Coverage Report

Created: 2024-12-17 06:15

/rust/registry/src/index.crates.io-6f17d22bba15001f/regex-automata-0.4.9/src/meta/regex.rs
Line
Count
Source (jump to first uncovered line)
1
use core::{
2
    borrow::Borrow,
3
    panic::{RefUnwindSafe, UnwindSafe},
4
};
5
6
use alloc::{boxed::Box, sync::Arc, vec, vec::Vec};
7
8
use regex_syntax::{
9
    ast,
10
    hir::{self, Hir},
11
};
12
13
use crate::{
14
    meta::{
15
        error::BuildError,
16
        strategy::{self, Strategy},
17
        wrappers,
18
    },
19
    nfa::thompson::WhichCaptures,
20
    util::{
21
        captures::{Captures, GroupInfo},
22
        iter,
23
        pool::{Pool, PoolGuard},
24
        prefilter::Prefilter,
25
        primitives::{NonMaxUsize, PatternID},
26
        search::{HalfMatch, Input, Match, MatchKind, PatternSet, Span},
27
    },
28
};
29
30
/// A type alias for our pool of meta::Cache that fixes the type parameters to
31
/// what we use for the meta regex below.
32
type CachePool = Pool<Cache, CachePoolFn>;
33
34
/// Same as above, but for the guard returned by a pool.
35
type CachePoolGuard<'a> = PoolGuard<'a, Cache, CachePoolFn>;
36
37
/// The type of the closure we use to create new caches. We need to spell out
38
/// all of the marker traits or else we risk leaking !MARKER impls.
39
type CachePoolFn =
40
    Box<dyn Fn() -> Cache + Send + Sync + UnwindSafe + RefUnwindSafe>;
41
42
/// A regex matcher that works by composing several other regex matchers
43
/// automatically.
44
///
45
/// In effect, a meta regex papers over a lot of the quirks or performance
46
/// problems in each of the regex engines in this crate. Its goal is to provide
47
/// an infallible and simple API that "just does the right thing" in the common
48
/// case.
49
///
50
/// A meta regex is the implementation of a `Regex` in the `regex` crate.
51
/// Indeed, the `regex` crate API is essentially just a light wrapper over
52
/// this type. This includes the `regex` crate's `RegexSet` API!
53
///
54
/// # Composition
55
///
56
/// This is called a "meta" matcher precisely because it uses other regex
57
/// matchers to provide a convenient high level regex API. Here are some
58
/// examples of how other regex matchers are composed:
59
///
60
/// * When calling [`Regex::captures`], instead of immediately
61
/// running a slower but more capable regex engine like the
62
/// [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM), the meta regex engine
63
/// will usually first look for the bounds of a match with a higher throughput
64
/// regex engine like a [lazy DFA](crate::hybrid). Only when a match is found
65
/// is a slower engine like `PikeVM` used to find the matching span for each
66
/// capture group.
67
/// * While higher throughout engines like the lazy DFA cannot handle
68
/// Unicode word boundaries in general, they can still be used on pure ASCII
69
/// haystacks by pretending that Unicode word boundaries are just plain ASCII
70
/// word boundaries. However, if a haystack is not ASCII, the meta regex engine
71
/// will automatically switch to a (possibly slower) regex engine that supports
72
/// Unicode word boundaries in general.
73
/// * In some cases where a regex pattern is just a simple literal or a small
74
/// set of literals, an actual regex engine won't be used at all. Instead,
75
/// substring or multi-substring search algorithms will be employed.
76
///
77
/// There are many other forms of composition happening too, but the above
78
/// should give a general idea. In particular, it may perhaps be surprising
79
/// that *multiple* regex engines might get executed for a single search. That
80
/// is, the decision of what regex engine to use is not _just_ based on the
81
/// pattern, but also based on the dynamic execution of the search itself.
82
///
83
/// The primary reason for this composition is performance. The fundamental
84
/// tension is that the faster engines tend to be less capable, and the more
85
/// capable engines tend to be slower.
86
///
87
/// Note that the forms of composition that are allowed are determined by
88
/// compile time crate features and configuration. For example, if the `hybrid`
89
/// feature isn't enabled, or if [`Config::hybrid`] has been disabled, then the
90
/// meta regex engine will never use a lazy DFA.
91
///
92
/// # Synchronization and cloning
93
///
94
/// Most of the regex engines in this crate require some kind of mutable
95
/// "scratch" space to read and write from while performing a search. Since
96
/// a meta regex composes these regex engines, a meta regex also requires
97
/// mutable scratch space. This scratch space is called a [`Cache`].
