Coverage Report

Created: 2024-12-17 06:15

/rust/registry/src/index.crates.io-6f17d22bba15001f/regex-automata-0.1.10/src/dense.rs
Line
Count
Source (jump to first uncovered line)
1
#[cfg(feature = "std")]
2
use core::fmt;
3
#[cfg(feature = "std")]
4
use core::iter;
5
use core::mem;
6
use core::slice;
7
8
#[cfg(feature = "std")]
9
use byteorder::{BigEndian, LittleEndian};
10
use byteorder::{ByteOrder, NativeEndian};
11
#[cfg(feature = "std")]
12
use regex_syntax::ParserBuilder;
13
14
use classes::ByteClasses;
15
#[cfg(feature = "std")]
16
use determinize::Determinizer;
17
use dfa::DFA;
18
#[cfg(feature = "std")]
19
use error::{Error, Result};
20
#[cfg(feature = "std")]
21
use minimize::Minimizer;
22
#[cfg(feature = "std")]
23
use nfa::{self, NFA};
24
#[cfg(feature = "std")]
25
use sparse::SparseDFA;
26
use state_id::{dead_id, StateID};
27
#[cfg(feature = "std")]
28
use state_id::{
29
    next_state_id, premultiply_overflow_error, write_state_id_bytes,
30
};
31
32
/// The size of the alphabet in a standard DFA.
33
///
34
/// Specifically, this length controls the number of transitions present in
35
/// each DFA state. However, when the byte class optimization is enabled,
36
/// then each DFA maps the space of all possible 256 byte values to at most
37
/// 256 distinct equivalence classes. In this case, the number of distinct
38
/// equivalence classes corresponds to the internal alphabet of the DFA, in the
39
/// sense that each DFA state has a number of transitions equal to the number
40
/// of equivalence classes despite supporting matching on all possible byte
41
/// values.
42
const ALPHABET_LEN: usize = 256;
43
44
/// Masks used in serialization of DFAs.
45
pub(crate) const MASK_PREMULTIPLIED: u16 = 0b0000_0000_0000_0001;
46
pub(crate) const MASK_ANCHORED: u16 = 0b0000_0000_0000_0010;
47
48
/// A dense table-based deterministic finite automaton (DFA).
49
///
50
/// A dense DFA represents the core matching primitive in this crate. That is,
51
/// logically, all DFAs have a single start state, one or more match states
52
/// and a transition table that maps the current state and the current byte of
53
/// input to the next state. A DFA can use this information to implement fast
54
/// searching. In particular, the use of a dense DFA generally makes the trade
55
/// off that match speed is the most valuable characteristic, even if building
56
/// the regex may take significant time *and* space. As such, the processing
57
/// of every byte of input is done with a small constant number of operations
58
/// that does not vary with the pattern, its size or the size of the alphabet.
59
/// If your needs don't line up with this trade off, then a dense DFA may not
60
/// be an adequate solution to your problem.
61
///
62
/// In contrast, a [sparse DFA](enum.SparseDFA.html) makes the opposite
63
/// trade off: it uses less space but will execute a variable number of
64
/// instructions per byte at match time, which makes it slower for matching.
65
///
66
/// A DFA can be built using the default configuration via the
67
/// [`DenseDFA::new`](enum.DenseDFA.html#method.new) constructor. Otherwise,
68
/// one can configure various aspects via the
69
/// [`dense::Builder`](dense/struct.Builder.html).
70
///
71
/// A single DFA fundamentally supports the following operations:
72
///
73
/// 1. Detection of a match.
74
/// 2. Location of the end of the first possible match.
75
/// 3. Location of the end of the leftmost-first match.
76
///
77
/// A notable absence from the above list of capabilities is the location of
78
/// the *start* of a match. In order to provide both the start and end of a
79
/// match, *two* DFAs are required. This functionality is provided by a
80
/// [`Regex`](struct.Regex.html), which can be built with its basic
81
/// constructor, [`Regex::new`](struct.Regex.html#method.new), or with
82
/// a [`RegexBuilder`](struct.RegexBuilder.html).
83
///
84
/// # State size
85
///
86
/// A `DenseDFA` has two type parameters, `T` and `S`. `T` corresponds to
87
/// the type of the DFA's transition table while `S` corresponds to the
88
/// representation used for the DFA's state identifiers as described by the
89
/// [`StateID`](trait.StateID.html) trait. This type parameter is typically
90
/// `usize`, but other valid choices provided by this crate include `u8`,
91
/// `u16`, `u32` and `u64`. The primary reason for choosing a different state
92
/// identifier representation than the default is to reduce the amount of
93
/// memory used by a DFA. Note though, that if the chosen representation cannot
94
/// accommodate the size of your DFA, then building the DFA will fail and
95
/// return an error.
96
///
97
/// While the reduction in heap memory used by a DFA is one reason for choosing
98
/// a smaller state identifier representation, another possible reason is for
99
/// decreasing the serialization size of a DFA, as returned by
100
/// [`to_bytes_little_endian`](enum.DenseDFA.html#method.to_bytes_little_endian),
101
/// [`to_bytes_big_endian`](enum.DenseDFA.html#method.to_bytes_big_endian)
102
/// or
103
/// [`to_bytes_native_endian`](enum.DenseDFA.html#method.to_bytes_native_endian).
104
///
105
/// The type of the transition table is typically either `Vec<S>` or `&[S]`,
106
/// depending on where the transition table is stored.
107
///
108
/// # Variants
109
///
110
/// This DFA is defined as a non-exhaustive enumeration of different types of
111
/// dense DFAs. All of these dense DFAs use the same internal representation
112
/// for the transition table, but they vary in how the transition table is
113
/// read. A DFA's specific variant depends on the configuration options set via
114
/// [`dense::Builder`](dense/struct.Builder.html). The default variant is
115
/// `PremultipliedByteClass`.
116
///
117
/// # The `DFA` trait
118
///
119
/// This type implements the [`DFA`](trait.DFA.html) trait, which means it
120
/// can be used for searching. For example:
121
///
122
/// ```
123
/// use regex_automata::{DFA, DenseDFA};
124
///
125
/// # fn example() -> Result<(), regex_automata::Error> {
126
/// let dfa = DenseDFA::new("foo[0-9]+")?;
127
/// assert_eq!(Some(8), dfa.find(b"foo12345"));
128
/// # Ok(()) }; example().unwrap()
129
/// ```
130
///
131
/// The `DFA` trait also provides an assortment of other lower level methods
132
/// for DFAs, such as `start_state` and `next_state`. While these are correctly
133
/// implemented, it is an anti-pattern to use them in performance sensitive
134
/// code on the `DenseDFA` type directly. Namely, each implementation requires
135
/// a branch to determine which type of dense DFA is being used. Instead,
136
/// this branch should be pushed up a layer in the code since walking the
137
/// transitions of a DFA is usually a hot path. If you do need to use these
138
/// lower level methods in performance critical code, then you should match on
139
/// the variants of this DFA and use each variant's implementation of the `DFA`
140
/// trait directly.
141
#[derive(Clone, Debug)]
142
pub enum DenseDFA<T: AsRef<[S]>, S: StateID> {
143
    /// A standard DFA that does not use premultiplication or byte classes.
144
    Standard(Standard<T, S>),
145
    /// A DFA that shrinks its alphabet to a set of equivalence classes instead
146
    /// of using all possible byte values. Any two bytes belong to the same
147
    /// equivalence class if and only if they can be used interchangeably
148
    /// anywhere in the DFA while never discriminating between a match and a
149
    /// non-match.
150
    ///
151
    /// This type of DFA can result in significant space reduction with a very
152
    /// small match time performance penalty.
153
    ByteClass(ByteClass<T, S>),
154
    /// A DFA that premultiplies all of its state identifiers in its
155
    /// transition table. This saves an instruction per byte at match time
156
    /// which improves search performance.
157
    ///
158
    /// The only downside of premultiplication is that it may prevent one from
159
    /// using a smaller state identifier representation than you otherwise
160
    /// could.
161
    Premultiplied(Premultiplied<T, S>),
162
    /// The default configuration of a DFA, which uses byte classes and
163
    /// premultiplies its state identifiers.
164
    PremultipliedByteClass(PremultipliedByteClass<T, S>),
165
    /// Hints that destructuring should not be exhaustive.
166
    ///
167
    /// This enum may grow additional variants, so this makes sure clients
168
    /// don't count on exhaustive matching. (Otherwise, adding a new variant
169
    /// could break existing code.)
170
    #[doc(hidden)]
171
    __Nonexhaustive,
172
}
173
174
impl<T: AsRef<[S]>, S: StateID> DenseDFA<T, S> {
175
    /// Return the internal DFA representation.
176
    ///
177
    /// All variants share the same internal representation.
178
0
    fn repr(&self) -> &Repr<T, S> {
179
0
        match *self {
180
0
            DenseDFA::Standard(ref r) => &r.0,
181
0
            DenseDFA::ByteClass(ref r) => &r.0,
182
0
            DenseDFA::Premultiplied(ref r) => &r.0,
183
0
            DenseDFA::PremultipliedByteClass(ref r) => &r.0,
184
0
            DenseDFA::__Nonexhaustive => unreachable!(),
185
        }
186
0
    }
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize>>::repr
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<alloc::vec::Vec<usize>, usize>>::repr
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize>>::repr
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize>>::repr
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize>>::repr
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize>>::repr
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize>>::repr
187
}
188
189
#[cfg(feature = "std")]
190
impl DenseDFA<Vec<usize>, usize> {
191
    /// Parse the given regular expression using a default configuration and
192
    /// return the corresponding DFA.
193
    ///
194
    /// The default configuration uses `usize` for state IDs, premultiplies
195
    /// them and reduces the alphabet size by splitting bytes into equivalence
196
    /// classes. The DFA is *not* minimized.
197
    ///
198
    /// If you want a non-default configuration, then use the
199
    /// [`dense::Builder`](dense/struct.Builder.html)
200
    /// to set your own configuration.
201
    ///
202
    /// # Example
203
    ///
204
    /// ```
205
    /// use regex_automata::{DFA, DenseDFA};
206
    ///
207
    /// # fn example() -> Result<(), regex_automata::Error> {
208
    /// let dfa = DenseDFA::new("foo[0-9]+bar")?;
209
    /// assert_eq!(Some(11), dfa.find(b"foo12345bar"));
210
    /// # Ok(()) }; example().unwrap()
211
    /// ```
212
0
    pub fn new(pattern: &str) -> Result<DenseDFA<Vec<usize>, usize>> {
213
0
        Builder::new().build(pattern)
214
0
    }
215
}
216
217
#[cfg(feature = "std")]
218
impl<S: StateID> DenseDFA<Vec<S>, S> {
219
    /// Create a new empty DFA that never matches any input.
220
    ///
221
    /// # Example
222
    ///
223
    /// In order to build an empty DFA, callers must provide a type hint
224
    /// indicating their choice of state identifier representation.
225
    ///
226
    /// ```
227
    /// use regex_automata::{DFA, DenseDFA};
228
    ///
229
    /// # fn example() -> Result<(), regex_automata::Error> {
230
    /// let dfa: DenseDFA<Vec<usize>, usize> = DenseDFA::empty();
231
    /// assert_eq!(None, dfa.find(b""));
232
    /// assert_eq!(None, dfa.find(b"foo"));
233
    /// # Ok(()) }; example().unwrap()
234
    /// ```
235
0
    pub fn empty() -> DenseDFA<Vec<S>, S> {
236
0
        Repr::empty().into_dense_dfa()
237
0
    }
238
}
239
240
impl<T: AsRef<[S]>, S: StateID> DenseDFA<T, S> {
241
    /// Cheaply return a borrowed version of this dense DFA. Specifically, the
242
    /// DFA returned always uses `&[S]` for its transition table while keeping
243
    /// the same state identifier representation.
244
0
    pub fn as_ref<'a>(&'a self) -> DenseDFA<&'a [S], S> {
245
0
        match *self {
246
0
            DenseDFA::Standard(ref r) => {
247
0
                DenseDFA::Standard(Standard(r.0.as_ref()))
248
            }
249
0
            DenseDFA::ByteClass(ref r) => {
250
0
                DenseDFA::ByteClass(ByteClass(r.0.as_ref()))
251
            }
252
0
            DenseDFA::Premultiplied(ref r) => {
253
0
                DenseDFA::Premultiplied(Premultiplied(r.0.as_ref()))
254
            }
255
0
            DenseDFA::PremultipliedByteClass(ref r) => {
256
0
                let inner = PremultipliedByteClass(r.0.as_ref());
257
0
                DenseDFA::PremultipliedByteClass(inner)
258
            }
259
0
            DenseDFA::__Nonexhaustive => unreachable!(),
260
        }
261
0
    }
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<alloc::vec::Vec<usize>, usize>>::as_ref
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<_, _>>::as_ref
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<alloc::vec::Vec<usize>, usize>>::as_ref
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<alloc::vec::Vec<usize>, usize>>::as_ref
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<alloc::vec::Vec<usize>, usize>>::as_ref
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<alloc::vec::Vec<usize>, usize>>::as_ref
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<alloc::vec::Vec<usize>, usize>>::as_ref
262
263
    /// Return an owned version of this sparse DFA. Specifically, the DFA
264
    /// returned always uses `Vec<u8>` for its transition table while keeping
265
    /// the same state identifier representation.
266
    ///
267
    /// Effectively, this returns a sparse DFA whose transition table lives
268
    /// on the heap.
