
1809
1810
    /// Expands all instances of `$ref` in `replacement` to the corresponding
1811
    /// capture group, and writes them to the `dst` buffer given. A `ref` can
1812
    /// be a capture group index or a name. If `ref` doesn't refer to a capture
1813
    /// group that participated in the match, then it is replaced with the
1814
    /// empty string.
1815
    ///
1816
    /// # Format
1817
    ///
1818
    /// The format of the replacement string supports two different kinds of
1819
    /// capture references: unbraced and braced.
1820
    ///
1821
    /// For the unbraced format, the format supported is `$ref` where `name`
1822
    /// can be any character in the class `[0-9A-Za-z_]`. `ref` is always
1823
    /// the longest possible parse. So for example, `$1a` corresponds to the
1824
    /// capture group named `1a` and not the capture group at index `1`. If
1825
    /// `ref` matches `^[0-9]+$`, then it is treated as a capture group index
1826
    /// itself and not a name.
1827
    ///
1828
    /// For the braced format, the format supported is `${ref}` where `ref` can
1829
    /// be any sequence of bytes except for `}`. If no closing brace occurs,
1830
    /// then it is not considered a capture reference. As with the unbraced
1831
    /// format, if `ref` matches `^[0-9]+$`, then it is treated as a capture
1832
    /// group index and not a name.
1833
    ///
1834
    /// The braced format is useful for exerting precise control over the name
1835
    /// of the capture reference. For example, `${1}a` corresponds to the
1836
    /// capture group reference `1` followed by the letter `a`, where as `$1a`
1837
    /// (as mentioned above) corresponds to the capture group reference `1a`.
1838
    /// The braced format is also useful for expressing capture group names
1839
    /// that use characters not supported by the unbraced format. For example,
1840
    /// `${foo[bar].baz}` refers to the capture group named `foo[bar].baz`.
1841
    ///
1842
    /// If a capture group reference is found and it does not refer to a valid
1843
    /// capture group, then it will be replaced with the empty string.
1844
    ///
1845
    /// To write a literal `$`, use `$$`.
1846
    ///
1847
    /// # Example
1848
    ///
1849
    /// ```
1850
    /// use regex::Regex;
1851
    ///
1852
    /// let re = Regex::new(
1853
    ///     r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})",
1854
    /// ).unwrap();
1855
    /// let hay = "On 14-03-2010, I became a Tenneessee lamb.";
1856
    /// let caps = re.captures(hay).unwrap();
1857
    ///
1858
    /// let mut dst = String::new();
1859
    /// caps.expand("year=$year, month=$month, day=$day", &mut dst);
1860
    /// assert_eq!(dst, "year=2010, month=03, day=14");
1861
    /// ```
1862
    #[inline]
1863
0
    pub fn expand(&self, replacement: &str, dst: &mut String) {
1864
0
        self.caps.interpolate_string_into(self.haystack, replacement, dst);
1865
0
    }
Unexecuted instantiation: <regex::regex::string::Captures>::expand
Unexecuted instantiation: <regex::regex::string::Captures>::expand
1866
1867
    /// Returns an iterator over all capture groups. This includes both
1868
    /// matching and non-matching groups.
1869
    ///
1870
    /// The iterator always yields at least one matching group: the first group
1871
    /// (at index `0`) with no name. Subsequent groups are returned in the order
1872
    /// of their opening parenthesis in the regex.
1873
    ///
1874
    /// The elements yielded have type `Option<Match<'h>>`, where a non-`None`
1875
    /// value is present if the capture group matches.
1876
    ///
1877
    /// # Example
1878
    ///
1879
    /// ```
1880
    /// use regex::Regex;
1881
    ///
1882
    /// let re = Regex::new(r"(\w)(\d)?(\w)").unwrap();
1883
    /// let caps = re.captures("AZ").unwrap();
1884
    ///
1885
    /// let mut it = caps.iter();
1886
    /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), Some("AZ"));
1887
    /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), Some("A"));
1888
    /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), None);
1889
    /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), Some("Z"));
1890
    /// assert_eq!(it.next(), None);
1891
    /// ```
1892
    #[inline]
1893
0
    pub fn iter<'c>(&'c self) -> SubCaptureMatches<'c, 'h> {
1894
0
        SubCaptureMatches { haystack: self.haystack, it: self.caps.iter() }
1895
0
    }
Unexecuted instantiation: <regex::regex::string::Captures>::iter
Unexecuted instantiation: <regex::regex::string::Captures>::iter
1896
1897
    /// Returns the total number of capture groups. This includes both
1898
    /// matching and non-matching groups.
1899
    ///
1900
    /// The length returned is always equivalent to the number of elements
1901
    /// yielded by [`Captures::iter`]. Consequently, the length is always
1902
    /// greater than zero since every `Captures` value always includes the
1903
    /// match for the entire regex.
1904
    ///
1905
    /// # Example
1906
    ///
1907
    /// ```
1908
    /// use regex::Regex;
1909
    ///
1910
    /// let re = Regex::new(r"(\w)(\d)?(\w)").unwrap();
1911
    /// let caps = re.captures("AZ").unwrap();
1912
    /// assert_eq!(caps.len(), 4);
1913
    /// ```
1914
    #[inline]
1915
0
    pub fn len(&self) -> usize {
1916
0
        self.caps.group_len()
1917
0
    }
Unexecuted instantiation: <regex::regex::string::Captures>::len
Unexecuted instantiation: <regex::regex::string::Captures>::len
1918
}
1919
1920
impl<'h> core::fmt::Debug for Captures<'h> {
1921
0
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
1922
        /// A little helper type to provide a nice map-like debug
1923
        /// representation for our capturing group spans.
1924
        ///
1925
        /// regex-automata has something similar, but it includes the pattern
1926
        /// ID in its debug output, which is confusing. It also doesn't include
1927
        /// that strings that match because a regex-automata `Captures` doesn't
1928
        /// borrow the haystack.