98
///
99
/// Most regex engines _also_ usually have a read-only component, typically
100
/// a [Thompson `NFA`](crate::nfa::thompson::NFA).
101
///
102
/// In order to make the `Regex` API convenient, most of the routines hide
103
/// the fact that a `Cache` is needed at all. To achieve this, a [memory
104
/// pool](crate::util::pool::Pool) is used internally to retrieve `Cache`
105
/// values in a thread safe way that also permits reuse. This in turn implies
106
/// that every such search call requires some form of synchronization. Usually
107
/// this synchronization is fast enough to not notice, but in some cases, it
108
/// can be a bottleneck. This typically occurs when all of the following are
109
/// true:
110
///
111
/// * The same `Regex` is shared across multiple threads simultaneously,
112
/// usually via a [`util::lazy::Lazy`](crate::util::lazy::Lazy) or something
113
/// similar from the `once_cell` or `lazy_static` crates.
114
/// * The primary unit of work in each thread is a regex search.
115
/// * Searches are run on very short haystacks.
116
///
117
/// This particular case can lead to high contention on the pool used by a
118
/// `Regex` internally, which can in turn increase latency to a noticeable
119
/// effect. This cost can be mitigated in one of the following ways:
120
///
121
/// * Use a distinct copy of a `Regex` in each thread, usually by cloning it.
122
/// Cloning a `Regex` _does not_ do a deep copy of its read-only component.
123
/// But it does lead to each `Regex` having its own memory pool, which in
124
/// turn eliminates the problem of contention. In general, this technique should
125
/// not result in any additional memory usage when compared to sharing the same
126
/// `Regex` across multiple threads simultaneously.
127
/// * Use lower level APIs, like [`Regex::search_with`], which permit passing
128
/// a `Cache` explicitly. In this case, it is up to you to determine how best
129
/// to provide a `Cache`. For example, you might put a `Cache` in thread-local
130
/// storage if your use case allows for it.
131
///
132
/// Overall, this is an issue that happens rarely in practice, but it can
133
/// happen.
134
///
135
/// # Warning: spin-locks may be used in alloc-only mode
136
///
137
/// When this crate is built without the `std` feature and the high level APIs
138
/// on a `Regex` are used, then a spin-lock will be used to synchronize access
139
/// to an internal pool of `Cache` values. This may be undesirable because
140
/// a spin-lock is [effectively impossible to implement correctly in user
141
/// space][spinlocks-are-bad]. That is, more concretely, the spin-lock could
142
/// result in a deadlock.
143
///
144
/// [spinlocks-are-bad]: https://matklad.github.io/2020/01/02/spinlocks-considered-harmful.html
145
///
146
/// If one wants to avoid the use of spin-locks when the `std` feature is
147
/// disabled, then you must use APIs that accept a `Cache` value explicitly.
148
/// For example, [`Regex::search_with`].
149
///
150
/// # Example
151
///
152
/// ```
153
/// use regex_automata::meta::Regex;
154
///
155
/// let re = Regex::new(r"^[0-9]{4}-[0-9]{2}-[0-9]{2}$")?;
156
/// assert!(re.is_match("2010-03-14"));
157
///
158
/// # Ok::<(), Box<dyn std::error::Error>>(())
159
/// ```
160
///
161
/// # Example: anchored search
162
///
163
/// This example shows how to use [`Input::anchored`] to run an anchored
164
/// search, even when the regex pattern itself isn't anchored. An anchored
165
/// search guarantees that if a match is found, then the start offset of the
166
/// match corresponds to the offset at which the search was started.
167
///
168
/// ```
169
/// use regex_automata::{meta::Regex, Anchored, Input, Match};
170
///
171
/// let re = Regex::new(r"\bfoo\b")?;
172
/// let input = Input::new("xx foo xx").range(3..).anchored(Anchored::Yes);
173
/// // The offsets are in terms of the original haystack.
174
/// assert_eq!(Some(Match::must(0, 3..6)), re.find(input));
175
///
176
/// // Notice that no match occurs here, because \b still takes the
177
/// // surrounding context into account, even if it means looking back
178
/// // before the start of your search.
179
/// let hay = "xxfoo xx";
180
/// let input = Input::new(hay).range(2..).anchored(Anchored::Yes);
181
/// assert_eq!(None, re.find(input));
182
/// // Indeed, you cannot achieve the above by simply slicing the
183
/// // haystack itself, since the regex engine can't see the
184
/// // surrounding context. This is why 'Input' permits setting
185
/// // the bounds of a search!