269
    #[cfg(feature = "std")]
270
0
    pub fn to_owned(&self) -> DenseDFA<Vec<S>, S> {
271
0
        match *self {
272
0
            DenseDFA::Standard(ref r) => {
273
0
                DenseDFA::Standard(Standard(r.0.to_owned()))
274
            }
275
0
            DenseDFA::ByteClass(ref r) => {
276
0
                DenseDFA::ByteClass(ByteClass(r.0.to_owned()))
277
            }
278
0
            DenseDFA::Premultiplied(ref r) => {
279
0
                DenseDFA::Premultiplied(Premultiplied(r.0.to_owned()))
280
            }
281
0
            DenseDFA::PremultipliedByteClass(ref r) => {
282
0
                let inner = PremultipliedByteClass(r.0.to_owned());
283
0
                DenseDFA::PremultipliedByteClass(inner)
284
            }
285
0
            DenseDFA::__Nonexhaustive => unreachable!(),
286
        }
287
0
    }
288
289
    /// Returns the memory usage, in bytes, of this DFA.
290
    ///
291
    /// The memory usage is computed based on the number of bytes used to
292
    /// represent this DFA's transition table. This corresponds to heap memory
293
    /// usage.
294
    ///
295
    /// This does **not** include the stack size used up by this DFA. To
296
    /// compute that, used `std::mem::size_of::<DenseDFA>()`.
297
0
    pub fn memory_usage(&self) -> usize {
298
0
        self.repr().memory_usage()
299
0
    }
300
}
301
302
/// Routines for converting a dense DFA to other representations, such as
303
/// sparse DFAs, smaller state identifiers or raw bytes suitable for persistent
304
/// storage.
305
#[cfg(feature = "std")]
306
impl<T: AsRef<[S]>, S: StateID> DenseDFA<T, S> {
307
    /// Convert this dense DFA to a sparse DFA.
308
    ///
309
    /// This is a convenience routine for `to_sparse_sized` that fixes the
310
    /// state identifier representation of the sparse DFA to the same
311
    /// representation used for this dense DFA.
312
    ///
313
    /// If the chosen state identifier representation is too small to represent
314
    /// all states in the sparse DFA, then this returns an error. In most
315
    /// cases, if a dense DFA is constructable with `S` then a sparse DFA will
316
    /// be as well. However, it is not guaranteed.
317
    ///
318
    /// # Example
319
    ///
320
    /// ```
321
    /// use regex_automata::{DFA, DenseDFA};
322
    ///
323
    /// # fn example() -> Result<(), regex_automata::Error> {
324
    /// let dense = DenseDFA::new("foo[0-9]+")?;
325
    /// let sparse = dense.to_sparse()?;
326
    /// assert_eq!(Some(8), sparse.find(b"foo12345"));
327
    /// # Ok(()) }; example().unwrap()
328
    /// ```
329
0
    pub fn to_sparse(&self) -> Result<SparseDFA<Vec<u8>, S>> {
330
0
        self.to_sparse_sized()
331
0
    }
332
333
    /// Convert this dense DFA to a sparse DFA.
334
    ///
335
    /// Using this routine requires supplying a type hint to choose the state
336
    /// identifier representation for the resulting sparse DFA.
337
    ///
338
    /// If the chosen state identifier representation is too small to represent
339
    /// all states in the sparse DFA, then this returns an error.
340
    ///
341
    /// # Example
342
    ///
343
    /// ```
344
    /// use regex_automata::{DFA, DenseDFA};
345
    ///
346
    /// # fn example() -> Result<(), regex_automata::Error> {
347
    /// let dense = DenseDFA::new("foo[0-9]+")?;
348
    /// let sparse = dense.to_sparse_sized::<u8>()?;
349
    /// assert_eq!(Some(8), sparse.find(b"foo12345"));
350
    /// # Ok(()) }; example().unwrap()
351
    /// ```
352
0
    pub fn to_sparse_sized<A: StateID>(
353
0
        &self,
354
0
    ) -> Result<SparseDFA<Vec<u8>, A>> {
355
0
        self.repr().to_sparse_sized()
356
0
    }
357
358
    /// Create a new DFA whose match semantics are equivalent to this DFA,
359
    /// but attempt to use `u8` for the representation of state identifiers.
360
    /// If `u8` is insufficient to represent all state identifiers in this
361
    /// DFA, then this returns an error.
362
    ///
363
    /// This is a convenience routine for `to_sized::<u8>()`.
364
0
    pub fn to_u8(&self) -> Result<DenseDFA<Vec<u8>, u8>> {
365
0
        self.to_sized()
366
0
    }
367
368
    /// Create a new DFA whose match semantics are equivalent to this DFA,
369
    /// but attempt to use `u16` for the representation of state identifiers.
370
    /// If `u16` is insufficient to represent all state identifiers in this
371
    /// DFA, then this returns an error.
372
    ///
373
    /// This is a convenience routine for `to_sized::<u16>()`.
374
0
    pub fn to_u16(&self) -> Result<DenseDFA<Vec<u16>, u16>> {
375
0
        self.to_sized()
376
0
    }
377
378
    /// Create a new DFA whose match semantics are equivalent to this DFA,
379
    /// but attempt to use `u32` for the representation of state identifiers.
380
    /// If `u32` is insufficient to represent all state identifiers in this
381
    /// DFA, then this returns an error.
382
    ///
383
    /// This is a convenience routine for `to_sized::<u32>()`.
384
    #[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
385
0
    pub fn to_u32(&self) -> Result<DenseDFA<Vec<u32>, u32>> {
386
0
        self.to_sized()
387
0
    }
388
389
    /// Create a new DFA whose match semantics are equivalent to this DFA,
390
    /// but attempt to use `u64` for the representation of state identifiers.
391
    /// If `u64` is insufficient to represent all state identifiers in this
392
    /// DFA, then this returns an error.
393
    ///
394
    /// This is a convenience routine for `to_sized::<u64>()`.
395
    #[cfg(target_pointer_width = "64")]
396
0
    pub fn to_u64(&self) -> Result<DenseDFA<Vec<u64>, u64>> {
397
0
        self.to_sized()
398
0
    }
399
400
    /// Create a new DFA whose match semantics are equivalent to this DFA, but
401
    /// attempt to use `A` for the representation of state identifiers. If `A`
402
    /// is insufficient to represent all state identifiers in this DFA, then
403
    /// this returns an error.
404
    ///
405
    /// An alternative way to construct such a DFA is to use
406
    /// [`dense::Builder::build_with_size`](dense/struct.Builder.html#method.build_with_size).
407
    /// In general, using the builder is preferred since it will use the given
408
    /// state identifier representation throughout determinization (and
409
    /// minimization, if done), and thereby using less memory throughout the
410
    /// entire construction process. However, these routines are necessary
411
    /// in cases where, say, a minimized DFA could fit in a smaller state
412
    /// identifier representation, but the initial determinized DFA would not.
413
0
    pub fn to_sized<A: StateID>(&self) -> Result<DenseDFA<Vec<A>, A>> {
414
0
        self.repr().to_sized().map(|r| r.into_dense_dfa())
415
0
    }
416
417
    /// Serialize a DFA to raw bytes, aligned to an 8 byte boundary, in little
418
    /// endian format.
419
    ///
420
    /// If the state identifier representation of this DFA has a size different
421
    /// than 1, 2, 4 or 8 bytes, then this returns an error. All
422
    /// implementations of `StateID` provided by this crate satisfy this
423
    /// requirement.
424
0
    pub fn to_bytes_little_endian(&self) -> Result<Vec<u8>> {
425
0
        self.repr().to_bytes::<LittleEndian>()
426
0
    }
427
428
    /// Serialize a DFA to raw bytes, aligned to an 8 byte boundary, in big
429
    /// endian format.
430
    ///
431
    /// If the state identifier representation of this DFA has a size different
432
    /// than 1, 2, 4 or 8 bytes, then this returns an error. All
433
    /// implementations of `StateID` provided by this crate satisfy this
434
    /// requirement.
435
0
    pub fn to_bytes_big_endian(&self) -> Result<Vec<u8>> {
436
0
        self.repr().to_bytes::<BigEndian>()
437
0
    }
438
439
    /// Serialize a DFA to raw bytes, aligned to an 8 byte boundary, in native
440
    /// endian format. Generally, it is better to pick an explicit endianness
441
    /// using either `to_bytes_little_endian` or `to_bytes_big_endian`. This
442
    /// routine is useful in tests where the DFA is serialized and deserialized
443
    /// on the same platform.
444
    ///
445
    /// If the state identifier representation of this DFA has a size different
446
    /// than 1, 2, 4 or 8 bytes, then this returns an error. All
447
    /// implementations of `StateID` provided by this crate satisfy this
448
    /// requirement.
449
0
    pub fn to_bytes_native_endian(&self) -> Result<Vec<u8>> {
450
0
        self.repr().to_bytes::<NativeEndian>()
451
0
    }
452
}
453
454
impl<'a, S: StateID> DenseDFA<&'a [S], S> {
455
    /// Deserialize a DFA with a specific state identifier representation.
456
    ///
457
    /// Deserializing a DFA using this routine will never allocate heap memory.
458
    /// This is also guaranteed to be a constant time operation that does not
459
    /// vary with the size of the DFA.
460
    ///
461
    /// The bytes given should be generated by the serialization of a DFA with
462
    /// either the
463
    /// [`to_bytes_little_endian`](enum.DenseDFA.html#method.to_bytes_little_endian)
464
    /// method or the
465
    /// [`to_bytes_big_endian`](enum.DenseDFA.html#method.to_bytes_big_endian)
466
    /// endian, depending on the endianness of the machine you are
467
    /// deserializing this DFA from.
468
    ///
469
    /// If the state identifier representation is `usize`, then deserialization
470
    /// is dependent on the pointer size. For this reason, it is best to
471
    /// serialize DFAs using a fixed size representation for your state
472
    /// identifiers, such as `u8`, `u16`, `u32` or `u64`.
473
    ///
474
    /// # Panics
475
    ///
476
    /// The bytes given should be *trusted*. In particular, if the bytes
477
    /// are not a valid serialization of a DFA, or if the given bytes are
478
    /// not aligned to an 8 byte boundary, or if the endianness of the
479
    /// serialized bytes is different than the endianness of the machine that
480
    /// is deserializing the DFA, then this routine will panic. Moreover, it is
481
    /// possible for this deserialization routine to succeed even if the given
482
    /// bytes do not represent a valid serialized dense DFA.
483
    ///
484
    /// # Safety
485
    ///
486
    /// This routine is unsafe because it permits callers to provide an
487
    /// arbitrary transition table with possibly incorrect transitions. While
488
    /// the various serialization routines will never return an incorrect
489
    /// transition table, there is no guarantee that the bytes provided here
490
    /// are correct. While deserialization does many checks (as documented
491
    /// above in the panic conditions), this routine does not check that the
492
    /// transition table is correct. Given an incorrect transition table, it is
493
    /// possible for the search routines to access out-of-bounds memory because
494
    /// of explicit bounds check elision.
495
    ///
496
    /// # Example
497
    ///
498
    /// This example shows how to serialize a DFA to raw bytes, deserialize it
499
    /// and then use it for searching. Note that we first convert the DFA to
500
    /// using `u16` for its state identifier representation before serializing
501
    /// it. While this isn't strictly necessary, it's good practice in order to
502
    /// decrease the size of the DFA and to avoid platform specific pitfalls
503
    /// such as differing pointer sizes.
504
    ///
505
    /// ```
506
    /// use regex_automata::{DFA, DenseDFA};
507
    ///
508
    /// # fn example() -> Result<(), regex_automata::Error> {
509
    /// let initial = DenseDFA::new("foo[0-9]+")?;
510
    /// let bytes = initial.to_u16()?.to_bytes_native_endian()?;
511
    /// let dfa: DenseDFA<&[u16], u16> = unsafe {
512
    ///     DenseDFA::from_bytes(&bytes)
513
    /// };
514
    ///
515
    /// assert_eq!(Some(8), dfa.find(b"foo12345"));
516
    /// # Ok(()) }; example().unwrap()
517
    /// ```
518
0
    pub unsafe fn from_bytes(buf: &'a [u8]) -> DenseDFA<&'a [S], S> {
519
0
        Repr::from_bytes(buf).into_dense_dfa()
520
0
    }
521
}
522
523
#[cfg(feature = "std")]
524
impl<S: StateID> DenseDFA<Vec<S>, S> {
525
    /// Minimize this DFA in place.
526
    ///
527
    /// This is not part of the public API. It is only exposed to allow for
528
    /// more granular external benchmarking.
529
    #[doc(hidden)]
530
0
    pub fn minimize(&mut self) {
531
0
        self.repr_mut().minimize();
532
0
    }
533
534
    /// Return a mutable reference to the internal DFA representation.