1929
        struct CapturesDebugMap<'a> {
1930
            caps: &'a Captures<'a>,
1931
        }
1932
1933
        impl<'a> core::fmt::Debug for CapturesDebugMap<'a> {
1934
0
            fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1935
0
                let mut map = f.debug_map();
1936
0
                let names =
1937
0
                    self.caps.caps.group_info().pattern_names(PatternID::ZERO);
1938
0
                for (group_index, maybe_name) in names.enumerate() {
1939
0
                    let key = Key(group_index, maybe_name);
1940
0
                    match self.caps.get(group_index) {
1941
0
                        None => map.entry(&key, &None::<()>),
1942
0
                        Some(mat) => map.entry(&key, &Value(mat)),
1943
                    };
1944
                }
1945
0
                map.finish()
1946
0
            }
Unexecuted instantiation: <<regex::regex::string::Captures as core::fmt::Debug>::fmt::CapturesDebugMap as core::fmt::Debug>::fmt
Unexecuted instantiation: <<regex::regex::string::Captures as core::fmt::Debug>::fmt::CapturesDebugMap as core::fmt::Debug>::fmt
1947
        }
1948
1949
        struct Key<'a>(usize, Option<&'a str>);
1950
1951
        impl<'a> core::fmt::Debug for Key<'a> {
1952
0
            fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1953
0
                write!(f, "{}", self.0)?;
1954
0
                if let Some(name) = self.1 {
1955
0
                    write!(f, "/{:?}", name)?;
1956
0
                }
1957
0
                Ok(())
1958
0
            }
Unexecuted instantiation: <<regex::regex::string::Captures as core::fmt::Debug>::fmt::Key as core::fmt::Debug>::fmt
Unexecuted instantiation: <<regex::regex::string::Captures as core::fmt::Debug>::fmt::Key as core::fmt::Debug>::fmt
1959
        }
1960
1961
        struct Value<'a>(Match<'a>);
1962
1963
        impl<'a> core::fmt::Debug for Value<'a> {
1964
0
            fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1965
0
                write!(
1966
0
                    f,
1967
0
                    "{}..{}/{:?}",
1968
0
                    self.0.start(),
1969
0
                    self.0.end(),
1970
0
                    self.0.as_str()
1971
0
                )
1972
0
            }
Unexecuted instantiation: <<regex::regex::string::Captures as core::fmt::Debug>::fmt::Value as core::fmt::Debug>::fmt
Unexecuted instantiation: <<regex::regex::string::Captures as core::fmt::Debug>::fmt::Value as core::fmt::Debug>::fmt
1973
        }
1974
1975
0
        f.debug_tuple("Captures")
1976
0
            .field(&CapturesDebugMap { caps: self })
1977
0
            .finish()
1978
0
    }
Unexecuted instantiation: <regex::regex::string::Captures as core::fmt::Debug>::fmt
Unexecuted instantiation: <regex::regex::string::Captures as core::fmt::Debug>::fmt
1979
}
1980
1981
/// Get a matching capture group's haystack substring by index.
1982
///
1983
/// The haystack substring returned can't outlive the `Captures` object if this
1984
/// method is used, because of how `Index` is defined (normally `a[i]` is part
1985
/// of `a` and can't outlive it). To work around this limitation, do that, use
1986
/// [`Captures::get`] instead.
1987
///
1988
/// `'h` is the lifetime of the matched haystack, but the lifetime of the
1989
/// `&str` returned by this implementation is the lifetime of the `Captures`
1990
/// value itself.
1991
///
1992
/// # Panics
1993
///
1994
/// If there is no matching group at the given index.
1995
impl<'h> core::ops::Index<usize> for Captures<'h> {
1996
    type Output = str;
1997
1998
    // The lifetime is written out to make it clear that the &str returned
1999
    // does NOT have a lifetime equivalent to 'h.
2000
0
    fn index<'a>(&'a self, i: usize) -> &'a str {
2001
0
        self.get(i)
2002
0
            .map(|m| m.as_str())
Unexecuted instantiation: <regex::regex::string::Captures as core::ops::index::Index<usize>>::index::{closure#0}
Unexecuted instantiation: <regex::regex::string::Captures as core::ops::index::Index<usize>>::index::{closure#0}
2003
0
            .unwrap_or_else(|| panic!("no group at index '{}'", i))
Unexecuted instantiation: <regex::regex::string::Captures as core::ops::index::Index<usize>>::index::{closure#1}
Unexecuted instantiation: <regex::regex::string::Captures as core::ops::index::Index<usize>>::index::{closure#1}
2004
0
    }
Unexecuted instantiation: <regex::regex::string::Captures as core::ops::index::Index<usize>>::index
Unexecuted instantiation: <regex::regex::string::Captures as core::ops::index::Index<usize>>::index
2005
}
2006
2007
/// Get a matching capture group's haystack substring by name.
2008
///
2009
/// The haystack substring returned can't outlive the `Captures` object if this
2010
/// method is used, because of how `Index` is defined (normally `a[i]` is part
2011
/// of `a` and can't outlive it). To work around this limitation, do that, use
2012
/// [`Captures::name`] instead.
2013
///
2014
/// `'h` is the lifetime of the matched haystack, but the lifetime of the
2015
/// `&str` returned by this implementation is the lifetime of the `Captures`
2016
/// value itself.
2017
///
2018
/// `'n` is the lifetime of the group name used to index the `Captures` value.
2019
///
2020
/// # Panics
2021
///
2022
/// If there is no matching group at the given name.