186
/// let input = Input::new(&hay[2..]).anchored(Anchored::Yes);
187
/// // WRONG!
188
/// assert_eq!(Some(Match::must(0, 0..3)), re.find(input));
189
///
190
/// # Ok::<(), Box<dyn std::error::Error>>(())
191
/// ```
192
///
193
/// # Example: earliest search
194
///
195
/// This example shows how to use [`Input::earliest`] to run a search that
196
/// might stop before finding the typical leftmost match.
197
///
198
/// ```
199
/// use regex_automata::{meta::Regex, Anchored, Input, Match};
200
///
201
/// let re = Regex::new(r"[a-z]{3}|b")?;
202
/// let input = Input::new("abc").earliest(true);
203
/// assert_eq!(Some(Match::must(0, 1..2)), re.find(input));
204
///
205
/// // Note that "earliest" isn't really a match semantic unto itself.
206
/// // Instead, it is merely an instruction to whatever regex engine
207
/// // gets used internally to quit as soon as it can. For example,
208
/// // this regex uses a different search technique, and winds up
209
/// // producing a different (but valid) match!
210
/// let re = Regex::new(r"abc|b")?;
211
/// let input = Input::new("abc").earliest(true);
212
/// assert_eq!(Some(Match::must(0, 0..3)), re.find(input));
213
///
214
/// # Ok::<(), Box<dyn std::error::Error>>(())
215
/// ```
216
///
217
/// # Example: change the line terminator
218
///
219
/// This example shows how to enable multi-line mode by default and change
220
/// the line terminator to the NUL byte:
221
///
222
/// ```
223
/// use regex_automata::{meta::Regex, util::syntax, Match};
224
///
225
/// let re = Regex::builder()
226
///     .syntax(syntax::Config::new().multi_line(true))
227
///     .configure(Regex::config().line_terminator(b'\x00'))
228
///     .build(r"^foo$")?;
229
/// let hay = "\x00foo\x00";
230
/// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
231
///
232
/// # Ok::<(), Box<dyn std::error::Error>>(())
233
/// ```
234
#[derive(Debug)]
235
pub struct Regex {
236
    /// The actual regex implementation.
237
    imp: Arc<RegexI>,
238
    /// A thread safe pool of caches.
239
    ///
240
    /// For the higher level search APIs, a `Cache` is automatically plucked
241
    /// from this pool before running a search. The lower level `with` methods
242
    /// permit the caller to provide their own cache, thereby bypassing
243
    /// accesses to this pool.
244
    ///
245
    /// Note that we put this outside the `Arc` so that cloning a `Regex`
246
    /// results in creating a fresh `CachePool`. This in turn permits callers
247
    /// to clone regexes into separate threads where each such regex gets
248
    /// the pool's "thread owner" optimization. Otherwise, if one shares the
249
    /// `Regex` directly, then the pool will go through a slower mutex path for
250
    /// all threads except for the "owner."
251
    pool: CachePool,
252
}
253
254
/// The internal implementation of `Regex`, split out so that it can be wrapped
255
/// in an `Arc`.
256
#[derive(Debug)]
257
struct RegexI {
258
    /// The core matching engine.
259
    ///
260
    /// Why is this reference counted when RegexI is already wrapped in an Arc?
261
    /// Well, we need to capture this in a closure to our `Pool` below in order
262
    /// to create new `Cache` values when needed. So since it needs to be in
263
    /// two places, we make it reference counted.
264
    ///
265
    /// We make `RegexI` itself reference counted too so that `Regex` itself
266
    /// stays extremely small and very cheap to clone.
267
    strat: Arc<dyn Strategy>,
268
    /// Metadata about the regexes driving the strategy. The metadata is also
269
    /// usually stored inside the strategy too, but we put it here as well
270
    /// so that we can get quick access to it (without virtual calls) before
271
    /// executing the regex engine. For example, we use this metadata to
272
    /// detect a subset of cases where we know a match is impossible, and can
273
    /// thus avoid calling into the strategy at all.
274
    ///
275
    /// Since `RegexInfo` is stored in multiple places, it is also reference
276
    /// counted.
277
    info: RegexInfo,
278
}
279
280
/// Convenience constructors for a `Regex` using the default configuration.
281
impl Regex {
282
    /// Builds a `Regex` from a single pattern string using the default
283
    /// configuration.