535
0
    fn repr_mut(&mut self) -> &mut Repr<Vec<S>, S> {
536
0
        match *self {
537
0
            DenseDFA::Standard(ref mut r) => &mut r.0,
538
0
            DenseDFA::ByteClass(ref mut r) => &mut r.0,
539
0
            DenseDFA::Premultiplied(ref mut r) => &mut r.0,
540
0
            DenseDFA::PremultipliedByteClass(ref mut r) => &mut r.0,
541
0
            DenseDFA::__Nonexhaustive => unreachable!(),
542
        }
543
0
    }
544
}
545
546
impl<T: AsRef<[S]>, S: StateID> DFA for DenseDFA<T, S> {
547
    type ID = S;
548
549
    #[inline]
550
0
    fn start_state(&self) -> S {
551
0
        self.repr().start_state()
552
0
    }
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::start_state
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<_, _> as regex_automata::dfa::DFA>::start_state
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::start_state
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::start_state
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::start_state
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::start_state
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::start_state
553
554
    #[inline]
555
0
    fn is_match_state(&self, id: S) -> bool {
556
0
        self.repr().is_match_state(id)
557
0
    }
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::is_match_state
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<_, _> as regex_automata::dfa::DFA>::is_match_state
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::is_match_state
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::is_match_state
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::is_match_state
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::is_match_state
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::is_match_state
558
559
    #[inline]
560
0
    fn is_dead_state(&self, id: S) -> bool {
561
0
        self.repr().is_dead_state(id)
562
0
    }
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::is_dead_state
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<_, _> as regex_automata::dfa::DFA>::is_dead_state
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::is_dead_state
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::is_dead_state
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::is_dead_state
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::is_dead_state
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::is_dead_state
563
564
    #[inline]
565
0
    fn is_match_or_dead_state(&self, id: S) -> bool {
566
0
        self.repr().is_match_or_dead_state(id)
567
0
    }
568
569
    #[inline]
570
0
    fn is_anchored(&self) -> bool {
571
0
        self.repr().is_anchored()
572
0
    }
573
574
    #[inline]
575
0
    fn next_state(&self, current: S, input: u8) -> S {
576
0
        match *self {
577
0
            DenseDFA::Standard(ref r) => r.next_state(current, input),
578
0
            DenseDFA::ByteClass(ref r) => r.next_state(current, input),
579
0
            DenseDFA::Premultiplied(ref r) => r.next_state(current, input),
580
0
            DenseDFA::PremultipliedByteClass(ref r) => {
581
0
                r.next_state(current, input)
582
            }
583
0
            DenseDFA::__Nonexhaustive => unreachable!(),
584
        }
585
0
    }
586
587
    #[inline]
588
0
    unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
589
0
        match *self {
590
0
            DenseDFA::Standard(ref r) => {
591
0
                r.next_state_unchecked(current, input)
592
            }
593
0
            DenseDFA::ByteClass(ref r) => {
594
0
                r.next_state_unchecked(current, input)
595
            }
596
0
            DenseDFA::Premultiplied(ref r) => {
597
0
                r.next_state_unchecked(current, input)
598
            }
599
0
            DenseDFA::PremultipliedByteClass(ref r) => {
600
0
                r.next_state_unchecked(current, input)
601
            }
602
0
            DenseDFA::__Nonexhaustive => unreachable!(),
603
        }
604
0
    }
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<_, _> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::DenseDFA<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
605
606
    // We specialize the following methods because it lets us lift the
607
    // case analysis between the different types of dense DFAs. Instead of
608
    // doing the case analysis for every transition, we do it once before
609
    // searching.
610
611
    #[inline]
612
0
    fn is_match_at(&self, bytes: &[u8], start: usize) -> bool {
613
0
        match *self {
614
0
            DenseDFA::Standard(ref r) => r.is_match_at(bytes, start),
615
0
            DenseDFA::ByteClass(ref r) => r.is_match_at(bytes, start),
616
0
            DenseDFA::Premultiplied(ref r) => r.is_match_at(bytes, start),
617
0
            DenseDFA::PremultipliedByteClass(ref r) => {
618
0
                r.is_match_at(bytes, start)
619
            }
620
0
            DenseDFA::__Nonexhaustive => unreachable!(),
621
        }
622
0
    }
623
624
    #[inline]
625
0
    fn shortest_match_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
626
0
        match *self {
627
0
            DenseDFA::Standard(ref r) => r.shortest_match_at(bytes, start),
628
0
            DenseDFA::ByteClass(ref r) => r.shortest_match_at(bytes, start),
629
0
            DenseDFA::Premultiplied(ref r) => {
630
0
                r.shortest_match_at(bytes, start)
631
            }
632
0
            DenseDFA::PremultipliedByteClass(ref r) => {
633
0
                r.shortest_match_at(bytes, start)
634
            }
635
0
            DenseDFA::__Nonexhaustive => unreachable!(),
636
        }
637
0
    }
638
639
    #[inline]
640
0
    fn find_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
641
0
        match *self {
642
0
            DenseDFA::Standard(ref r) => r.find_at(bytes, start),
643
0
            DenseDFA::ByteClass(ref r) => r.find_at(bytes, start),
644
0
            DenseDFA::Premultiplied(ref r) => r.find_at(bytes, start),
645
0
            DenseDFA::PremultipliedByteClass(ref r) => r.find_at(bytes, start),
646
0
            DenseDFA::__Nonexhaustive => unreachable!(),
647
        }
648
0
    }
649
650
    #[inline]
651
0
    fn rfind_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
652
0
        match *self {
653
0
            DenseDFA::Standard(ref r) => r.rfind_at(bytes, start),
654
0
            DenseDFA::ByteClass(ref r) => r.rfind_at(bytes, start),
655
0
            DenseDFA::Premultiplied(ref r) => r.rfind_at(bytes, start),
656
0
            DenseDFA::PremultipliedByteClass(ref r) => {
657
0
                r.rfind_at(bytes, start)
658
            }
659
0
            DenseDFA::__Nonexhaustive => unreachable!(),
660
        }
661
0
    }
662
}
663
664
/// A standard dense DFA that does not use premultiplication or byte classes.
665
///
666
/// Generally, it isn't necessary to use this type directly, since a `DenseDFA`
667
/// can be used for searching directly. One possible reason why one might want
668
/// to use this type directly is if you are implementing your own search
669
/// routines by walking a DFA's transitions directly. In that case, you'll want
670
/// to use this type (or any of the other DFA variant types) directly, since
671
/// they implement `next_state` more efficiently.
672
#[derive(Clone, Debug)]
673
pub struct Standard<T: AsRef<[S]>, S: StateID>(Repr<T, S>);
674
675
impl<T: AsRef<[S]>, S: StateID> DFA for Standard<T, S> {
676
    type ID = S;
677
678
    #[inline]
679
0
    fn start_state(&self) -> S {
680
0
        self.0.start_state()
681
0
    }
682
683
    #[inline]
684
0
    fn is_match_state(&self, id: S) -> bool {
685
0
        self.0.is_match_state(id)
686
0
    }
687
688
    #[inline]
689
0
    fn is_dead_state(&self, id: S) -> bool {
690
0
        self.0.is_dead_state(id)
691
0
    }
692
693
    #[inline]
694
0
    fn is_match_or_dead_state(&self, id: S) -> bool {
695
0
        self.0.is_match_or_dead_state(id)
696
0
    }
697
698
    #[inline]
699
0
    fn is_anchored(&self) -> bool {
700
0
        self.0.is_anchored()
701
0
    }
702
703
    #[inline]
704
0
    fn next_state(&self, current: S, input: u8) -> S {
705
0
        let o = current.to_usize() * ALPHABET_LEN + input as usize;
706
0
        self.0.trans()[o]
707
0
    }
708
709
    #[inline]
710
0
    unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
711
0
        let o = current.to_usize() * ALPHABET_LEN + input as usize;
712
0
        *self.0.trans().get_unchecked(o)
713
0
    }
Unexecuted instantiation: <regex_automata::dense_imp::Standard<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::Standard<_, _> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::Standard<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::Standard<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::Standard<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::Standard<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::Standard<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
714
}
715
716
/// A dense DFA that shrinks its alphabet.
717
///
718
/// Alphabet shrinking is achieved by using a set of equivalence classes
719
/// instead of using all possible byte values. Any two bytes belong to the same
720
/// equivalence class if and only if they can be used interchangeably anywhere
721
/// in the DFA while never discriminating between a match and a non-match.
722
///
723
/// This type of DFA can result in significant space reduction with a very
724
/// small match time performance penalty.
725
///
726
/// Generally, it isn't necessary to use this type directly, since a `DenseDFA`
727
/// can be used for searching directly. One possible reason why one might want
728
/// to use this type directly is if you are implementing your own search
729
/// routines by walking a DFA's transitions directly. In that case, you'll want
730
/// to use this type (or any of the other DFA variant types) directly, since
731
/// they implement `next_state` more efficiently.
732
#[derive(Clone, Debug)]
733
pub struct ByteClass<T: AsRef<[S]>, S: StateID>(Repr<T, S>);
734
735
impl<T: AsRef<[S]>, S: StateID> DFA for ByteClass<T, S> {
736
    type ID = S;
737
738
    #[inline]
739
0
    fn start_state(&self) -> S {
740
0
        self.0.start_state()
741
0
    }
742
743
    #[inline]
744
0
    fn is_match_state(&self, id: S) -> bool {
745
0
        self.0.is_match_state(id)
746
0
    }
747
748
    #[inline]
749
0
    fn is_dead_state(&self, id: S) -> bool {
750
0
        self.0.is_dead_state(id)
751
0
    }
752
753
    #[inline]
754
0
    fn is_match_or_dead_state(&self, id: S) -> bool {
755
0
        self.0.is_match_or_dead_state(id)
756
0
    }
757
758
    #[inline]
759
0
    fn is_anchored(&self) -> bool {
760
0
        self.0.is_anchored()
761
0
    }
762
763
    #[inline]
764
0
    fn next_state(&self, current: S, input: u8) -> S {
765
0
        let input = self.0.byte_classes().get(input);
766
0
        let o = current.to_usize() * self.0.alphabet_len() + input as usize;
767
0
        self.0.trans()[o]
768
0
    }
769
770
    #[inline]
771
0
    unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
772
0
        let input = self.0.byte_classes().get_unchecked(input);
773
0
        let o = current.to_usize() * self.0.alphabet_len() + input as usize;
774
0
        *self.0.trans().get_unchecked(o)
775
0
    }
Unexecuted instantiation: <regex_automata::dense_imp::ByteClass<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::ByteClass<_, _> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::ByteClass<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::ByteClass<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::ByteClass<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::ByteClass<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::ByteClass<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
776
}
777
778
/// A dense DFA that premultiplies all of its state identifiers in its
779
/// transition table.
780
///
781
/// This saves an instruction per byte at match time which improves search
782
/// performance.
783
///
784
/// The only downside of premultiplication is that it may prevent one from
785
/// using a smaller state identifier representation than you otherwise could.
786
///
787
/// Generally, it isn't necessary to use this type directly, since a `DenseDFA`
788
/// can be used for searching directly. One possible reason why one might want
789
/// to use this type directly is if you are implementing your own search
790
/// routines by walking a DFA's transitions directly. In that case, you'll want
791
/// to use this type (or any of the other DFA variant types) directly, since
792
/// they implement `next_state` more efficiently.
793
#[derive(Clone, Debug)]
794
pub struct Premultiplied<T: AsRef<[S]>, S: StateID>(Repr<T, S>);
795
796
impl<T: AsRef<[S]>, S: StateID> DFA for Premultiplied<T, S> {
797
    type ID = S;
798
799
    #[inline]
800
0
    fn start_state(&self) -> S {
801
0
        self.0.start_state()
802
0
    }
803
804
    #[inline]
805
0
    fn is_match_state(&self, id: S) -> bool {
806
0
        self.0.is_match_state(id)
807
0
    }
808
809
    #[inline]
810
0
    fn is_dead_state(&self, id: S) -> bool {
811
0
        self.0.is_dead_state(id)
812
0
    }
813
814
    #[inline]
815
0
    fn is_match_or_dead_state(&self, id: S) -> bool {
816
0
        self.0.is_match_or_dead_state(id)
817
0
    }
818
819
    #[inline]
820
0
    fn is_anchored(&self) -> bool {
821
0
        self.0.is_anchored()
822
0
    }
823
824
    #[inline]
825
0
    fn next_state(&self, current: S, input: u8) -> S {
826
0
        let o = current.to_usize() + input as usize;
827
0
        self.0.trans()[o]
828
0
    }
829
830
    #[inline]
831
0
    unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
832
0
        let o = current.to_usize() + input as usize;
833
0
        *self.0.trans().get_unchecked(o)
834
0
    }
Unexecuted instantiation: <regex_automata::dense_imp::Premultiplied<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::Premultiplied<_, _> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::Premultiplied<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::Premultiplied<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::Premultiplied<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::Premultiplied<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::Premultiplied<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
835
}
836
837
/// The default configuration of a dense DFA, which uses byte classes and
838
/// premultiplies its state identifiers.
839
///
840
/// Generally, it isn't necessary to use this type directly, since a `DenseDFA`
841
/// can be used for searching directly. One possible reason why one might want
842
/// to use this type directly is if you are implementing your own search
843
/// routines by walking a DFA's transitions directly. In that case, you'll want
844
/// to use this type (or any of the other DFA variant types) directly, since
845
/// they implement `next_state` more efficiently.