2023
impl<'h, 'n> core::ops::Index<&'n str> for Captures<'h> {
2024
    type Output = str;
2025
2026
0
    fn index<'a>(&'a self, name: &'n str) -> &'a str {
2027
0
        self.name(name)
2028
0
            .map(|m| m.as_str())
Unexecuted instantiation: <regex::regex::string::Captures as core::ops::index::Index<&str>>::index::{closure#0}
Unexecuted instantiation: <regex::regex::string::Captures as core::ops::index::Index<&str>>::index::{closure#0}
2029
0
            .unwrap_or_else(|| panic!("no group named '{}'", name))
Unexecuted instantiation: <regex::regex::string::Captures as core::ops::index::Index<&str>>::index::{closure#1}
Unexecuted instantiation: <regex::regex::string::Captures as core::ops::index::Index<&str>>::index::{closure#1}
2030
0
    }
Unexecuted instantiation: <regex::regex::string::Captures as core::ops::index::Index<&str>>::index
Unexecuted instantiation: <regex::regex::string::Captures as core::ops::index::Index<&str>>::index
2031
}
2032
2033
/// A low level representation of the byte offsets of each capture group.
2034
///
2035
/// You can think of this as a lower level [`Captures`], where this type does
2036
/// not support named capturing groups directly and it does not borrow the
2037
/// haystack that these offsets were matched on.
2038
///
2039
/// Primarily, this type is useful when using the lower level `Regex` APIs such
2040
/// as [`Regex::captures_read`], which permits amortizing the allocation in
2041
/// which capture match offsets are stored.
2042
///
2043
/// In order to build a value of this type, you'll need to call the
2044
/// [`Regex::capture_locations`] method. The value returned can then be reused
2045
/// in subsequent searches for that regex. Using it for other regexes may
2046
/// result in a panic or otherwise incorrect results.
2047
///
2048
/// # Example
2049
///
2050
/// This example shows how to create and use `CaptureLocations` in a search.
2051
///
2052
/// ```
2053
/// use regex::Regex;
2054
///
2055
/// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)").unwrap();
2056
/// let mut locs = re.capture_locations();
2057
/// let m = re.captures_read(&mut locs, "Bruce Springsteen").unwrap();
2058
/// assert_eq!(0..17, m.range());
2059
/// assert_eq!(Some((0, 17)), locs.get(0));
2060
/// assert_eq!(Some((0, 5)), locs.get(1));
2061
/// assert_eq!(Some((6, 17)), locs.get(2));
2062
///
2063
/// // Asking for an invalid capture group always returns None.
2064
/// assert_eq!(None, locs.get(3));
2065
/// # // literals are too big for 32-bit usize: #1041
2066
/// # #[cfg(target_pointer_width = "64")]
2067
/// assert_eq!(None, locs.get(34973498648));
2068
/// # #[cfg(target_pointer_width = "64")]
2069
/// assert_eq!(None, locs.get(9944060567225171988));
2070
/// ```
2071
#[derive(Clone, Debug)]
2072
pub struct CaptureLocations(captures::Captures);
2073
2074
/// A type alias for `CaptureLocations` for backwards compatibility.
2075
///
2076
/// Previously, we exported `CaptureLocations` as `Locations` in an
2077
/// undocumented API. To prevent breaking that code (e.g., in `regex-capi`),
2078
/// we continue re-exporting the same undocumented API.
2079
#[doc(hidden)]
2080
pub type Locations = CaptureLocations;
2081
2082
impl CaptureLocations {
2083
    /// Returns the start and end byte offsets of the capture group at index
2084
    /// `i`. This returns `None` if `i` is not a valid capture group or if the
2085
    /// capture group did not match.
2086
    ///
2087
    /// # Example
2088
    ///
2089
    /// ```
2090
    /// use regex::Regex;
2091
    ///
2092
    /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)").unwrap();
2093
    /// let mut locs = re.capture_locations();
2094
    /// re.captures_read(&mut locs, "Bruce Springsteen").unwrap();
2095
    /// assert_eq!(Some((0, 17)), locs.get(0));
2096
    /// assert_eq!(Some((0, 5)), locs.get(1));
2097
    /// assert_eq!(Some((6, 17)), locs.get(2));
2098
    /// ```
2099
    #[inline]
2100
0
    pub fn get(&self, i: usize) -> Option<(usize, usize)> {
2101
0
        self.0.get_group(i).map(|sp| (sp.start, sp.end))
Unexecuted instantiation: <regex::regex::string::CaptureLocations>::get::{closure#0}
Unexecuted instantiation: <regex::regex::string::CaptureLocations>::get::{closure#0}
2102
0
    }
Unexecuted instantiation: <regex::regex::string::CaptureLocations>::get
Unexecuted instantiation: <regex::regex::string::CaptureLocations>::get
2103
2104
    /// Returns the total number of capture groups (even if they didn't match).
2105
    /// That is, the length returned is unaffected by the result of a search.
2106
    ///
2107
    /// This is always at least `1` since every regex has at least `1`
2108
    /// capturing group that corresponds to the entire match.
2109
    ///
2110
    /// # Example
2111
    ///
2112
    /// ```
2113
    /// use regex::Regex;
2114
    ///
2115
    /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)").unwrap();
2116
    /// let mut locs = re.capture_locations();
2117
    /// assert_eq!(3, locs.len());
2118
    /// re.captures_read(&mut locs, "Bruce Springsteen").unwrap();
2119
    /// assert_eq!(3, locs.len());
2120
    /// ```
2121
    ///
2122
    /// Notice that the length is always at least `1`, regardless of the regex:
2123
    ///
2124
    /// ```
2125
    /// use regex::Regex;
2126
    ///
2127
    /// let re = Regex::new(r"").unwrap();
2128
    /// let locs = re.capture_locations();
2129
    /// assert_eq!(1, locs.len());
2130
    ///
2131
    /// // [a&&b] is a regex that never matches anything.