284
    ///
285
    /// If there was a problem parsing the pattern or a problem turning it into
286
    /// a regex matcher, then an error is returned.
287
    ///
288
    /// If you want to change the configuration of a `Regex`, use a [`Builder`]
289
    /// with a [`Config`].
290
    ///
291
    /// # Example
292
    ///
293
    /// ```
294
    /// use regex_automata::{meta::Regex, Match};
295
    ///
296
    /// let re = Regex::new(r"(?Rm)^foo$")?;
297
    /// let hay = "\r\nfoo\r\n";
298
    /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
299
    ///
300
    /// # Ok::<(), Box<dyn std::error::Error>>(())
301
    /// ```
302
0
    pub fn new(pattern: &str) -> Result<Regex, BuildError> {
303
0
        Regex::builder().build(pattern)
304
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::new
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::new
305
306
    /// Builds a `Regex` from many pattern strings using the default
307
    /// configuration.
308
    ///
309
    /// If there was a problem parsing any of the patterns or a problem turning
310
    /// them into a regex matcher, then an error is returned.
311
    ///
312
    /// If you want to change the configuration of a `Regex`, use a [`Builder`]
313
    /// with a [`Config`].
314
    ///
315
    /// # Example: simple lexer
316
    ///
317
    /// This simplistic example leverages the multi-pattern support to build a
318
    /// simple little lexer. The pattern ID in the match tells you which regex
319
    /// matched, which in turn might be used to map back to the "type" of the
320
    /// token returned by the lexer.
321
    ///
322
    /// ```
323
    /// use regex_automata::{meta::Regex, Match};
324
    ///
325
    /// let re = Regex::new_many(&[
326
    ///     r"[[:space:]]",
327
    ///     r"[A-Za-z0-9][A-Za-z0-9_]+",
328
    ///     r"->",
329
    ///     r".",
330
    /// ])?;
331
    /// let haystack = "fn is_boss(bruce: i32, springsteen: String) -> bool;";
332
    /// let matches: Vec<Match> = re.find_iter(haystack).collect();
333
    /// assert_eq!(matches, vec![
334
    ///     Match::must(1, 0..2),   // 'fn'
335
    ///     Match::must(0, 2..3),   // ' '
336
    ///     Match::must(1, 3..10),  // 'is_boss'
337
    ///     Match::must(3, 10..11), // '('
338
    ///     Match::must(1, 11..16), // 'bruce'
339
    ///     Match::must(3, 16..17), // ':'
340
    ///     Match::must(0, 17..18), // ' '
341
    ///     Match::must(1, 18..21), // 'i32'
342
    ///     Match::must(3, 21..22), // ','
343
    ///     Match::must(0, 22..23), // ' '
344
    ///     Match::must(1, 23..34), // 'springsteen'
345
    ///     Match::must(3, 34..35), // ':'
346
    ///     Match::must(0, 35..36), // ' '
347
    ///     Match::must(1, 36..42), // 'String'
348
    ///     Match::must(3, 42..43), // ')'
349
    ///     Match::must(0, 43..44), // ' '
350
    ///     Match::must(2, 44..46), // '->'
351
    ///     Match::must(0, 46..47), // ' '
352
    ///     Match::must(1, 47..51), // 'bool'
353
    ///     Match::must(3, 51..52), // ';'
354
    /// ]);
355
    ///
356
    /// # Ok::<(), Box<dyn std::error::Error>>(())
357
    /// ```
358
    ///
359
    /// One can write a lexer like the above using a regex like
360
    /// `(?P<space>[[:space:]])|(?P<ident>[A-Za-z0-9][A-Za-z0-9_]+)|...`,
361
    /// but then you need to ask whether capture group matched to determine
362
    /// which branch in the regex matched, and thus, which token the match
363
    /// corresponds to. In contrast, the above example includes the pattern ID
364
    /// in the match. There's no need to use capture groups at all.
365
    ///
366
    /// # Example: finding the pattern that caused an error
367
    ///
368
    /// When a syntax error occurs, it is possible to ask which pattern
369
    /// caused the syntax error.
370
    ///
371
    /// ```
372
    /// use regex_automata::{meta::Regex, PatternID};
373
    ///
374
    /// let err = Regex::new_many(&["a", "b", r"\p{Foo}", "c"]).unwrap_err();
375
    /// assert_eq!(Some(PatternID::must(2)), err.pattern());
376
    /// ```
377
    ///
378
    /// # Example: zero patterns is valid
379
    ///
380
    /// Building a regex with zero patterns results in a regex that never
381
    /// matches anything. Because this routine is generic, passing an empty
382
    /// slice usually requires a turbo-fish (or something else to help type
383
    /// inference).