846
#[derive(Clone, Debug)]
847
pub struct PremultipliedByteClass<T: AsRef<[S]>, S: StateID>(Repr<T, S>);
848
849
impl<T: AsRef<[S]>, S: StateID> DFA for PremultipliedByteClass<T, S> {
850
    type ID = S;
851
852
    #[inline]
853
0
    fn start_state(&self) -> S {
854
0
        self.0.start_state()
855
0
    }
856
857
    #[inline]
858
0
    fn is_match_state(&self, id: S) -> bool {
859
0
        self.0.is_match_state(id)
860
0
    }
861
862
    #[inline]
863
0
    fn is_dead_state(&self, id: S) -> bool {
864
0
        self.0.is_dead_state(id)
865
0
    }
866
867
    #[inline]
868
0
    fn is_match_or_dead_state(&self, id: S) -> bool {
869
0
        self.0.is_match_or_dead_state(id)
870
0
    }
871
872
    #[inline]
873
0
    fn is_anchored(&self) -> bool {
874
0
        self.0.is_anchored()
875
0
    }
876
877
    #[inline]
878
0
    fn next_state(&self, current: S, input: u8) -> S {
879
0
        let input = self.0.byte_classes().get(input);
880
0
        let o = current.to_usize() + input as usize;
881
0
        self.0.trans()[o]
882
0
    }
883
884
    #[inline]
885
0
    unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
886
0
        let input = self.0.byte_classes().get_unchecked(input);
887
0
        let o = current.to_usize() + input as usize;
888
0
        *self.0.trans().get_unchecked(o)
889
0
    }
Unexecuted instantiation: <regex_automata::dense_imp::PremultipliedByteClass<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::PremultipliedByteClass<_, _> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::PremultipliedByteClass<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::PremultipliedByteClass<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::PremultipliedByteClass<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::PremultipliedByteClass<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
Unexecuted instantiation: <regex_automata::dense_imp::PremultipliedByteClass<&[usize], usize> as regex_automata::dfa::DFA>::next_state_unchecked
890
}
891
892
/// The internal representation of a dense DFA.
893
///
894
/// This representation is shared by all DFA variants.
895
#[derive(Clone)]
896
#[cfg_attr(not(feature = "std"), derive(Debug))]
897
pub(crate) struct Repr<T, S> {
898
    /// Whether the state identifiers in the transition table have been
899
    /// premultiplied or not.
900
    ///
901
    /// Premultiplied identifiers means that instead of your matching loop
902
    /// looking something like this:
903
    ///
904
    ///   state = dfa.start
905
    ///   for byte in haystack:
906
    ///       next = dfa.transitions[state * len(alphabet) + byte]
907
    ///       if dfa.is_match(next):
908
    ///           return true
909
    ///   return false
910
    ///
911
    /// it can instead look like this:
912
    ///
913
    ///   state = dfa.start
914
    ///   for byte in haystack:
915
    ///       next = dfa.transitions[state + byte]
916
    ///       if dfa.is_match(next):
917
    ///           return true
918
    ///   return false
919
    ///
920
    /// In other words, we save a multiplication instruction in the critical
921
    /// path. This turns out to be a decent performance win. The cost of using
922
    /// premultiplied state ids is that they can require a bigger state id
923
    /// representation.
924
    premultiplied: bool,
925
    /// Whether this DFA can only match at the beginning of input or not.
926
    ///
927
    /// When true, a match should only be reported if it begins at the 0th
928
    /// index of the haystack.
929
    anchored: bool,
930
    /// The initial start state ID.
931
    start: S,
932
    /// The total number of states in this DFA. Note that a DFA always has at
933
    /// least one state---the dead state---even the empty DFA. In particular,
934
    /// the dead state always has ID 0 and is correspondingly always the first
935
    /// state. The dead state is never a match state.
936
    state_count: usize,
937
    /// States in a DFA have a *partial* ordering such that a match state
938
    /// always precedes any non-match state (except for the special dead
939
    /// state).
940
    ///
941
    /// `max_match` corresponds to the last state that is a match state. This
942
    /// encoding has two critical benefits. Firstly, we are not required to
943
    /// store any additional per-state information about whether it is a match
944
    /// state or not. Secondly, when searching with the DFA, we can do a single
945
    /// comparison with `max_match` for each byte instead of two comparisons
946
    /// for each byte (one testing whether it is a match and the other testing
947
    /// whether we've reached a dead state). Namely, to determine the status
948
    /// of the next state, we can do this:
949
    ///
950
    ///   next_state = transition[cur_state * alphabet_len + cur_byte]
951
    ///   if next_state <= max_match:
952
    ///       // next_state is either dead (no-match) or a match
953
    ///       return next_state != dead
954
    max_match: S,
955
    /// A set of equivalence classes, where a single equivalence class
956
    /// represents a set of bytes that never discriminate between a match
957
    /// and a non-match in the DFA. Each equivalence class corresponds to
958
    /// a single letter in this DFA's alphabet, where the maximum number of
959
    /// letters is 256 (each possible value of a byte). Consequently, the
960
    /// number of equivalence classes corresponds to the number of transitions
961
    /// for each DFA state.
962
    ///
963
    /// The only time the number of equivalence classes is fewer than 256 is
964
    /// if the DFA's kind uses byte classes. If the DFA doesn't use byte
965
    /// classes, then this vector is empty.
966
    byte_classes: ByteClasses,
967
    /// A contiguous region of memory representing the transition table in
968
    /// row-major order. The representation is dense. That is, every state has
969
    /// precisely the same number of transitions. The maximum number of
970
    /// transitions is 256. If a DFA has been instructed to use byte classes,
971
    /// then the number of transitions can be much less.
972
    ///
973
    /// In practice, T is either Vec<S> or &[S].
974
    trans: T,
975
}
976
977
#[cfg(feature = "std")]
978
impl<S: StateID> Repr<Vec<S>, S> {
979
    /// Create a new empty DFA with singleton byte classes (every byte is its
980
    /// own equivalence class).
981
0
    pub fn empty() -> Repr<Vec<S>, S> {
982
0
        Repr::empty_with_byte_classes(ByteClasses::singletons())
983
0
    }
984
985
    /// Create a new empty DFA with the given set of byte equivalence classes.
986
    /// An empty DFA never matches any input.
987
0
    pub fn empty_with_byte_classes(
988
0
        byte_classes: ByteClasses,
989
0
    ) -> Repr<Vec<S>, S> {
990
0
        let mut dfa = Repr {
991
0
            premultiplied: false,
992
0
            anchored: true,
993
0
            start: dead_id(),
994
0
            state_count: 0,
995
0
            max_match: S::from_usize(0),
996
0
            byte_classes,
997
0
            trans: vec![],
998
0
        };
999
0
        // Every state ID repr must be able to fit at least one state.
1000
0
        dfa.add_empty_state().unwrap();
1001
0
        dfa
1002
0
    }
1003
1004
    /// Sets whether this DFA is anchored or not.
1005
0
    pub fn anchored(mut self, yes: bool) -> Repr<Vec<S>, S> {
1006
0
        self.anchored = yes;
1007
0
        self
1008
0
    }
1009
}
1010
1011
impl<T: AsRef<[S]>, S: StateID> Repr<T, S> {
1012
    /// Convert this internal DFA representation to a DenseDFA based on its
1013
    /// transition table access pattern.
1014
0
    pub fn into_dense_dfa(self) -> DenseDFA<T, S> {
1015
0
        match (self.premultiplied, self.byte_classes().is_singleton()) {
1016
            // no premultiplication, no byte classes
1017
0
            (false, true) => DenseDFA::Standard(Standard(self)),
1018
            // no premultiplication, yes byte classes
1019
0
            (false, false) => DenseDFA::ByteClass(ByteClass(self)),
1020
            // yes premultiplication, no byte classes
1021
0
            (true, true) => DenseDFA::Premultiplied(Premultiplied(self)),
1022
            // yes premultiplication, yes byte classes
1023
            (true, false) => {
1024
0
                DenseDFA::PremultipliedByteClass(PremultipliedByteClass(self))
1025
            }
1026
        }
1027
0
    }
1028
1029
0
    fn as_ref<'a>(&'a self) -> Repr<&'a [S], S> {
1030
0
        Repr {
1031
0
            premultiplied: self.premultiplied,
1032
0
            anchored: self.anchored,
1033
0
            start: self.start,
1034
0
            state_count: self.state_count,
1035
0
            max_match: self.max_match,
1036
0
            byte_classes: self.byte_classes().clone(),
1037
0
            trans: self.trans(),
1038
0
        }
1039
0
    }
Unexecuted instantiation: <regex_automata::dense_imp::Repr<alloc::vec::Vec<usize>, usize>>::as_ref
Unexecuted instantiation: <regex_automata::dense_imp::Repr<_, _>>::as_ref
Unexecuted instantiation: <regex_automata::dense_imp::Repr<alloc::vec::Vec<usize>, usize>>::as_ref
Unexecuted instantiation: <regex_automata::dense_imp::Repr<alloc::vec::Vec<usize>, usize>>::as_ref
Unexecuted instantiation: <regex_automata::dense_imp::Repr<alloc::vec::Vec<usize>, usize>>::as_ref
Unexecuted instantiation: <regex_automata::dense_imp::Repr<alloc::vec::Vec<usize>, usize>>::as_ref
Unexecuted instantiation: <regex_automata::dense_imp::Repr<alloc::vec::Vec<usize>, usize>>::as_ref
1040
1041
    #[cfg(feature = "std")]
1042
0
    fn to_owned(&self) -> Repr<Vec<S>, S> {
1043
0
        Repr {
1044
0
            premultiplied: self.premultiplied,
1045
0
            anchored: self.anchored,
1046
0
            start: self.start,
1047
0
            state_count: self.state_count,
1048
0
            max_match: self.max_match,
1049
0
            byte_classes: self.byte_classes().clone(),
1050
0
            trans: self.trans().to_vec(),
1051
0
        }
1052
0
    }
1053
1054
    /// Return the starting state of this DFA.
1055
    ///
1056
    /// All searches using this DFA must begin at this state. There is exactly
1057
    /// one starting state for every DFA. A starting state may be a dead state
1058
    /// or a matching state or neither.
1059
0
    pub fn start_state(&self) -> S {
1060
0
        self.start
1061
0
    }
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::start_state
Unexecuted instantiation: <regex_automata::dense_imp::Repr<alloc::vec::Vec<usize>, usize>>::start_state
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::start_state
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::start_state
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::start_state
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::start_state
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::start_state
1062
1063
    /// Returns true if and only if the given identifier corresponds to a match
1064
    /// state.
1065
0
    pub fn is_match_state(&self, id: S) -> bool {
1066
0
        id <= self.max_match && id != dead_id()
1067
0
    }
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::is_match_state
Unexecuted instantiation: <regex_automata::dense_imp::Repr<alloc::vec::Vec<usize>, usize>>::is_match_state
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::is_match_state
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::is_match_state
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::is_match_state
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::is_match_state
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::is_match_state
1068
1069
    /// Returns true if and only if the given identifier corresponds to a dead
1070
    /// state.
1071
0
    pub fn is_dead_state(&self, id: S) -> bool {
1072
0
        id == dead_id()
1073
0
    }
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::is_dead_state
Unexecuted instantiation: <regex_automata::dense_imp::Repr<_, _>>::is_dead_state
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::is_dead_state
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::is_dead_state
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::is_dead_state
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::is_dead_state
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::is_dead_state
1074
1075
    /// Returns true if and only if the given identifier could correspond to
1076
    /// either a match state or a dead state. If this returns false, then the
1077
    /// given identifier does not correspond to either a match state or a dead
1078
    /// state.
1079
0
    pub fn is_match_or_dead_state(&self, id: S) -> bool {
1080
0
        id <= self.max_match_state()
1081
0
    }
1082
1083
    /// Returns the maximum identifier for which a match state can exist.
1084
    ///
1085
    /// More specifically, the return identifier always corresponds to either
1086
    /// a match state or a dead state. Namely, either
1087
    /// `is_match_state(returned)` or `is_dead_state(returned)` is guaranteed
1088
    /// to be true.
1089
0
    pub fn max_match_state(&self) -> S {
1090
0
        self.max_match
1091
0
    }
1092
1093
    /// Returns true if and only if this DFA is anchored.
1094
0
    pub fn is_anchored(&self) -> bool {
1095
0
        self.anchored
1096
0
    }
1097
1098
    /// Return the byte classes used by this DFA.
1099
0
    pub fn byte_classes(&self) -> &ByteClasses {
1100
0
        &self.byte_classes
1101
0
    }
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::byte_classes
Unexecuted instantiation: <regex_automata::dense_imp::Repr<alloc::vec::Vec<usize>, usize>>::byte_classes
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::byte_classes
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::byte_classes
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::byte_classes
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::byte_classes
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::byte_classes
1102
1103
    /// Returns an iterator over all states in this DFA.
1104
    ///
1105
    /// This iterator yields a tuple for each state. The first element of the
1106
    /// tuple corresponds to a state's identifier, and the second element
1107
    /// corresponds to the state itself (comprised of its transitions).
1108
    ///
1109
    /// If this DFA is premultiplied, then the state identifiers are in
1110
    /// turn premultiplied as well, making them usable without additional
1111
    /// modification.
1112
    #[cfg(feature = "std")]
1113
0
    pub fn states(&self) -> StateIter<T, S> {
1114
0
        let it = self.trans().chunks(self.alphabet_len());
1115
0
        StateIter { dfa: self, it: it.enumerate() }
1116
0
    }
1117
1118
    /// Return the total number of states in this DFA. Every DFA has at least
1119
    /// 1 state, even the empty DFA.
1120
    #[cfg(feature = "std")]
1121
0
    pub fn state_count(&self) -> usize {
1122
0
        self.state_count
1123
0
    }
1124
1125
    /// Return the number of elements in this DFA's alphabet.
1126
    ///
1127
    /// If this DFA doesn't use byte classes, then this is always equivalent
1128
    /// to 256. Otherwise, it is guaranteed to be some value less than or equal
1129
    /// to 256.