2132
    /// let re = Regex::new(r"[a&&b]").unwrap();
2133
    /// let locs = re.capture_locations();
2134
    /// assert_eq!(1, locs.len());
2135
    /// ```
2136
    #[inline]
2137
0
    pub fn len(&self) -> usize {
2138
0
        // self.0.group_len() returns 0 if the underlying captures doesn't
2139
0
        // represent a match, but the behavior guaranteed for this method is
2140
0
        // that the length doesn't change based on a match or not.
2141
0
        self.0.group_info().group_len(PatternID::ZERO)
2142
0
    }
Unexecuted instantiation: <regex::regex::string::CaptureLocations>::len
Unexecuted instantiation: <regex::regex::string::CaptureLocations>::len
2143
2144
    /// An alias for the `get` method for backwards compatibility.
2145
    ///
2146
    /// Previously, we exported `get` as `pos` in an undocumented API. To
2147
    /// prevent breaking that code (e.g., in `regex-capi`), we continue
2148
    /// re-exporting the same undocumented API.
2149
    #[doc(hidden)]
2150
    #[inline]
2151
0
    pub fn pos(&self, i: usize) -> Option<(usize, usize)> {
2152
0
        self.get(i)
2153
0
    }
Unexecuted instantiation: <regex::regex::string::CaptureLocations>::pos
Unexecuted instantiation: <regex::regex::string::CaptureLocations>::pos
2154
}
2155
2156
/// An iterator over all non-overlapping matches in a haystack.
2157
///
2158
/// This iterator yields [`Match`] values. The iterator stops when no more
2159
/// matches can be found.
2160
///
2161
/// `'r` is the lifetime of the compiled regular expression and `'h` is the
2162
/// lifetime of the haystack.
2163
///
2164
/// This iterator is created by [`Regex::find_iter`].
2165
///
2166
/// # Time complexity
2167
///
2168
/// Note that since an iterator runs potentially many searches on the haystack
2169
/// and since each search has worst case `O(m * n)` time complexity, the
2170
/// overall worst case time complexity for iteration is `O(m * n^2)`.
2171
#[derive(Debug)]
2172
pub struct Matches<'r, 'h> {
2173
    haystack: &'h str,
2174
    it: meta::FindMatches<'r, 'h>,
2175
}
2176
2177
impl<'r, 'h> Iterator for Matches<'r, 'h> {
2178
    type Item = Match<'h>;
2179
2180
    #[inline]
2181
0
    fn next(&mut self) -> Option<Match<'h>> {
2182
0
        self.it
2183
0
            .next()
2184
0
            .map(|sp| Match::new(self.haystack, sp.start(), sp.end()))
Unexecuted instantiation: <regex::regex::string::Matches as core::iter::traits::iterator::Iterator>::next::{closure#0}
Unexecuted instantiation: <regex::regex::string::Matches as core::iter::traits::iterator::Iterator>::next::{closure#0}
Unexecuted instantiation: <regex::regex::string::Matches as core::iter::traits::iterator::Iterator>::next::{closure#0}
Unexecuted instantiation: <regex::regex::string::Matches as core::iter::traits::iterator::Iterator>::next::{closure#0}
Unexecuted instantiation: <regex::regex::string::Matches as core::iter::traits::iterator::Iterator>::next::{closure#0}
Unexecuted instantiation: <regex::regex::string::Matches as core::iter::traits::iterator::Iterator>::next::{closure#0}
Unexecuted instantiation: <regex::regex::string::Matches as core::iter::traits::iterator::Iterator>::next::{closure#0}
Unexecuted instantiation: <regex::regex::string::Matches as core::iter::traits::iterator::Iterator>::next::{closure#0}
2185
0
    }
Unexecuted instantiation: <regex::regex::string::Matches as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex::regex::string::Matches as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex::regex::string::Matches as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex::regex::string::Matches as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex::regex::string::Matches as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex::regex::string::Matches as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex::regex::string::Matches as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex::regex::string::Matches as core::iter::traits::iterator::Iterator>::next
2186
2187
    #[inline]
2188
0
    fn count(self) -> usize {
2189
0
        // This can actually be up to 2x faster than calling `next()` until
2190
0
        // completion, because counting matches when using a DFA only requires
2191
0
        // finding the end of each match. But returning a `Match` via `next()`
2192
0
        // requires the start of each match which, with a DFA, requires a
2193
0
        // reverse forward scan to find it.
2194
0
        self.it.count()
2195
0
    }
Unexecuted instantiation: <regex::regex::string::Matches as core::iter::traits::iterator::Iterator>::count
Unexecuted instantiation: <regex::regex::string::Matches as core::iter::traits::iterator::Iterator>::count
2196
}
2197
2198
impl<'r, 'h> core::iter::FusedIterator for Matches<'r, 'h> {}
2199
2200
/// An iterator over all non-overlapping capture matches in a haystack.
2201
///
2202
/// This iterator yields [`Captures`] values. The iterator stops when no more
2203
/// matches can be found.
2204
///
2205
/// `'r` is the lifetime of the compiled regular expression and `'h` is the
2206
/// lifetime of the matched string.
2207
///
2208
/// This iterator is created by [`Regex::captures_iter`].
2209
///
2210
/// # Time complexity
2211
///
2212
/// Note that since an iterator runs potentially many searches on the haystack
2213
/// and since each search has worst case `O(m * n)` time complexity, the
2214
/// overall worst case time complexity for iteration is `O(m * n^2)`.