384
    ///
385
    /// ```
386
    /// use regex_automata::{meta::Regex, util::syntax, Match};
387
    ///
388
    /// let re = Regex::new_many::<&str>(&[])?;
389
    /// assert_eq!(None, re.find(""));
390
    ///
391
    /// # Ok::<(), Box<dyn std::error::Error>>(())
392
    /// ```
393
0
    pub fn new_many<P: AsRef<str>>(
394
0
        patterns: &[P],
395
0
    ) -> Result<Regex, BuildError> {
396
0
        Regex::builder().build_many(patterns)
397
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::new_many::<_>
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::new_many::<_>
398
399
    /// Return a default configuration for a `Regex`.
400
    ///
401
    /// This is a convenience routine to avoid needing to import the [`Config`]
402
    /// type when customizing the construction of a `Regex`.
403
    ///
404
    /// # Example: lower the NFA size limit
405
    ///
406
    /// In some cases, the default size limit might be too big. The size limit
407
    /// can be lowered, which will prevent large regex patterns from compiling.
408
    ///
409
    /// ```
410
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
411
    /// use regex_automata::meta::Regex;
412
    ///
413
    /// let result = Regex::builder()
414
    ///     .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
415
    ///     // Not even 20KB is enough to build a single large Unicode class!
416
    ///     .build(r"\pL");
417
    /// assert!(result.is_err());
418
    ///
419
    /// # Ok::<(), Box<dyn std::error::Error>>(())
420
    /// ```
421
0
    pub fn config() -> Config {
422
0
        Config::new()
423
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::config
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::config
424
425
    /// Return a builder for configuring the construction of a `Regex`.
426
    ///
427
    /// This is a convenience routine to avoid needing to import the
428
    /// [`Builder`] type in common cases.
429
    ///
430
    /// # Example: change the line terminator
431
    ///
432
    /// This example shows how to enable multi-line mode by default and change
433
    /// the line terminator to the NUL byte:
434
    ///
435
    /// ```
436
    /// use regex_automata::{meta::Regex, util::syntax, Match};
437
    ///
438
    /// let re = Regex::builder()
439
    ///     .syntax(syntax::Config::new().multi_line(true))
440
    ///     .configure(Regex::config().line_terminator(b'\x00'))
441
    ///     .build(r"^foo$")?;
442
    /// let hay = "\x00foo\x00";
443
    /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
444
    ///
445
    /// # Ok::<(), Box<dyn std::error::Error>>(())
446
    /// ```
447
0
    pub fn builder() -> Builder {
448
0
        Builder::new()
449
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::builder
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::builder
450
}
451
452
/// High level convenience routines for using a regex to search a haystack.
453
impl Regex {
454
    /// Returns true if and only if this regex matches the given haystack.
455
    ///
456
    /// This routine may short circuit if it knows that scanning future input
457
    /// will never lead to a different result. (Consider how this might make
458
    /// a difference given the regex `a+` on the haystack `aaaaaaaaaaaaaaa`.
459
    /// This routine _may_ stop after it sees the first `a`, but routines like
460
    /// `find` need to continue searching because `+` is greedy by default.)
461
    ///
462
    /// # Example
463
    ///
464
    /// ```
465
    /// use regex_automata::meta::Regex;
466
    ///
467
    /// let re = Regex::new("foo[0-9]+bar")?;
468
    ///
469
    /// assert!(re.is_match("foo12345bar"));
470
    /// assert!(!re.is_match("foobar"));
471
    ///
472
    /// # Ok::<(), Box<dyn std::error::Error>>(())
473
    /// ```
474
    ///
475
    /// # Example: consistency with search APIs
476
    ///
477
    /// `is_match` is guaranteed to return `true` whenever `find` returns a
478
    /// match. This includes searches that are executed entirely within a
479
    /// codepoint:
480
    ///
481
    /// ```
482
    /// use regex_automata::{meta::Regex, Input};
483
    ///
484
    /// let re = Regex::new("a*")?;
485
    ///
486
    /// // This doesn't match because the default configuration bans empty
487
    /// // matches from splitting a codepoint.