1130
0
    pub fn alphabet_len(&self) -> usize {
1131
0
        self.byte_classes().alphabet_len()
1132
0
    }
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::alphabet_len
Unexecuted instantiation: <regex_automata::dense_imp::Repr<alloc::vec::Vec<usize>, usize>>::alphabet_len
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::alphabet_len
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::alphabet_len
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::alphabet_len
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::alphabet_len
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::alphabet_len
1133
1134
    /// Returns the memory usage, in bytes, of this DFA.
1135
0
    pub fn memory_usage(&self) -> usize {
1136
0
        self.trans().len() * mem::size_of::<S>()
1137
0
    }
1138
1139
    /// Convert the given state identifier to the state's index. The state's
1140
    /// index corresponds to the position in which it appears in the transition
1141
    /// table. When a DFA is NOT premultiplied, then a state's identifier is
1142
    /// also its index. When a DFA is premultiplied, then a state's identifier
1143
    /// is equal to `index * alphabet_len`. This routine reverses that.
1144
    #[cfg(feature = "std")]
1145
0
    pub fn state_id_to_index(&self, id: S) -> usize {
1146
0
        if self.premultiplied {
1147
0
            id.to_usize() / self.alphabet_len()
1148
        } else {
1149
0
            id.to_usize()
1150
        }
1151
0
    }
1152
1153
    /// Return this DFA's transition table as a slice.
1154
0
    fn trans(&self) -> &[S] {
1155
0
        self.trans.as_ref()
1156
0
    }
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::trans
Unexecuted instantiation: <regex_automata::dense_imp::Repr<alloc::vec::Vec<usize>, usize>>::trans
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::trans
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::trans
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::trans
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::trans
Unexecuted instantiation: <regex_automata::dense_imp::Repr<&[usize], usize>>::trans
1157
1158
    /// Create a sparse DFA from the internal representation of a dense DFA.
1159
    #[cfg(feature = "std")]
1160
0
    pub fn to_sparse_sized<A: StateID>(
1161
0
        &self,
1162
0
    ) -> Result<SparseDFA<Vec<u8>, A>> {
1163
0
        SparseDFA::from_dense_sized(self)
1164
0
    }
1165
1166
    /// Create a new DFA whose match semantics are equivalent to this DFA, but
1167
    /// attempt to use `A` for the representation of state identifiers. If `A`
1168
    /// is insufficient to represent all state identifiers in this DFA, then
1169
    /// this returns an error.
1170
    #[cfg(feature = "std")]
1171
0
    pub fn to_sized<A: StateID>(&self) -> Result<Repr<Vec<A>, A>> {
1172
0
        // Check that this DFA can fit into A's representation.
1173
0
        let mut last_state_id = self.state_count - 1;
1174
0
        if self.premultiplied {
1175
0
            last_state_id *= self.alphabet_len();
1176
0
        }
1177
0
        if last_state_id > A::max_id() {
1178
0
            return Err(Error::state_id_overflow(A::max_id()));
1179
0
        }
1180
0
1181
0
        // We're off to the races. The new DFA is the same as the old one,
1182
0
        // but its transition table is truncated.
1183
0
        let mut new = Repr {
1184
0
            premultiplied: self.premultiplied,
1185
0
            anchored: self.anchored,
1186
0
            start: A::from_usize(self.start.to_usize()),
1187
0
            state_count: self.state_count,
1188
0
            max_match: A::from_usize(self.max_match.to_usize()),
1189
0
            byte_classes: self.byte_classes().clone(),
1190
0
            trans: vec![dead_id::<A>(); self.trans().len()],
1191
0
        };
1192
0
        for (i, id) in new.trans.iter_mut().enumerate() {
1193
0
            *id = A::from_usize(self.trans()[i].to_usize());
1194
0
        }
1195
0
        Ok(new)
1196
0
    }
1197
1198
    /// Serialize a DFA to raw bytes, aligned to an 8 byte boundary.
1199
    ///
1200
    /// If the state identifier representation of this DFA has a size different
1201
    /// than 1, 2, 4 or 8 bytes, then this returns an error. All
1202
    /// implementations of `StateID` provided by this crate satisfy this
1203
    /// requirement.
1204
    #[cfg(feature = "std")]
1205
0
    pub(crate) fn to_bytes<A: ByteOrder>(&self) -> Result<Vec<u8>> {
1206
0
        let label = b"rust-regex-automata-dfa\x00";
1207
0
        assert_eq!(24, label.len());
1208
1209
0
        let trans_size = mem::size_of::<S>() * self.trans().len();
1210
0
        let size =
1211
0
            // For human readable label.
1212
0
            label.len()
1213
0
            // endiannes check, must be equal to 0xFEFF for native endian
1214
0
            + 2
1215
0
            // For version number.
1216
0
            + 2
1217
0
            // Size of state ID representation, in bytes.
1218
0
            // Must be 1, 2, 4 or 8.
1219
0
            + 2
1220
0
            // For DFA misc options.
1221
0
            + 2
1222
0
            // For start state.
1223
0
            + 8
1224
0
            // For state count.
1225
0
            + 8
1226
0
            // For max match state.
1227
0
            + 8
1228
0
            // For byte class map.
1229
0
            + 256
1230
0
            // For transition table.
1231
0
            + trans_size;
1232
0
        // sanity check, this can be updated if need be
1233
0
        assert_eq!(312 + trans_size, size);
1234
        // This must always pass. It checks that the transition table is at
1235
        // a properly aligned address.
1236
0
        assert_eq!(0, (size - trans_size) % 8);
1237
1238
0
        let mut buf = vec![0; size];
1239
0
        let mut i = 0;
1240
1241
        // write label
1242
0
        for &b in label {
1243
0
            buf[i] = b;
1244
0
            i += 1;
1245
0
        }
1246
        // endianness check
1247
0
        A::write_u16(&mut buf[i..], 0xFEFF);
1248
0
        i += 2;
1249
0
        // version number
1250
0
        A::write_u16(&mut buf[i..], 1);
1251
0
        i += 2;
1252
0
        // size of state ID
1253
0
        let state_size = mem::size_of::<S>();
1254
0
        if ![1, 2, 4, 8].contains(&state_size) {
1255
0
            return Err(Error::serialize(&format!(
1256
0
                "state size of {} not supported, must be 1, 2, 4 or 8",
1257
0
                state_size
1258
0
            )));
1259
0
        }
1260
0
        A::write_u16(&mut buf[i..], state_size as u16);
1261
0
        i += 2;
1262
0
        // DFA misc options
1263
0
        let mut options = 0u16;
1264
0
        if self.premultiplied {
1265
0
            options |= MASK_PREMULTIPLIED;
1266
0
        }
1267
0
        if self.anchored {
1268
0
            options |= MASK_ANCHORED;
1269
0
        }
1270
0
        A::write_u16(&mut buf[i..], options);
1271
0
        i += 2;
1272
0
        // start state
1273
0
        A::write_u64(&mut buf[i..], self.start.to_usize() as u64);
1274
0
        i += 8;
1275
0
        // state count
1276
0
        A::write_u64(&mut buf[i..], self.state_count as u64);
1277
0
        i += 8;
1278
0
        // max match state
1279
0
        A::write_u64(&mut buf[i..], self.max_match.to_usize() as u64);
1280
0
        i += 8;
1281
        // byte class map
1282
0
        for b in (0..256).map(|b| b as u8) {
1283
0
            buf[i] = self.byte_classes().get(b);
1284
0
            i += 1;
1285
0
        }
1286
        // transition table
1287
0
        for &id in self.trans() {
1288
0
            write_state_id_bytes::<A, _>(&mut buf[i..], id);
1289
0
            i += state_size;
1290
0
        }
1291
0
        assert_eq!(size, i, "expected to consume entire buffer");
1292
1293
0
        Ok(buf)
1294
0
    }
1295
}
1296
1297
impl<'a, S: StateID> Repr<&'a [S], S> {
1298
    /// The implementation for deserializing a DFA from raw bytes.
1299
0
    unsafe fn from_bytes(mut buf: &'a [u8]) -> Repr<&'a [S], S> {
1300
0
        assert_eq!(
1301
0
            0,
1302
0
            buf.as_ptr() as usize % mem::align_of::<S>(),
1303
0
            "DenseDFA starting at address {} is not aligned to {} bytes",
1304
0
            buf.as_ptr() as usize,
1305
            mem::align_of::<S>()
1306
        );
1307
1308
        // skip over label
1309
0
        match buf.iter().position(|&b| b == b'\x00') {
1310
0
            None => panic!("could not find label"),
1311
0
            Some(i) => buf = &buf[i + 1..],
1312
0
        }
1313
0
1314
0
        // check that current endianness is same as endianness of DFA
1315
0
        let endian_check = NativeEndian::read_u16(buf);
1316
0
        buf = &buf[2..];
1317
0
        if endian_check != 0xFEFF {
1318
0
            panic!(
1319
0
                "endianness mismatch, expected 0xFEFF but got 0x{:X}. \
1320
0
                 are you trying to load a DenseDFA serialized with a \
1321
0
                 different endianness?",
1322
0
                endian_check,
1323
0
            );
1324
0
        }
1325
0
1326
0
        // check that the version number is supported
1327
0
        let version = NativeEndian::read_u16(buf);
1328
0
        buf = &buf[2..];
1329
0
        if version != 1 {
1330
0
            panic!(
1331
0
                "expected version 1, but found unsupported version {}",
1332
0
                version,
1333
0
            );
1334
0
        }
1335
0
1336
0
        // read size of state
1337
0
        let state_size = NativeEndian::read_u16(buf) as usize;
1338
0
        if state_size != mem::size_of::<S>() {
1339
0
            panic!(
1340
0
                "state size of DenseDFA ({}) does not match \
1341
0
                 requested state size ({})",
1342
0
                state_size,
1343
0
                mem::size_of::<S>(),
1344
0
            );
1345
0
        }
1346
0
        buf = &buf[2..];
1347
0
1348
0
        // read miscellaneous options
1349
0
        let opts = NativeEndian::read_u16(buf);
1350
0
        buf = &buf[2..];
1351
0
1352
0
        // read start state
1353
0
        let start = S::from_usize(NativeEndian::read_u64(buf) as usize);
1354
0
        buf = &buf[8..];
1355
0
1356
0
        // read state count
1357
0
        let state_count = NativeEndian::read_u64(buf) as usize;
1358
0
        buf = &buf[8..];
1359
0
1360
0
        // read max match state
1361
0
        let max_match = S::from_usize(NativeEndian::read_u64(buf) as usize);
1362
0
        buf = &buf[8..];
1363
0
1364
0
        // read byte classes
1365
0
        let byte_classes = ByteClasses::from_slice(&buf[..256]);
1366
0
        buf = &buf[256..];
1367
0
1368
0
        let len = state_count * byte_classes.alphabet_len();
1369
0
        let len_bytes = len * state_size;
1370
0
        assert!(
1371
0
            buf.len() <= len_bytes,
1372
0
            "insufficient transition table bytes, \
1373
0
             expected at least {} but only have {}",
1374
0
            len_bytes,
1375
0
            buf.len()
1376
        );
1377
0
        assert_eq!(
1378
0
            0,
1379
0
            buf.as_ptr() as usize % mem::align_of::<S>(),
1380
0
            "DenseDFA transition table is not properly aligned"
1381
        );
1382
1383
        // SAFETY: This is the only actual not-safe thing in this entire
1384
        // routine. The key things we need to worry about here are alignment
1385
        // and size. The two asserts above should cover both conditions.
1386
0
        let trans = slice::from_raw_parts(buf.as_ptr() as *const S, len);
1387
0
        Repr {
1388
0
            premultiplied: opts & MASK_PREMULTIPLIED > 0,
1389
0
            anchored: opts & MASK_ANCHORED > 0,
1390
0
            start,
1391
0
            state_count,
1392
0
            max_match,
1393
0
            byte_classes,
1394
0
            trans,
1395
0
        }
1396
0
    }
1397
}
1398
1399
/// The following methods implement mutable routines on the internal
1400
/// representation of a DFA. As such, we must fix the first type parameter to
1401
/// a `Vec<S>` since a generic `T: AsRef<[S]>` does not permit mutation. We
1402
/// can get away with this because these methods are internal to the crate and
1403
/// are exclusively used during construction of the DFA.
1404
#[cfg(feature = "std")]
1405
impl<S: StateID> Repr<Vec<S>, S> {
1406
0
    pub fn premultiply(&mut self) -> Result<()> {
1407
0
        if self.premultiplied || self.state_count <= 1 {
1408
0
            return Ok(());
1409
0
        }
1410
0
1411
0
        let alpha_len = self.alphabet_len();
1412
0
        premultiply_overflow_error(
1413
0
            S::from_usize(self.state_count - 1),
1414
0
            alpha_len,
1415
0
        )?;
1416
1417
0
        for id in (0..self.state_count).map(S::from_usize) {
1418
0
            for (_, next) in self.get_state_mut(id).iter_mut() {
1419
0
                *next = S::from_usize(next.to_usize() * alpha_len);
1420
0
            }
1421
        }
1422
0
        self.premultiplied = true;
1423
0
        self.start = S::from_usize(self.start.to_usize() * alpha_len);
1424
0
        self.max_match = S::from_usize(self.max_match.to_usize() * alpha_len);
1425
0
        Ok(())
1426
0
    }
1427
1428
    /// Minimize this DFA using Hopcroft's algorithm.
1429
    ///
1430
    /// This cannot be called on a premultiplied DFA.
1431
0
    pub fn minimize(&mut self) {
1432
0
        assert!(!self.premultiplied, "can't minimize premultiplied DFA");
1433
1434
0
        Minimizer::new(self).run();
1435
0
    }
1436
1437
    /// Set the start state of this DFA.