2215
#[derive(Debug)]
2216
pub struct CaptureMatches<'r, 'h> {
2217
    haystack: &'h str,
2218
    it: meta::CapturesMatches<'r, 'h>,
2219
}
2220
2221
impl<'r, 'h> Iterator for CaptureMatches<'r, 'h> {
2222
    type Item = Captures<'h>;
2223
2224
    #[inline]
2225
0
    fn next(&mut self) -> Option<Captures<'h>> {
2226
0
        let static_captures_len = self.it.regex().static_captures_len();
2227
0
        self.it.next().map(|caps| Captures {
2228
0
            haystack: self.haystack,
2229
0
            caps,
2230
0
            static_captures_len,
2231
0
        })
Unexecuted instantiation: <regex::regex::string::CaptureMatches as core::iter::traits::iterator::Iterator>::next::{closure#0}
Unexecuted instantiation: <regex::regex::string::CaptureMatches as core::iter::traits::iterator::Iterator>::next::{closure#0}
2232
0
    }
Unexecuted instantiation: <regex::regex::string::CaptureMatches as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex::regex::string::CaptureMatches as core::iter::traits::iterator::Iterator>::next
2233
2234
    #[inline]
2235
0
    fn count(self) -> usize {
2236
0
        // This can actually be up to 2x faster than calling `next()` until
2237
0
        // completion, because counting matches when using a DFA only requires
2238
0
        // finding the end of each match. But returning a `Match` via `next()`
2239
0
        // requires the start of each match which, with a DFA, requires a
2240
0
        // reverse forward scan to find it.
2241
0
        self.it.count()
2242
0
    }
Unexecuted instantiation: <regex::regex::string::CaptureMatches as core::iter::traits::iterator::Iterator>::count
Unexecuted instantiation: <regex::regex::string::CaptureMatches as core::iter::traits::iterator::Iterator>::count
2243
}
2244
2245
impl<'r, 'h> core::iter::FusedIterator for CaptureMatches<'r, 'h> {}
2246
2247
/// An iterator over all substrings delimited by a regex match.
2248
///
2249
/// `'r` is the lifetime of the compiled regular expression and `'h` is the
2250
/// lifetime of the byte string being split.
2251
///
2252
/// This iterator is created by [`Regex::split`].
2253
///
2254
/// # Time complexity
2255
///
2256
/// Note that since an iterator runs potentially many searches on the haystack
2257
/// and since each search has worst case `O(m * n)` time complexity, the
2258
/// overall worst case time complexity for iteration is `O(m * n^2)`.
2259
#[derive(Debug)]
2260
pub struct Split<'r, 'h> {
2261
    haystack: &'h str,
2262
    it: meta::Split<'r, 'h>,
2263
}
2264
2265
impl<'r, 'h> Iterator for Split<'r, 'h> {
2266
    type Item = &'h str;
2267
2268
    #[inline]
2269
0
    fn next(&mut self) -> Option<&'h str> {
2270
0
        self.it.next().map(|span| &self.haystack[span])
Unexecuted instantiation: <regex::regex::string::Split as core::iter::traits::iterator::Iterator>::next::{closure#0}
Unexecuted instantiation: <regex::regex::string::Split as core::iter::traits::iterator::Iterator>::next::{closure#0}
2271
0
    }
Unexecuted instantiation: <regex::regex::string::Split as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex::regex::string::Split as core::iter::traits::iterator::Iterator>::next
2272
}
2273
2274
impl<'r, 'h> core::iter::FusedIterator for Split<'r, 'h> {}
2275
2276
/// An iterator over at most `N` substrings delimited by a regex match.
2277
///
2278
/// The last substring yielded by this iterator will be whatever remains after
2279
/// `N-1` splits.
2280
///
2281
/// `'r` is the lifetime of the compiled regular expression and `'h` is the
2282
/// lifetime of the byte string being split.
2283
///
2284
/// This iterator is created by [`Regex::splitn`].
2285
///
2286
/// # Time complexity
2287
///
2288
/// Note that since an iterator runs potentially many searches on the haystack
2289
/// and since each search has worst case `O(m * n)` time complexity, the
2290
/// overall worst case time complexity for iteration is `O(m * n^2)`.
2291
///
2292
/// Although note that the worst case time here has an upper bound given
2293
/// by the `limit` parameter to [`Regex::splitn`].
2294
#[derive(Debug)]
2295
pub struct SplitN<'r, 'h> {
2296
    haystack: &'h str,
2297
    it: meta::SplitN<'r, 'h>,
2298
}
2299
2300
impl<'r, 'h> Iterator for SplitN<'r, 'h> {
2301
    type Item = &'h str;
2302
2303
    #[inline]
2304
0
    fn next(&mut self) -> Option<&'h str> {
2305
0
        self.it.next().map(|span| &self.haystack[span])
Unexecuted instantiation: <regex::regex::string::SplitN as core::iter::traits::iterator::Iterator>::next::{closure#0}
Unexecuted instantiation: <regex::regex::string::SplitN as core::iter::traits::iterator::Iterator>::next::{closure#0}
2306
0
    }
Unexecuted instantiation: <regex::regex::string::SplitN as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex::regex::string::SplitN as core::iter::traits::iterator::Iterator>::next
2307
2308
    #[inline]
2309
0
    fn size_hint(&self) -> (usize, Option<usize>) {
2310
0
        self.it.size_hint()
2311
0
    }
Unexecuted instantiation: <regex::regex::string::SplitN as core::iter::traits::iterator::Iterator>::size_hint
Unexecuted instantiation: <regex::regex::string::SplitN as core::iter::traits::iterator::Iterator>::size_hint
2312
}
2313
2314
impl<'r, 'h> core::iter::FusedIterator for SplitN<'r, 'h> {}
2315
2316
/// An iterator over the names of all capture groups in a regex.
2317
///
2318
/// This iterator yields values of type `Option<&str>` in order of the opening
2319
/// capture group parenthesis in the regex pattern. `None` is yielded for
2320
/// groups with no name. The first element always corresponds to the implicit
2321
/// and unnamed group for the overall match.
2322
///
2323
/// `'r` is the lifetime of the compiled regular expression.
2324
///
2325
/// This iterator is created by [`Regex::capture_names`].