488
    /// assert!(!re.is_match(Input::new("☃").span(1..2)));
489
    /// assert_eq!(None, re.find(Input::new("☃").span(1..2)));
490
    ///
491
    /// # Ok::<(), Box<dyn std::error::Error>>(())
492
    /// ```
493
    ///
494
    /// Notice that when UTF-8 mode is disabled, then the above reports a
495
    /// match because the restriction against zero-width matches that split a
496
    /// codepoint has been lifted:
497
    ///
498
    /// ```
499
    /// use regex_automata::{meta::Regex, Input, Match};
500
    ///
501
    /// let re = Regex::builder()
502
    ///     .configure(Regex::config().utf8_empty(false))
503
    ///     .build("a*")?;
504
    ///
505
    /// assert!(re.is_match(Input::new("☃").span(1..2)));
506
    /// assert_eq!(
507
    ///     Some(Match::must(0, 1..1)),
508
    ///     re.find(Input::new("☃").span(1..2)),
509
    /// );
510
    ///
511
    /// # Ok::<(), Box<dyn std::error::Error>>(())
512
    /// ```
513
    ///
514
    /// A similar idea applies when using line anchors with CRLF mode enabled,
515
    /// which prevents them from matching between a `\r` and a `\n`.
516
    ///
517
    /// ```
518
    /// use regex_automata::{meta::Regex, Input, Match};
519
    ///
520
    /// let re = Regex::new(r"(?Rm:$)")?;
521
    /// assert!(!re.is_match(Input::new("\r\n").span(1..1)));
522
    /// // A regular line anchor, which only considers \n as a
523
    /// // line terminator, will match.
524
    /// let re = Regex::new(r"(?m:$)")?;
525
    /// assert!(re.is_match(Input::new("\r\n").span(1..1)));
526
    ///
527
    /// # Ok::<(), Box<dyn std::error::Error>>(())
528
    /// ```
529
    #[inline]
530
0
    pub fn is_match<'h, I: Into<Input<'h>>>(&self, input: I) -> bool {
531
0
        let input = input.into().earliest(true);
532
0
        if self.imp.info.is_impossible(&input) {
533
0
            return false;
534
0
        }
535
0
        let mut guard = self.pool.get();
536
0
        let result = self.imp.strat.is_match(&mut guard, &input);
537
0
        // See 'Regex::search' for why we put the guard back explicitly.
538
0
        PoolGuard::put(guard);
539
0
        result
540
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::is_match::<_>
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::is_match::<_>
541
542
    /// Executes a leftmost search and returns the first match that is found,
543
    /// if one exists.
544
    ///
545
    /// # Example
546
    ///
547
    /// ```
548
    /// use regex_automata::{meta::Regex, Match};
549
    ///
550
    /// let re = Regex::new("foo[0-9]+")?;
551
    /// assert_eq!(Some(Match::must(0, 0..8)), re.find("foo12345"));
552
    ///
553
    /// # Ok::<(), Box<dyn std::error::Error>>(())
554
    /// ```
555
    #[inline]
556
0
    pub fn find<'h, I: Into<Input<'h>>>(&self, input: I) -> Option<Match> {
557
0
        self.search(&input.into())
558
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::find::<_>
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::find::<_>
559
560
    /// Executes a leftmost forward search and writes the spans of capturing
561
    /// groups that participated in a match into the provided [`Captures`]
562
    /// value. If no match was found, then [`Captures::is_match`] is guaranteed
563
    /// to return `false`.
564
    ///
565
    /// # Example
566
    ///
567
    /// ```
568
    /// use regex_automata::{meta::Regex, Span};
569
    ///
570
    /// let re = Regex::new(r"^([0-9]{4})-([0-9]{2})-([0-9]{2})$")?;
571
    /// let mut caps = re.create_captures();
572
    ///
573
    /// re.captures("2010-03-14", &mut caps);
574
    /// assert!(caps.is_match());
575
    /// assert_eq!(Some(Span::from(0..4)), caps.get_group(1));
576
    /// assert_eq!(Some(Span::from(5..7)), caps.get_group(2));
577
    /// assert_eq!(Some(Span::from(8..10)), caps.get_group(3));
578
    ///
579
    /// # Ok::<(), Box<dyn std::error::Error>>(())
580
    /// ```
581
    #[inline]
582
0
    pub fn captures<'h, I: Into<Input<'h>>>(
583
0
        &self,
584
0
        input: I,
585
0
        caps: &mut Captures,
586
0
    ) {
587
0
        self.search_captures(&input.into(), caps)
588
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::captures::<_>
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::captures::<_>
589
590
    /// Returns an iterator over all non-overlapping leftmost matches in
591
    /// the given haystack. If no match exists, then the iterator yields no
592
    /// elements.