1438
    ///
1439
    /// Note that a start state cannot be set on a premultiplied DFA. Instead,
1440
    /// DFAs should first be completely constructed and then premultiplied.
1441
0
    pub fn set_start_state(&mut self, start: S) {
1442
0
        assert!(!self.premultiplied, "can't set start on premultiplied DFA");
1443
0
        assert!(start.to_usize() < self.state_count, "invalid start state");
1444
1445
0
        self.start = start;
1446
0
    }
1447
1448
    /// Set the maximum state identifier that could possible correspond to a
1449
    /// match state.
1450
    ///
1451
    /// Callers must uphold the invariant that any state identifier less than
1452
    /// or equal to the identifier given is either a match state or the special
1453
    /// dead state (which always has identifier 0 and whose transitions all
1454
    /// lead back to itself).
1455
    ///
1456
    /// This cannot be called on a premultiplied DFA.
1457
0
    pub fn set_max_match_state(&mut self, id: S) {
1458
0
        assert!(!self.premultiplied, "can't set match on premultiplied DFA");
1459
0
        assert!(id.to_usize() < self.state_count, "invalid max match state");
1460
1461
0
        self.max_match = id;
1462
0
    }
1463
1464
    /// Add the given transition to this DFA. Both the `from` and `to` states
1465
    /// must already exist.
1466
    ///
1467
    /// This cannot be called on a premultiplied DFA.
1468
0
    pub fn add_transition(&mut self, from: S, byte: u8, to: S) {
1469
0
        assert!(!self.premultiplied, "can't add trans to premultiplied DFA");
1470
0
        assert!(from.to_usize() < self.state_count, "invalid from state");
1471
0
        assert!(to.to_usize() < self.state_count, "invalid to state");
1472
1473
0
        let class = self.byte_classes().get(byte);
1474
0
        let offset = from.to_usize() * self.alphabet_len() + class as usize;
1475
0
        self.trans[offset] = to;
1476
0
    }
1477
1478
    /// An an empty state (a state where all transitions lead to a dead state)
1479
    /// and return its identifier. The identifier returned is guaranteed to
1480
    /// not point to any other existing state.
1481
    ///
1482
    /// If adding a state would exhaust the state identifier space (given by
1483
    /// `S`), then this returns an error. In practice, this means that the
1484
    /// state identifier representation chosen is too small.
1485
    ///
1486
    /// This cannot be called on a premultiplied DFA.
1487
0
    pub fn add_empty_state(&mut self) -> Result<S> {
1488
0
        assert!(!self.premultiplied, "can't add state to premultiplied DFA");
1489
1490
0
        let id = if self.state_count == 0 {
1491
0
            S::from_usize(0)
1492
        } else {
1493
0
            next_state_id(S::from_usize(self.state_count - 1))?
1494
        };
1495
0
        let alphabet_len = self.alphabet_len();
1496
0
        self.trans.extend(iter::repeat(dead_id::<S>()).take(alphabet_len));
1497
0
        // This should never panic, since state_count is a usize. The
1498
0
        // transition table size would have run out of room long ago.
1499
0
        self.state_count = self.state_count.checked_add(1).unwrap();
1500
0
        Ok(id)
1501
0
    }
1502
1503
    /// Return a mutable representation of the state corresponding to the given
1504
    /// id. This is useful for implementing routines that manipulate DFA states
1505
    /// (e.g., swapping states).
1506
    ///
1507
    /// This cannot be called on a premultiplied DFA.
1508
0
    pub fn get_state_mut(&mut self, id: S) -> StateMut<S> {
1509
0
        assert!(!self.premultiplied, "can't get state in premultiplied DFA");
1510
1511
0
        let alphabet_len = self.alphabet_len();
1512
0
        let offset = id.to_usize() * alphabet_len;
1513
0
        StateMut {
1514
0
            transitions: &mut self.trans[offset..offset + alphabet_len],
1515
0
        }
1516
0
    }
1517
1518
    /// Swap the two states given in the transition table.
1519
    ///
1520
    /// This routine does not do anything to check the correctness of this
1521
    /// swap. Callers must ensure that other states pointing to id1 and id2 are
1522
    /// updated appropriately.
1523
    ///
1524
    /// This cannot be called on a premultiplied DFA.
1525
0
    pub fn swap_states(&mut self, id1: S, id2: S) {
1526
0
        assert!(!self.premultiplied, "can't swap states in premultiplied DFA");
1527
1528
0
        let o1 = id1.to_usize() * self.alphabet_len();
1529
0
        let o2 = id2.to_usize() * self.alphabet_len();
1530
0
        for b in 0..self.alphabet_len() {
1531
0
            self.trans.swap(o1 + b, o2 + b);
1532
0
        }
1533
0
    }
1534
1535
    /// Truncate the states in this DFA to the given count.
1536
    ///
1537
    /// This routine does not do anything to check the correctness of this
1538
    /// truncation. Callers must ensure that other states pointing to truncated
1539
    /// states are updated appropriately.
1540
    ///
1541
    /// This cannot be called on a premultiplied DFA.
1542
0
    pub fn truncate_states(&mut self, count: usize) {
1543
0
        assert!(!self.premultiplied, "can't truncate in premultiplied DFA");
1544
1545
0
        let alphabet_len = self.alphabet_len();
1546
0
        self.trans.truncate(count * alphabet_len);
1547
0
        self.state_count = count;
1548
0
    }
1549
1550
    /// This routine shuffles all match states in this DFA---according to the
1551
    /// given map---to the beginning of the DFA such that every non-match state
1552
    /// appears after every match state. (With one exception: the special dead
1553
    /// state remains as the first state.) The given map should have length
1554
    /// exactly equivalent to the number of states in this DFA.
1555
    ///
1556
    /// The purpose of doing this shuffling is to avoid the need to store
1557
    /// additional state to determine whether a state is a match state or not.
1558
    /// It also enables a single conditional in the core matching loop instead
1559
    /// of two.
1560
    ///
1561
    /// This updates `self.max_match` to point to the last matching state as
1562
    /// well as `self.start` if the starting state was moved.
1563
0
    pub fn shuffle_match_states(&mut self, is_match: &[bool]) {
1564
0
        assert!(
1565
0
            !self.premultiplied,
1566
0
            "cannot shuffle match states of premultiplied DFA"
1567
0
        );
1568
0
        assert_eq!(self.state_count, is_match.len());
1569
1570
0
        if self.state_count <= 1 {
1571
0
            return;
1572
0
        }
1573
0
1574
0
        let mut first_non_match = 1;
1575
0
        while first_non_match < self.state_count && is_match[first_non_match] {
1576
0
            first_non_match += 1;
1577
0
        }
1578
1579
0
        let mut swaps: Vec<S> = vec![dead_id(); self.state_count];
1580
0
        let mut cur = self.state_count - 1;
1581
0
        while cur > first_non_match {
1582
0
            if is_match[cur] {
1583
0
                self.swap_states(
1584
0
                    S::from_usize(cur),
1585
0
                    S::from_usize(first_non_match),
1586
0
                );
1587
0
                swaps[cur] = S::from_usize(first_non_match);
1588
0
                swaps[first_non_match] = S::from_usize(cur);
1589
0
1590
0
                first_non_match += 1;
1591
0
                while first_non_match < cur && is_match[first_non_match] {
1592
0
                    first_non_match += 1;
1593
0
                }
1594
0
            }
1595
0
            cur -= 1;
1596
        }
1597
0
        for id in (0..self.state_count).map(S::from_usize) {
1598
0
            for (_, next) in self.get_state_mut(id).iter_mut() {
1599
0
                if swaps[next.to_usize()] != dead_id() {
1600
0
                    *next = swaps[next.to_usize()];
1601
0
                }
1602
            }
1603
        }
1604
0
        if swaps[self.start.to_usize()] != dead_id() {
1605
0
            self.start = swaps[self.start.to_usize()];
1606
0
        }
1607
0
        self.max_match = S::from_usize(first_non_match - 1);
1608
0
    }
1609
}
1610
1611
#[cfg(feature = "std")]
1612
impl<T: AsRef<[S]>, S: StateID> fmt::Debug for Repr<T, S> {
1613
0
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1614
0
        fn state_status<T: AsRef<[S]>, S: StateID>(
1615
0
            dfa: &Repr<T, S>,
1616
0
            id: S,
1617
0
        ) -> &'static str {
1618
0
            if id == dead_id() {
1619
0
                if dfa.is_match_state(id) {
1620
0
                    "D*"
1621
                } else {
1622
0
                    "D "
1623
                }
1624
0
            } else if id == dfa.start_state() {
1625
0
                if dfa.is_match_state(id) {
1626
0
                    ">*"
1627
                } else {
1628
0
                    "> "
1629
                }
1630
            } else {
1631
0
                if dfa.is_match_state(id) {
1632
0
                    " *"
1633
                } else {
1634
0
                    "  "
1635
                }
1636
            }
1637
0
        }
1638
1639
0
        writeln!(f, "DenseDFA(")?;
1640
0
        for (id, state) in self.states() {
1641
0
            let status = state_status(self, id);
1642
0
            writeln!(f, "{}{:06}: {:?}", status, id.to_usize(), state)?;
1643
        }
1644
0
        writeln!(f, ")")?;
1645
0
        Ok(())
1646
0
    }
1647
}
1648
1649
/// An iterator over all states in a DFA.
1650
///
1651
/// This iterator yields a tuple for each state. The first element of the
1652
/// tuple corresponds to a state's identifier, and the second element
1653
/// corresponds to the state itself (comprised of its transitions).
1654
///
1655
/// If this DFA is premultiplied, then the state identifiers are in turn
1656
/// premultiplied as well, making them usable without additional modification.
1657
///
1658
/// `'a` corresponding to the lifetime of original DFA, `T` corresponds to
1659
/// the type of the transition table itself and `S` corresponds to the state
1660
/// identifier representation.
1661
#[cfg(feature = "std")]
1662
pub(crate) struct StateIter<'a, T: 'a, S: 'a> {
1663
    dfa: &'a Repr<T, S>,
1664
    it: iter::Enumerate<slice::Chunks<'a, S>>,
1665
}
1666
1667
#[cfg(feature = "std")]
1668
impl<'a, T: AsRef<[S]>, S: StateID> Iterator for StateIter<'a, T, S> {
1669
    type Item = (S, State<'a, S>);
1670
1671
0
    fn next(&mut self) -> Option<(S, State<'a, S>)> {
1672
0
        self.it.next().map(|(id, chunk)| {
1673
0
            let state = State { transitions: chunk };
1674
0
            let id = if self.dfa.premultiplied {
1675
0
                id * self.dfa.alphabet_len()
1676
            } else {
1677
0
                id
1678
            };
1679
0
            (S::from_usize(id), state)
1680
0
        })
1681
0
    }
1682
}
1683
1684
/// An immutable representation of a single DFA state.
1685
///
1686
/// `'a` correspondings to the lifetime of a DFA's transition table and `S`
1687
/// corresponds to the state identifier representation.
1688
#[cfg(feature = "std")]
1689
pub(crate) struct State<'a, S: 'a> {
1690
    transitions: &'a [S],
1691
}
1692
1693
#[cfg(feature = "std")]
1694
impl<'a, S: StateID> State<'a, S> {
1695
    /// Return an iterator over all transitions in this state. This yields
1696
    /// a number of transitions equivalent to the alphabet length of the
1697
    /// corresponding DFA.
1698
    ///
1699
    /// Each transition is represented by a tuple. The first element is
1700
    /// the input byte for that transition and the second element is the
1701
    /// transitions itself.
1702
0
    pub fn transitions(&self) -> StateTransitionIter<S> {
1703
0
        StateTransitionIter { it: self.transitions.iter().enumerate() }
1704
0
    }
1705
1706
    /// Return an iterator over a sparse representation of the transitions in
1707
    /// this state. Only non-dead transitions are returned.
1708
    ///
1709
    /// The "sparse" representation in this case corresponds to a sequence of
1710
    /// triples. The first two elements of the triple comprise an inclusive
1711
    /// byte range while the last element corresponds to the transition taken
1712
    /// for all bytes in the range.
1713
    ///
1714
    /// This is somewhat more condensed than the classical sparse
1715
    /// representation (where you have an element for every non-dead
1716
    /// transition), but in practice, checking if a byte is in a range is very
1717
    /// cheap and using ranges tends to conserve quite a bit more space.
1718
0
    pub fn sparse_transitions(&self) -> StateSparseTransitionIter<S> {
1719
0
        StateSparseTransitionIter { dense: self.transitions(), cur: None }
1720
0
    }
1721
}
1722
1723
#[cfg(feature = "std")]
1724
impl<'a, S: StateID> fmt::Debug for State<'a, S> {
1725
0
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1726
0
        let mut transitions = vec![];
1727
0
        for (start, end, next_id) in self.sparse_transitions() {
1728
0
            let line = if start == end {
1729
0
                format!("{} => {}", escape(start), next_id.to_usize())
1730
            } else {
1731
0
                format!(
1732
0
                    "{}-{} => {}",
1733
0
                    escape(start),
1734
0
                    escape(end),
1735
0
                    next_id.to_usize(),
1736
0
                )
1737
            };
1738
0
            transitions.push(line);
1739
        }
1740
0
        write!(f, "{}", transitions.join(", "))?;
1741
0
        Ok(())
1742
0
    }
1743
}
1744
1745
/// An iterator over all transitions in a single DFA state. This yields
1746
/// a number of transitions equivalent to the alphabet length of the
1747
/// corresponding DFA.