2326
#[derive(Clone, Debug)]
2327
pub struct CaptureNames<'r>(captures::GroupInfoPatternNames<'r>);
2328
2329
impl<'r> Iterator for CaptureNames<'r> {
2330
    type Item = Option<&'r str>;
2331
2332
    #[inline]
2333
0
    fn next(&mut self) -> Option<Option<&'r str>> {
2334
0
        self.0.next()
2335
0
    }
Unexecuted instantiation: <regex::regex::string::CaptureNames as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex::regex::string::CaptureNames as core::iter::traits::iterator::Iterator>::next
2336
2337
    #[inline]
2338
0
    fn size_hint(&self) -> (usize, Option<usize>) {
2339
0
        self.0.size_hint()
2340
0
    }
Unexecuted instantiation: <regex::regex::string::CaptureNames as core::iter::traits::iterator::Iterator>::size_hint
Unexecuted instantiation: <regex::regex::string::CaptureNames as core::iter::traits::iterator::Iterator>::size_hint
2341
2342
    #[inline]
2343
0
    fn count(self) -> usize {
2344
0
        self.0.count()
2345
0
    }
Unexecuted instantiation: <regex::regex::string::CaptureNames as core::iter::traits::iterator::Iterator>::count
Unexecuted instantiation: <regex::regex::string::CaptureNames as core::iter::traits::iterator::Iterator>::count
2346
}
2347
2348
impl<'r> ExactSizeIterator for CaptureNames<'r> {}
2349
2350
impl<'r> core::iter::FusedIterator for CaptureNames<'r> {}
2351
2352
/// An iterator over all group matches in a [`Captures`] value.
2353
///
2354
/// This iterator yields values of type `Option<Match<'h>>`, where `'h` is the
2355
/// lifetime of the haystack that the matches are for. The order of elements
2356
/// yielded corresponds to the order of the opening parenthesis for the group
2357
/// in the regex pattern. `None` is yielded for groups that did not participate
2358
/// in the match.
2359
///
2360
/// The first element always corresponds to the implicit group for the overall
2361
/// match. Since this iterator is created by a [`Captures`] value, and a
2362
/// `Captures` value is only created when a match occurs, it follows that the
2363
/// first element yielded by this iterator is guaranteed to be non-`None`.
2364
///
2365
/// The lifetime `'c` corresponds to the lifetime of the `Captures` value that
2366
/// created this iterator, and the lifetime `'h` corresponds to the originally
2367
/// matched haystack.
2368
#[derive(Clone, Debug)]
2369
pub struct SubCaptureMatches<'c, 'h> {
2370
    haystack: &'h str,
2371
    it: captures::CapturesPatternIter<'c>,
2372
}
2373
2374
impl<'c, 'h> Iterator for SubCaptureMatches<'c, 'h> {
2375
    type Item = Option<Match<'h>>;
2376
2377
    #[inline]
2378
0
    fn next(&mut self) -> Option<Option<Match<'h>>> {
2379
0
        self.it.next().map(|group| {
2380
0
            group.map(|sp| Match::new(self.haystack, sp.start, sp.end))
Unexecuted instantiation: <regex::regex::string::SubCaptureMatches as core::iter::traits::iterator::Iterator>::next::{closure#0}::{closure#0}
Unexecuted instantiation: <regex::regex::string::SubCaptureMatches as core::iter::traits::iterator::Iterator>::next::{closure#0}::{closure#0}
2381
0
        })
Unexecuted instantiation: <regex::regex::string::SubCaptureMatches as core::iter::traits::iterator::Iterator>::next::{closure#0}
Unexecuted instantiation: <regex::regex::string::SubCaptureMatches as core::iter::traits::iterator::Iterator>::next::{closure#0}
2382
0
    }
Unexecuted instantiation: <regex::regex::string::SubCaptureMatches as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex::regex::string::SubCaptureMatches as core::iter::traits::iterator::Iterator>::next
2383
2384
    #[inline]
2385
0
    fn size_hint(&self) -> (usize, Option<usize>) {
2386
0
        self.it.size_hint()
2387
0
    }
Unexecuted instantiation: <regex::regex::string::SubCaptureMatches as core::iter::traits::iterator::Iterator>::size_hint
Unexecuted instantiation: <regex::regex::string::SubCaptureMatches as core::iter::traits::iterator::Iterator>::size_hint
2388
2389
    #[inline]
2390
0
    fn count(self) -> usize {
2391
0
        self.it.count()
2392
0
    }
Unexecuted instantiation: <regex::regex::string::SubCaptureMatches as core::iter::traits::iterator::Iterator>::count
Unexecuted instantiation: <regex::regex::string::SubCaptureMatches as core::iter::traits::iterator::Iterator>::count
2393
}
2394
2395
impl<'c, 'h> ExactSizeIterator for SubCaptureMatches<'c, 'h> {}
2396
2397
impl<'c, 'h> core::iter::FusedIterator for SubCaptureMatches<'c, 'h> {}
2398
2399
/// A trait for types that can be used to replace matches in a haystack.
2400
///
2401
/// In general, users of this crate shouldn't need to implement this trait,
2402
/// since implementations are already provided for `&str` along with other
2403
/// variants of string types, as well as `FnMut(&Captures) -> String` (or any
2404
/// `FnMut(&Captures) -> T` where `T: AsRef<str>`). Those cover most use cases,
2405
/// but callers can implement this trait directly if necessary.
2406
///
2407
/// # Example
2408
///
2409
/// This example shows a basic implementation of  the `Replacer` trait. This
2410
/// can be done much more simply using the replacement string interpolation
2411
/// support (e.g., `$first $last`), but this approach avoids needing to parse
2412
/// the replacement string at all.