593
    ///
594
    /// # Example
595
    ///
596
    /// ```
597
    /// use regex_automata::{meta::Regex, Match};
598
    ///
599
    /// let re = Regex::new("foo[0-9]+")?;
600
    /// let haystack = "foo1 foo12 foo123";
601
    /// let matches: Vec<Match> = re.find_iter(haystack).collect();
602
    /// assert_eq!(matches, vec![
603
    ///     Match::must(0, 0..4),
604
    ///     Match::must(0, 5..10),
605
    ///     Match::must(0, 11..17),
606
    /// ]);
607
    /// # Ok::<(), Box<dyn std::error::Error>>(())
608
    /// ```
609
    #[inline]
610
0
    pub fn find_iter<'r, 'h, I: Into<Input<'h>>>(
611
0
        &'r self,
612
0
        input: I,
613
0
    ) -> FindMatches<'r, 'h> {
614
0
        let cache = self.pool.get();
615
0
        let it = iter::Searcher::new(input.into());
616
0
        FindMatches { re: self, cache, it }
617
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::find_iter::<&str>
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::find_iter::<_>
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::find_iter::<&str>
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::find_iter::<&str>
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::find_iter::<&str>
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::find_iter::<&str>
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::find_iter::<_>
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::find_iter::<&str>
618
619
    /// Returns an iterator over all non-overlapping `Captures` values. If no
620
    /// match exists, then the iterator yields no elements.
621
    ///
622
    /// This yields the same matches as [`Regex::find_iter`], but it includes
623
    /// the spans of all capturing groups that participate in each match.
624
    ///
625
    /// **Tip:** See [`util::iter::Searcher`](crate::util::iter::Searcher) for
626
    /// how to correctly iterate over all matches in a haystack while avoiding
627
    /// the creation of a new `Captures` value for every match. (Which you are
628
    /// forced to do with an `Iterator`.)
629
    ///
630
    /// # Example
631
    ///
632
    /// ```
633
    /// use regex_automata::{meta::Regex, Span};
634
    ///
635
    /// let re = Regex::new("foo(?P<numbers>[0-9]+)")?;
636
    ///
637
    /// let haystack = "foo1 foo12 foo123";
638
    /// let matches: Vec<Span> = re
639
    ///     .captures_iter(haystack)
640
    ///     // The unwrap is OK since 'numbers' matches if the pattern matches.
641
    ///     .map(|caps| caps.get_group_by_name("numbers").unwrap())
642
    ///     .collect();
643
    /// assert_eq!(matches, vec![
644
    ///     Span::from(3..4),
645
    ///     Span::from(8..10),
646
    ///     Span::from(14..17),
647
    /// ]);
648
    /// # Ok::<(), Box<dyn std::error::Error>>(())
649
    /// ```
650
    #[inline]
651
0
    pub fn captures_iter<'r, 'h, I: Into<Input<'h>>>(
652
0
        &'r self,
653
0
        input: I,
654
0
    ) -> CapturesMatches<'r, 'h> {
655
0
        let cache = self.pool.get();
656
0
        let caps = self.create_captures();
657
0
        let it = iter::Searcher::new(input.into());
658
0
        CapturesMatches { re: self, cache, caps, it }
659
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::captures_iter::<_>
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::captures_iter::<_>
660
661
    /// Returns an iterator of spans of the haystack given, delimited by a
662
    /// match of the regex. Namely, each element of the iterator corresponds to
663
    /// a part of the haystack that *isn't* matched by the regular expression.