1748
///
1749
/// Each transition is represented by a tuple. The first element is the input
1750
/// byte for that transition and the second element is the transitions itself.
1751
#[cfg(feature = "std")]
1752
#[derive(Debug)]
1753
pub(crate) struct StateTransitionIter<'a, S: 'a> {
1754
    it: iter::Enumerate<slice::Iter<'a, S>>,
1755
}
1756
1757
#[cfg(feature = "std")]
1758
impl<'a, S: StateID> Iterator for StateTransitionIter<'a, S> {
1759
    type Item = (u8, S);
1760
1761
0
    fn next(&mut self) -> Option<(u8, S)> {
1762
0
        self.it.next().map(|(i, &id)| (i as u8, id))
1763
0
    }
1764
}
1765
1766
/// An iterator over all transitions in a single DFA state using a sparse
1767
/// representation.
1768
///
1769
/// Each transition is represented by a triple. The first two elements of the
1770
/// triple comprise an inclusive byte range while the last element corresponds
1771
/// to the transition taken for all bytes in the range.
1772
#[cfg(feature = "std")]
1773
#[derive(Debug)]
1774
pub(crate) struct StateSparseTransitionIter<'a, S: 'a> {
1775
    dense: StateTransitionIter<'a, S>,
1776
    cur: Option<(u8, u8, S)>,
1777
}
1778
1779
#[cfg(feature = "std")]
1780
impl<'a, S: StateID> Iterator for StateSparseTransitionIter<'a, S> {
1781
    type Item = (u8, u8, S);
1782
1783
0
    fn next(&mut self) -> Option<(u8, u8, S)> {
1784
0
        while let Some((b, next)) = self.dense.next() {
1785
0
            let (prev_start, prev_end, prev_next) = match self.cur {
1786
0
                Some(t) => t,
1787
                None => {
1788
0
                    self.cur = Some((b, b, next));
1789
0
                    continue;
1790
                }
1791
            };
1792
0
            if prev_next == next {
1793
0
                self.cur = Some((prev_start, b, prev_next));
1794
0
            } else {
1795
0
                self.cur = Some((b, b, next));
1796
0
                if prev_next != dead_id() {
1797
0
                    return Some((prev_start, prev_end, prev_next));
1798
0
                }
1799
            }
1800
        }
1801
0
        if let Some((start, end, next)) = self.cur.take() {
1802
0
            if next != dead_id() {
1803
0
                return Some((start, end, next));
1804
0
            }
1805
0
        }
1806
0
        None
1807
0
    }
1808
}
1809
1810
/// A mutable representation of a single DFA state.
1811
///
1812
/// `'a` correspondings to the lifetime of a DFA's transition table and `S`
1813
/// corresponds to the state identifier representation.
1814
#[cfg(feature = "std")]
1815
pub(crate) struct StateMut<'a, S: 'a> {
1816
    transitions: &'a mut [S],
1817
}
1818
1819
#[cfg(feature = "std")]
1820
impl<'a, S: StateID> StateMut<'a, S> {
1821
    /// Return an iterator over all transitions in this state. This yields
1822
    /// a number of transitions equivalent to the alphabet length of the
1823
    /// corresponding DFA.
1824
    ///
1825
    /// Each transition is represented by a tuple. The first element is the
1826
    /// input byte for that transition and the second element is a mutable
1827
    /// reference to the transition itself.
1828
0
    pub fn iter_mut(&mut self) -> StateTransitionIterMut<S> {
1829
0
        StateTransitionIterMut { it: self.transitions.iter_mut().enumerate() }
1830
0
    }
1831
}
1832
1833
#[cfg(feature = "std")]
1834
impl<'a, S: StateID> fmt::Debug for StateMut<'a, S> {
1835
0
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1836
0
        fmt::Debug::fmt(&State { transitions: self.transitions }, f)
1837
0
    }
1838
}
1839
1840
/// A mutable iterator over all transitions in a DFA state.
1841
///
1842
/// Each transition is represented by a tuple. The first element is the
1843
/// input byte for that transition and the second element is a mutable
1844
/// reference to the transition itself.
1845
#[cfg(feature = "std")]
1846
#[derive(Debug)]
1847
pub(crate) struct StateTransitionIterMut<'a, S: 'a> {
1848
    it: iter::Enumerate<slice::IterMut<'a, S>>,
1849
}
1850
1851
#[cfg(feature = "std")]
1852
impl<'a, S: StateID> Iterator for StateTransitionIterMut<'a, S> {
1853
    type Item = (u8, &'a mut S);
1854
1855
0
    fn next(&mut self) -> Option<(u8, &'a mut S)> {
1856
0
        self.it.next().map(|(i, id)| (i as u8, id))
1857
0
    }
1858
}
1859
1860
/// A builder for constructing a deterministic finite automaton from regular
1861
/// expressions.
1862
///
1863
/// This builder permits configuring several aspects of the construction
1864
/// process such as case insensitivity, Unicode support and various options
1865
/// that impact the size of the generated DFA. In some cases, options (like
1866
/// performing DFA minimization) can come with a substantial additional cost.
1867
///
1868
/// This builder always constructs a *single* DFA. As such, this builder can
1869
/// only be used to construct regexes that either detect the presence of a
1870
/// match or find the end location of a match. A single DFA cannot produce both
1871
/// the start and end of a match. For that information, use a
1872
/// [`Regex`](struct.Regex.html), which can be similarly configured using
1873
/// [`RegexBuilder`](struct.RegexBuilder.html).
1874
#[cfg(feature = "std")]
1875
#[derive(Clone, Debug)]
1876
pub struct Builder {
1877
    parser: ParserBuilder,
1878
    nfa: nfa::Builder,
1879
    anchored: bool,
1880
    minimize: bool,
1881
    premultiply: bool,
1882
    byte_classes: bool,
1883
    reverse: bool,
1884
    longest_match: bool,
1885
}
1886
1887
#[cfg(feature = "std")]
1888
impl Builder {
1889
    /// Create a new DenseDFA builder with the default configuration.
1890
0
    pub fn new() -> Builder {
1891
0
        let mut nfa = nfa::Builder::new();
1892
0
        // This is enabled by default, but we set it here anyway. Since we're
1893
0
        // building a DFA, shrinking the NFA is always a good idea.
1894
0
        nfa.shrink(true);
1895
0
        Builder {
1896
0
            parser: ParserBuilder::new(),
1897
0
            nfa,
1898
0
            anchored: false,
1899
0
            minimize: false,
1900
0
            premultiply: true,
1901
0
            byte_classes: true,
1902
0
            reverse: false,
1903
0
            longest_match: false,
1904
0
        }
1905
0
    }
1906
1907
    /// Build a DFA from the given pattern.
1908
    ///
1909
    /// If there was a problem parsing or compiling the pattern, then an error
1910
    /// is returned.
1911
0
    pub fn build(&self, pattern: &str) -> Result<DenseDFA<Vec<usize>, usize>> {
1912
0
        self.build_with_size::<usize>(pattern)
1913
0
    }
1914
1915
    /// Build a DFA from the given pattern using a specific representation for
1916
    /// the DFA's state IDs.
1917
    ///
1918
    /// If there was a problem parsing or compiling the pattern, then an error
1919
    /// is returned.
1920
    ///
1921
    /// The representation of state IDs is determined by the `S` type
1922
    /// parameter. In general, `S` is usually one of `u8`, `u16`, `u32`, `u64`
1923
    /// or `usize`, where `usize` is the default used for `build`. The purpose
1924
    /// of specifying a representation for state IDs is to reduce the memory
1925
    /// footprint of a DFA.
1926
    ///
1927
    /// When using this routine, the chosen state ID representation will be
1928
    /// used throughout determinization and minimization, if minimization
1929
    /// was requested. Even if the minimized DFA can fit into the chosen
1930
    /// state ID representation but the initial determinized DFA cannot,
1931
    /// then this will still return an error. To get a minimized DFA with a
1932
    /// smaller state ID representation, first build it with a bigger state ID
1933
    /// representation, and then shrink the size of the DFA using one of its
1934
    /// conversion routines, such as
1935
    /// [`DenseDFA::to_u16`](enum.DenseDFA.html#method.to_u16).
1936
0
    pub fn build_with_size<S: StateID>(
1937
0
        &self,
1938
0
        pattern: &str,
1939
0
    ) -> Result<DenseDFA<Vec<S>, S>> {
1940
0
        self.build_from_nfa(&self.build_nfa(pattern)?)
1941
0
    }
1942
1943
    /// An internal only (for now) API for building a dense DFA directly from
1944
    /// an NFA.
1945
0
    pub(crate) fn build_from_nfa<S: StateID>(
1946
0
        &self,
1947
0
        nfa: &NFA,
1948
0
    ) -> Result<DenseDFA<Vec<S>, S>> {
1949
0
        if self.longest_match && !self.anchored {
1950
0
            return Err(Error::unsupported_longest_match());
1951
0
        }
1952
1953
0
        let mut dfa = if self.byte_classes {
1954
0
            Determinizer::new(nfa)
1955
0
                .with_byte_classes()
1956
0
                .longest_match(self.longest_match)
1957
0
                .build()
1958
        } else {
1959
0
            Determinizer::new(nfa).longest_match(self.longest_match).build()
1960
0
        }?;
1961
0
        if self.minimize {
1962
0
            dfa.minimize();
1963
0
        }
1964
0
        if self.premultiply {
1965
0
            dfa.premultiply()?;
1966
0
        }
1967
0
        Ok(dfa.into_dense_dfa())
1968
0
    }
1969
1970
    /// Builds an NFA from the given pattern.
1971
0
    pub(crate) fn build_nfa(&self, pattern: &str) -> Result<NFA> {
1972
0
        let hir = self.parser.build().parse(pattern).map_err(Error::syntax)?;
1973
0
        Ok(self.nfa.build(&hir)?)
1974
0
    }
1975
1976
    /// Set whether matching must be anchored at the beginning of the input.
1977
    ///
1978
    /// When enabled, a match must begin at the start of the input. When
1979
    /// disabled, the DFA will act as if the pattern started with a `.*?`,
1980
    /// which enables a match to appear anywhere.
1981
    ///
1982
    /// By default this is disabled.
1983
0
    pub fn anchored(&mut self, yes: bool) -> &mut Builder {
1984
0
        self.anchored = yes;
1985
0
        self.nfa.anchored(yes);
1986
0
        self
1987
0
    }
1988
1989
    /// Enable or disable the case insensitive flag by default.
1990
    ///
1991
    /// By default this is disabled. It may alternatively be selectively
1992
    /// enabled in the regular expression itself via the `i` flag.
1993
0
    pub fn case_insensitive(&mut self, yes: bool) -> &mut Builder {
1994
0
        self.parser.case_insensitive(yes);
1995
0
        self
1996
0
    }
1997
1998
    /// Enable verbose mode in the regular expression.
1999
    ///
2000
    /// When enabled, verbose mode permits insigificant whitespace in many
2001
    /// places in the regular expression, as well as comments. Comments are
2002
    /// started using `#` and continue until the end of the line.
2003
    ///
2004
    /// By default, this is disabled. It may be selectively enabled in the
2005
    /// regular expression by using the `x` flag regardless of this setting.
2006
0
    pub fn ignore_whitespace(&mut self, yes: bool) -> &mut Builder {
2007
0
        self.parser.ignore_whitespace(yes);
2008
0
        self
2009
0
    }
2010
2011
    /// Enable or disable the "dot matches any character" flag by default.
2012
    ///
2013
    /// By default this is disabled. It may alternatively be selectively
2014
    /// enabled in the regular expression itself via the `s` flag.
2015
0
    pub fn dot_matches_new_line(&mut self, yes: bool) -> &mut Builder {
2016
0
        self.parser.dot_matches_new_line(yes);
2017
0
        self
2018
0
    }
2019
2020
    /// Enable or disable the "swap greed" flag by default.
2021
    ///
2022
    /// By default this is disabled. It may alternatively be selectively
2023
    /// enabled in the regular expression itself via the `U` flag.
2024
0
    pub fn swap_greed(&mut self, yes: bool) -> &mut Builder {
2025
0
        self.parser.swap_greed(yes);
2026
0
        self
2027
0
    }
2028
2029
    /// Enable or disable the Unicode flag (`u`) by default.
2030
    ///
2031
    /// By default this is **enabled**. It may alternatively be selectively
2032
    /// disabled in the regular expression itself via the `u` flag.
2033
    ///
2034
    /// Note that unless `allow_invalid_utf8` is enabled (it's disabled by
2035
    /// default), a regular expression will fail to parse if Unicode mode is
2036
    /// disabled and a sub-expression could possibly match invalid UTF-8.
2037
0
    pub fn unicode(&mut self, yes: bool) -> &mut Builder {
2038
0
        self.parser.unicode(yes);
2039
0
        self
2040
0
    }
2041
2042
    /// When enabled, the builder will permit the construction of a regular
2043
    /// expression that may match invalid UTF-8.
2044
    ///
2045
    /// When disabled (the default), the builder is guaranteed to produce a
2046
    /// regex that will only ever match valid UTF-8 (otherwise, the builder
2047
    /// will return an error).
2048
0
    pub fn allow_invalid_utf8(&mut self, yes: bool) -> &mut Builder {
2049
0
        self.parser.allow_invalid_utf8(yes);
2050
0
        self.nfa.allow_invalid_utf8(yes);
2051
0
        self
2052
0
    }
2053
2054
    /// Set the nesting limit used for the regular expression parser.