2413
///
2414
/// ```
2415
/// use regex::{Captures, Regex, Replacer};
2416
///
2417
/// struct NameSwapper;
2418
///
2419
/// impl Replacer for NameSwapper {
2420
///     fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
2421
///         dst.push_str(&caps["first"]);
2422
///         dst.push_str(" ");
2423
///         dst.push_str(&caps["last"]);
2424
///     }
2425
/// }
2426
///
2427
/// let re = Regex::new(r"(?<last>[^,\s]+),\s+(?<first>\S+)").unwrap();
2428
/// let result = re.replace("Springsteen, Bruce", NameSwapper);
2429
/// assert_eq!(result, "Bruce Springsteen");
2430
/// ```
2431
pub trait Replacer {
2432
    /// Appends possibly empty data to `dst` to replace the current match.
2433
    ///
2434
    /// The current match is represented by `caps`, which is guaranteed to
2435
    /// have a match at capture group `0`.
2436
    ///
2437
    /// For example, a no-op replacement would be `dst.push_str(&caps[0])`.
2438
    fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String);
2439
2440
    /// Return a fixed unchanging replacement string.
2441
    ///
2442
    /// When doing replacements, if access to [`Captures`] is not needed (e.g.,
2443
    /// the replacement string does not need `$` expansion), then it can be
2444
    /// beneficial to avoid finding sub-captures.
2445
    ///
2446
    /// In general, this is called once for every call to a replacement routine
2447
    /// such as [`Regex::replace_all`].
2448
0
    fn no_expansion<'r>(&'r mut self) -> Option<Cow<'r, str>> {
2449
0
        None
2450
0
    }
Unexecuted instantiation: <_ as regex::regex::string::Replacer>::no_expansion
Unexecuted instantiation: <_ as regex::regex::string::Replacer>::no_expansion
2451
2452
    /// Returns a type that implements `Replacer`, but that borrows and wraps
2453
    /// this `Replacer`.
2454
    ///
2455
    /// This is useful when you want to take a generic `Replacer` (which might
2456
    /// not be cloneable) and use it without consuming it, so it can be used
2457
    /// more than once.
2458
    ///
2459
    /// # Example
2460
    ///
2461
    /// ```
2462
    /// use regex::{Regex, Replacer};
2463
    ///
2464
    /// fn replace_all_twice<R: Replacer>(
2465
    ///     re: Regex,
2466
    ///     src: &str,
2467
    ///     mut rep: R,
2468
    /// ) -> String {
2469
    ///     let dst = re.replace_all(src, rep.by_ref());
2470
    ///     let dst = re.replace_all(&dst, rep.by_ref());
2471
    ///     dst.into_owned()
2472
    /// }
2473
    /// ```
2474
0
    fn by_ref<'r>(&'r mut self) -> ReplacerRef<'r, Self> {
2475
0
        ReplacerRef(self)
2476
0
    }
Unexecuted instantiation: <_ as regex::regex::string::Replacer>::by_ref
Unexecuted instantiation: <_ as regex::regex::string::Replacer>::by_ref
2477
}
2478
2479
impl<'a> Replacer for &'a str {
2480
0
    fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
2481
0
        caps.expand(*self, dst);
2482
0
    }
Unexecuted instantiation: <&str as regex::regex::string::Replacer>::replace_append
Unexecuted instantiation: <&str as regex::regex::string::Replacer>::replace_append
2483
2484
0
    fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
2485
0
        no_expansion(self)
2486
0
    }
Unexecuted instantiation: <&str as regex::regex::string::Replacer>::no_expansion
Unexecuted instantiation: <&str as regex::regex::string::Replacer>::no_expansion
2487
}
2488
2489
impl<'a> Replacer for &'a String {
2490
0
    fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
2491
0
        self.as_str().replace_append(caps, dst)
2492
0
    }
Unexecuted instantiation: <&alloc::string::String as regex::regex::string::Replacer>::replace_append
Unexecuted instantiation: <&alloc::string::String as regex::regex::string::Replacer>::replace_append
2493
2494
0
    fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
2495
0
        no_expansion(self)
2496
0
    }
Unexecuted instantiation: <&alloc::string::String as regex::regex::string::Replacer>::no_expansion
Unexecuted instantiation: <&alloc::string::String as regex::regex::string::Replacer>::no_expansion
2497
}
2498
2499
impl Replacer for String {
2500
0
    fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
2501
0
        self.as_str().replace_append(caps, dst)
2502
0
    }
Unexecuted instantiation: <alloc::string::String as regex::regex::string::Replacer>::replace_append
Unexecuted instantiation: <alloc::string::String as regex::regex::string::Replacer>::replace_append
2503
2504
0
    fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
2505
0
        no_expansion(self)
2506
0
    }
Unexecuted instantiation: <alloc::string::String as regex::regex::string::Replacer>::no_expansion
Unexecuted instantiation: <alloc::string::String as regex::regex::string::Replacer>::no_expansion
2507
}
2508
2509
impl<'a> Replacer for Cow<'a, str> {
2510
0
    fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
2511
0
        self.as_ref().replace_append(caps, dst)
2512
0
    }
Unexecuted instantiation: <alloc::borrow::Cow<str> as regex::regex::string::Replacer>::replace_append
Unexecuted instantiation: <alloc::borrow::Cow<str> as regex::regex::string::Replacer>::replace_append
2513
2514
0
    fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
2515
0
        no_expansion(self)
2516
0
    }
Unexecuted instantiation: <alloc::borrow::Cow<str> as regex::regex::string::Replacer>::no_expansion
Unexecuted instantiation: <alloc::borrow::Cow<str> as regex::regex::string::Replacer>::no_expansion
2517
}
2518
2519
impl<'a> Replacer for &'a Cow<'a, str> {
2520
0
    fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
2521
0
        self.as_ref().replace_append(caps, dst)
2522
0
    }
Unexecuted instantiation: <&alloc::borrow::Cow<str> as regex::regex::string::Replacer>::replace_append
Unexecuted instantiation: <&alloc::borrow::Cow<str> as regex::regex::string::Replacer>::replace_append
2523
2524
0
    fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
2525
0
        no_expansion(self)
2526
0
    }
Unexecuted instantiation: <&alloc::borrow::Cow<str> as regex::regex::string::Replacer>::no_expansion
Unexecuted instantiation: <&alloc::borrow::Cow<str> as regex::regex::string::Replacer>::no_expansion
2527
}
2528
2529
impl<F, T> Replacer for F
2530
where
2531
    F: FnMut(&Captures<'_>) -> T,
2532
    T: AsRef<str>,
2533
{
2534
0
    fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
2535
0
        dst.push_str((*self)(caps).as_ref());
2536
0
    }
Unexecuted instantiation: <_ as regex::regex::string::Replacer>::replace_append
Unexecuted instantiation: <_ as regex::regex::string::Replacer>::replace_append
2537
}
2538
2539
/// A by-reference adaptor for a [`Replacer`].
2540
///
2541
/// This permits reusing the same `Replacer` value in multiple calls to a
2542
/// replacement routine like [`Regex::replace_all`].
2543
///
2544
/// This type is created by [`Replacer::by_ref`].
2545
#[derive(Debug)]
2546
pub struct ReplacerRef<'a, R: ?Sized>(&'a mut R);
2547
2548
impl<'a, R: Replacer + ?Sized + 'a> Replacer for ReplacerRef<'a, R> {
2549
0
    fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) {
2550
0
        self.0.replace_append(caps, dst)
2551
0
    }
Unexecuted instantiation: <regex::regex::string::ReplacerRef<_> as regex::regex::string::Replacer>::replace_append
Unexecuted instantiation: <regex::regex::string::ReplacerRef<_> as regex::regex::string::Replacer>::replace_append
2552
2553
0
    fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
2554
0
        self.0.no_expansion()
2555
0
    }
Unexecuted instantiation: <regex::regex::string::ReplacerRef<_> as regex::regex::string::Replacer>::no_expansion
Unexecuted instantiation: <regex::regex::string::ReplacerRef<_> as regex::regex::string::Replacer>::no_expansion
2556
}
2557
2558
/// A helper type for forcing literal string replacement.
2559
///
2560
/// It can be used with routines like [`Regex::replace`] and
2561
/// [`Regex::replace_all`] to do a literal string replacement without expanding
2562
/// `$name` to their corresponding capture groups. This can be both convenient
2563
/// (to avoid escaping `$`, for example) and faster (since capture groups
2564
/// don't need to be found).
2565
///
2566
/// `'s` is the lifetime of the literal string to use.
2567
///
2568
/// # Example
2569
///
2570
/// ```
2571
/// use regex::{NoExpand, Regex};
2572
///
2573
/// let re = Regex::new(r"(?<last>[^,\s]+),\s+(\S+)").unwrap();
2574
/// let result = re.replace("Springsteen, Bruce", NoExpand("$2 $last"));
2575
/// assert_eq!(result, "$2 $last");
2576
/// ```
2577
#[derive(Clone, Debug)]
2578
pub struct NoExpand<'s>(pub &'s str);
2579
2580
impl<'s> Replacer for NoExpand<'s> {
2581
0
    fn replace_append(&mut self, _: &Captures<'_>, dst: &mut String) {
2582
0
        dst.push_str(self.0);
2583
0
    }
Unexecuted instantiation: <regex::regex::string::NoExpand as regex::regex::string::Replacer>::replace_append
Unexecuted instantiation: <regex::regex::string::NoExpand as regex::regex::string::Replacer>::replace_append
2584
2585
0
    fn no_expansion(&mut self) -> Option<Cow<'_, str>> {
2586
0
        Some(Cow::Borrowed(self.0))
2587
0
    }
Unexecuted instantiation: <regex::regex::string::NoExpand as regex::regex::string::Replacer>::no_expansion
Unexecuted instantiation: <regex::regex::string::NoExpand as regex::regex::string::Replacer>::no_expansion
2588
}
2589
2590
/// Quickly checks the given replacement string for whether interpolation
2591
/// should be done on it. It returns `None` if a `$` was found anywhere in the
2592
/// given string, which suggests interpolation needs to be done. But if there's
2593
/// no `$` anywhere, then interpolation definitely does not need to be done. In
2594
/// that case, the given string is returned as a borrowed `Cow`.
2595
///
2596
/// This is meant to be used to implement the `Replacer::no_expandsion` method
2597
/// in its various trait impls.
2598
0
fn no_expansion<T: AsRef<str>>(replacement: &T) -> Option<Cow<'_, str>> {
2599
0
    let replacement = replacement.as_ref();
2600
0
    match crate::find_byte::find_byte(b'$', replacement.as_bytes()) {
2601
0
        Some(_) => None,
2602
0
        None => Some(Cow::Borrowed(replacement)),
2603
    }
2604
0
}
Unexecuted instantiation: regex::regex::string::no_expansion::<alloc::borrow::Cow<str>>
Unexecuted instantiation: regex::regex::string::no_expansion::<alloc::string::String>
Unexecuted instantiation: regex::regex::string::no_expansion::<&alloc::borrow::Cow<str>>
Unexecuted instantiation: regex::regex::string::no_expansion::<&alloc::string::String>
Unexecuted instantiation: regex::regex::string::no_expansion::<&str>
Unexecuted instantiation: regex::regex::string::no_expansion::<alloc::borrow::Cow<str>>
Unexecuted instantiation: regex::regex::string::no_expansion::<alloc::string::String>
Unexecuted instantiation: regex::regex::string::no_expansion::<&alloc::borrow::Cow<str>>
Unexecuted instantiation: regex::regex::string::no_expansion::<&alloc::string::String>
Unexecuted instantiation: regex::regex::string::no_expansion::<&str>