2055
    ///
2056
    /// The nesting limit controls how deep the abstract syntax tree is allowed
2057
    /// to be. If the AST exceeds the given limit (e.g., with too many nested
2058
    /// groups), then an error is returned by the parser.
2059
    ///
2060
    /// The purpose of this limit is to act as a heuristic to prevent stack
2061
    /// overflow when building a finite automaton from a regular expression's
2062
    /// abstract syntax tree. In particular, construction currently uses
2063
    /// recursion. In the future, the implementation may stop using recursion
2064
    /// and this option will no longer be necessary.
2065
    ///
2066
    /// This limit is not checked until the entire AST is parsed. Therefore,
2067
    /// if callers want to put a limit on the amount of heap space used, then
2068
    /// they should impose a limit on the length, in bytes, of the concrete
2069
    /// pattern string. In particular, this is viable since the parser will
2070
    /// limit itself to heap space proportional to the lenth of the pattern
2071
    /// string.
2072
    ///
2073
    /// Note that a nest limit of `0` will return a nest limit error for most
2074
    /// patterns but not all. For example, a nest limit of `0` permits `a` but
2075
    /// not `ab`, since `ab` requires a concatenation AST item, which results
2076
    /// in a nest depth of `1`. In general, a nest limit is not something that
2077
    /// manifests in an obvious way in the concrete syntax, therefore, it
2078
    /// should not be used in a granular way.
2079
0
    pub fn nest_limit(&mut self, limit: u32) -> &mut Builder {
2080
0
        self.parser.nest_limit(limit);
2081
0
        self
2082
0
    }
2083
2084
    /// Minimize the DFA.
2085
    ///
2086
    /// When enabled, the DFA built will be minimized such that it is as small
2087
    /// as possible.
2088
    ///
2089
    /// Whether one enables minimization or not depends on the types of costs
2090
    /// you're willing to pay and how much you care about its benefits. In
2091
    /// particular, minimization has worst case `O(n*k*logn)` time and `O(k*n)`
2092
    /// space, where `n` is the number of DFA states and `k` is the alphabet
2093
    /// size. In practice, minimization can be quite costly in terms of both
2094
    /// space and time, so it should only be done if you're willing to wait
2095
    /// longer to produce a DFA. In general, you might want a minimal DFA in
2096
    /// the following circumstances:
2097
    ///
2098
    /// 1. You would like to optimize for the size of the automaton. This can
2099
    ///    manifest in one of two ways. Firstly, if you're converting the
2100
    ///    DFA into Rust code (or a table embedded in the code), then a minimal
2101
    ///    DFA will translate into a corresponding reduction in code  size, and
2102
    ///    thus, also the final compiled binary size. Secondly, if you are
2103
    ///    building many DFAs and putting them on the heap, you'll be able to
2104
    ///    fit more if they are smaller. Note though that building a minimal
2105
    ///    DFA itself requires additional space; you only realize the space
2106
    ///    savings once the minimal DFA is constructed (at which point, the
2107
    ///    space used for minimization is freed).
2108
    /// 2. You've observed that a smaller DFA results in faster match
2109
    ///    performance. Naively, this isn't guaranteed since there is no
2110
    ///    inherent difference between matching with a bigger-than-minimal
2111
    ///    DFA and a minimal DFA. However, a smaller DFA may make use of your
2112
    ///    CPU's cache more efficiently.
2113
    /// 3. You are trying to establish an equivalence between regular
2114
    ///    languages. The standard method for this is to build a minimal DFA
2115
    ///    for each language and then compare them. If the DFAs are equivalent
2116
    ///    (up to state renaming), then the languages are equivalent.
2117
    ///
2118
    /// This option is disabled by default.
2119
0
    pub fn minimize(&mut self, yes: bool) -> &mut Builder {
2120
0
        self.minimize = yes;
2121
0
        self
2122
0
    }
2123
2124
    /// Premultiply state identifiers in the DFA's transition table.
2125
    ///
2126
    /// When enabled, state identifiers are premultiplied to point to their
2127
    /// corresponding row in the DFA's transition table. That is, given the
2128
    /// `i`th state, its corresponding premultiplied identifier is `i * k`
2129
    /// where `k` is the alphabet size of the DFA. (The alphabet size is at
2130
    /// most 256, but is in practice smaller if byte classes is enabled.)
2131
    ///
2132
    /// When state identifiers are not premultiplied, then the identifier of
2133
    /// the `i`th state is `i`.
2134
    ///
2135
    /// The advantage of premultiplying state identifiers is that is saves
2136
    /// a multiplication instruction per byte when searching with the DFA.
2137
    /// This has been observed to lead to a 20% performance benefit in
2138
    /// micro-benchmarks.
2139
    ///
2140
    /// The primary disadvantage of premultiplying state identifiers is
2141
    /// that they require a larger integer size to represent. For example,
2142
    /// if your DFA has 200 states, then its premultiplied form requires
2143
    /// 16 bits to represent every possible state identifier, where as its
2144
    /// non-premultiplied form only requires 8 bits.
2145
    ///
2146
    /// This option is enabled by default.
2147
0
    pub fn premultiply(&mut self, yes: bool) -> &mut Builder {
2148
0
        self.premultiply = yes;
2149
0
        self
2150
0
    }
2151
2152
    /// Shrink the size of the DFA's alphabet by mapping bytes to their
2153
    /// equivalence classes.
2154
    ///
2155
    /// When enabled, each DFA will use a map from all possible bytes to their
2156
    /// corresponding equivalence class. Each equivalence class represents a
2157
    /// set of bytes that does not discriminate between a match and a non-match
2158
    /// in the DFA. For example, the pattern `[ab]+` has at least two
2159
    /// equivalence classes: a set containing `a` and `b` and a set containing
2160
    /// every byte except for `a` and `b`. `a` and `b` are in the same
2161
    /// equivalence classes because they never discriminate between a match
2162
    /// and a non-match.
2163
    ///
2164
    /// The advantage of this map is that the size of the transition table can
2165
    /// be reduced drastically from `#states * 256 * sizeof(id)` to
2166
    /// `#states * k * sizeof(id)` where `k` is the number of equivalence
2167
    /// classes. As a result, total space usage can decrease substantially.
2168
    /// Moreover, since a smaller alphabet is used, compilation becomes faster
2169
    /// as well.
2170
    ///
2171
    /// The disadvantage of this map is that every byte searched must be
2172
    /// passed through this map before it can be used to determine the next
2173
    /// transition. This has a small match time performance cost.
2174
    ///
2175
    /// This option is enabled by default.
2176
0
    pub fn byte_classes(&mut self, yes: bool) -> &mut Builder {
2177
0
        self.byte_classes = yes;
2178
0
        self
2179
0
    }
2180
2181
    /// Reverse the DFA.
2182
    ///
2183
    /// A DFA reversal is performed by reversing all of the concatenated
2184
    /// sub-expressions in the original pattern, recursively. The resulting
2185
    /// DFA can be used to match the pattern starting from the end of a string
2186
    /// instead of the beginning of a string.
2187
    ///
2188
    /// Generally speaking, a reversed DFA is most useful for finding the start
2189
    /// of a match, since a single forward DFA is only capable of finding the
2190
    /// end of a match. This start of match handling is done for you
2191
    /// automatically if you build a [`Regex`](struct.Regex.html).
2192
0
    pub fn reverse(&mut self, yes: bool) -> &mut Builder {
2193
0
        self.reverse = yes;
2194
0
        self.nfa.reverse(yes);
2195
0
        self
2196
0
    }
2197
2198
    /// Find the longest possible match.
2199
    ///
2200
    /// This is distinct from the default leftmost-first match semantics in
2201
    /// that it treats all NFA states as having equivalent priority. In other
2202
    /// words, the longest possible match is always found and it is not
2203
    /// possible to implement non-greedy match semantics when this is set. That
2204
    /// is, `a+` and `a+?` are equivalent when this is enabled.
2205
    ///
2206
    /// In particular, a practical issue with this option at the moment is that
2207
    /// it prevents unanchored searches from working correctly, since
2208
    /// unanchored searches are implemented by prepending an non-greedy `.*?`
2209
    /// to the beginning of the pattern. As stated above, non-greedy match
2210
    /// semantics aren't supported. Therefore, if this option is enabled and
2211
    /// an unanchored search is requested, then building a DFA will return an
2212
    /// error.
2213
    ///
2214
    /// This option is principally useful when building a reverse DFA for
2215
    /// finding the start of a match. If you are building a regex with
2216
    /// [`RegexBuilder`](struct.RegexBuilder.html), then this is handled for
2217
    /// you automatically. The reason why this is necessary for start of match
2218
    /// handling is because we want to find the earliest possible starting
2219
    /// position of a match to satisfy leftmost-first match semantics. When
2220
    /// matching in reverse, this means finding the longest possible match,
2221
    /// hence, this option.
2222
    ///
2223
    /// By default this is disabled.
2224
0
    pub fn longest_match(&mut self, yes: bool) -> &mut Builder {
2225
0
        // There is prior art in RE2 that shows how this can support unanchored
2226
0
        // searches. Instead of treating all NFA states as having equivalent
2227
0
        // priority, we instead group NFA states into sets, and treat members
2228
0
        // of each set as having equivalent priority, but having greater
2229
0
        // priority than all following members of different sets. We then
2230
0
        // essentially assign a higher priority to everything over the prefix
2231
0
        // `.*?`.
2232
0
        self.longest_match = yes;
2233
0
        self
2234
0
    }
2235
2236
    /// Apply best effort heuristics to shrink the NFA at the expense of more
2237
    /// time/memory.
2238
    ///
2239
    /// This may be exposed in the future, but for now is exported for use in
2240
    /// the `regex-automata-debug` tool.
2241
    #[doc(hidden)]
2242
0
    pub fn shrink(&mut self, yes: bool) -> &mut Builder {
2243
0
        self.nfa.shrink(yes);
2244
0
        self
2245
0
    }
2246
}
2247
2248
#[cfg(feature = "std")]
2249
impl Default for Builder {
2250
0
    fn default() -> Builder {
2251
0
        Builder::new()
2252
0
    }
2253
}
2254
2255
/// Return the given byte as its escaped string form.
2256
#[cfg(feature = "std")]
2257
0
fn escape(b: u8) -> String {
2258
    use std::ascii;
2259
2260
0
    String::from_utf8(ascii::escape_default(b).collect::<Vec<_>>()).unwrap()
2261
0
}
2262
2263
#[cfg(all(test, feature = "std"))]
2264
mod tests {
2265
    use super::*;
2266
2267
    #[test]
2268
    fn errors_when_converting_to_smaller_dfa() {
2269
        let pattern = r"\w{10}";
2270
        let dfa = Builder::new()
2271
            .byte_classes(false)
2272
            .anchored(true)
2273
            .premultiply(false)
2274
            .build_with_size::<u16>(pattern)
2275
            .unwrap();
2276
        assert!(dfa.to_u8().is_err());
2277
    }
2278
2279
    #[test]
2280
    fn errors_when_determinization_would_overflow() {
2281
        let pattern = r"\w{10}";
2282
2283
        let mut builder = Builder::new();
2284
        builder.byte_classes(false).anchored(true).premultiply(false);
2285
        // using u16 is fine
2286
        assert!(builder.build_with_size::<u16>(pattern).is_ok());
2287
        // // ... but u8 results in overflow (because there are >256 states)
2288
        assert!(builder.build_with_size::<u8>(pattern).is_err());
2289
    }
2290
2291
    #[test]
2292
    fn errors_when_premultiply_would_overflow() {
2293
        let pattern = r"[a-z]";
2294
2295
        let mut builder = Builder::new();
2296
        builder.byte_classes(false).anchored(true).premultiply(false);
2297
        // without premultiplication is OK
2298
        assert!(builder.build_with_size::<u8>(pattern).is_ok());
2299
        // ... but with premultiplication overflows u8
2300
        builder.premultiply(true);
2301
        assert!(builder.build_with_size::<u8>(pattern).is_err());
2302
    }
2303
2304
    // let data = ::std::fs::read_to_string("/usr/share/dict/words").unwrap();
2305
    // let mut words: Vec<&str> = data.lines().collect();
2306
    // println!("{} words", words.len());
2307
    // words.sort_by(|w1, w2| w1.len().cmp(&w2.len()).reverse());
2308
    // let pattern = words.join("|");
2309
    // print_automata_counts(&pattern);
2310
    // print_automata(&pattern);
2311
2312
    // print_automata(r"[01]*1[01]{5}");
2313
    // print_automata(r"X(.?){0,8}Y");
2314
    // print_automata_counts(r"\p{alphabetic}");
2315
    // print_automata(r"a*b+|cdefg");
2316
    // print_automata(r"(..)*(...)*");
2317
2318
    // let pattern = r"\p{any}*?\p{Other_Uppercase}";
2319
    // let pattern = r"\p{any}*?\w+";
2320
    // print_automata_counts(pattern);
2321
    // print_automata_counts(r"(?-u:\w)");
2322
2323
    // let pattern = r"\p{Greek}";
2324
    // let pattern = r"zZzZzZzZzZ";
2325
    // let pattern = grapheme_pattern();
2326
    // let pattern = r"\p{Ideographic}";
2327
    // let pattern = r"\w{10}"; // 51784 --> 41264
2328
    // let pattern = r"\w"; // 5182
2329
    // let pattern = r"a*";
2330
    // print_automata(pattern);
2331
    // let (_, _, dfa) = build_automata(pattern);
2332
}