664
    ///
665
    /// # Example
666
    ///
667
    /// To split a string delimited by arbitrary amounts of spaces or tabs:
668
    ///
669
    /// ```
670
    /// use regex_automata::meta::Regex;
671
    ///
672
    /// let re = Regex::new(r"[ \t]+")?;
673
    /// let hay = "a b \t  c\td    e";
674
    /// let fields: Vec<&str> = re.split(hay).map(|span| &hay[span]).collect();
675
    /// assert_eq!(fields, vec!["a", "b", "c", "d", "e"]);
676
    ///
677
    /// # Ok::<(), Box<dyn std::error::Error>>(())
678
    /// ```
679
    ///
680
    /// # Example: more cases
681
    ///
682
    /// Basic usage:
683
    ///
684
    /// ```
685
    /// use regex_automata::meta::Regex;
686
    ///
687
    /// let re = Regex::new(r" ")?;
688
    /// let hay = "Mary had a little lamb";
689
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
690
    /// assert_eq!(got, vec!["Mary", "had", "a", "little", "lamb"]);
691
    ///
692
    /// let re = Regex::new(r"X")?;
693
    /// let hay = "";
694
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
695
    /// assert_eq!(got, vec![""]);
696
    ///
697
    /// let re = Regex::new(r"X")?;
698
    /// let hay = "lionXXtigerXleopard";
699
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
700
    /// assert_eq!(got, vec!["lion", "", "tiger", "leopard"]);
701
    ///
702
    /// let re = Regex::new(r"::")?;
703
    /// let hay = "lion::tiger::leopard";
704
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
705
    /// assert_eq!(got, vec!["lion", "tiger", "leopard"]);
706
    ///
707
    /// # Ok::<(), Box<dyn std::error::Error>>(())
708
    /// ```
709
    ///
710
    /// If a haystack contains multiple contiguous matches, you will end up
711
    /// with empty spans yielded by the iterator:
712
    ///
713
    /// ```
714
    /// use regex_automata::meta::Regex;
715
    ///
716
    /// let re = Regex::new(r"X")?;
717
    /// let hay = "XXXXaXXbXc";
718
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
719
    /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
720
    ///
721
    /// let re = Regex::new(r"/")?;
722
    /// let hay = "(///)";
723
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
724
    /// assert_eq!(got, vec!["(", "", "", ")"]);
725
    ///
726
    /// # Ok::<(), Box<dyn std::error::Error>>(())
727
    /// ```
728
    ///
729
    /// Separators at the start or end of a haystack are neighbored by empty
730
    /// spans.
731
    ///
732
    /// ```
733
    /// use regex_automata::meta::Regex;
734
    ///
735
    /// let re = Regex::new(r"0")?;
736
    /// let hay = "010";
737
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
738
    /// assert_eq!(got, vec!["", "1", ""]);
739
    ///
740
    /// # Ok::<(), Box<dyn std::error::Error>>(())
741
    /// ```
742
    ///
743
    /// When the empty string is used as a regex, it splits at every valid
744
    /// UTF-8 boundary by default (which includes the beginning and end of the
745
    /// haystack):
746
    ///
747
    /// ```
748
    /// use regex_automata::meta::Regex;
749
    ///
750
    /// let re = Regex::new(r"")?;
751
    /// let hay = "rust";
752
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
753
    /// assert_eq!(got, vec!["", "r", "u", "s", "t", ""]);
754
    ///
755
    /// // Splitting by an empty string is UTF-8 aware by default!
756
    /// let re = Regex::new(r"")?;
757
    /// let hay = "☃";
758
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
759
    /// assert_eq!(got, vec!["", "☃", ""]);
760
    ///
761
    /// # Ok::<(), Box<dyn std::error::Error>>(())
762
    /// ```
763
    ///
764
    /// But note that UTF-8 mode for empty strings can be disabled, which will
765
    /// then result in a match at every byte offset in the haystack,
766
    /// including between every UTF-8 code unit.
767
    ///
768
    /// ```
769
    /// use regex_automata::meta::Regex;
770
    ///
771
    /// let re = Regex::builder()
772
    ///     .configure(Regex::config().utf8_empty(false))
773
    ///     .build(r"")?;
774
    /// let hay = "☃".as_bytes();
775
    /// let got: Vec<&[u8]> = re.split(hay).map(|sp| &hay[sp]).collect();
776
    /// assert_eq!(got, vec![
777
    ///     // Writing byte string slices is just brutal. The problem is that
778
    ///     // b"foo" has type &[u8; 3] instead of &[u8].
779
    ///     &[][..], &[b'\xE2'][..], &[b'\x98'][..], &[b'\x83'][..], &[][..],
780
    /// ]);
781
    ///
782
    /// # Ok::<(), Box<dyn std::error::Error>>(())
783
    /// ```
784
    ///
785
    /// Contiguous separators (commonly shows up with whitespace), can lead to
786
    /// possibly surprising behavior. For example, this code is correct:
787
    ///
788
    /// ```
789
    /// use regex_automata::meta::Regex;
790
    ///
791
    /// let re = Regex::new(r" ")?;
792
    /// let hay = "    a  b c";
793
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
794
    /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
795
    ///
796
    /// # Ok::<(), Box<dyn std::error::Error>>(())
797
    /// ```
798
    ///
799
    /// It does *not* give you `["a", "b", "c"]`. For that behavior, you'd want
800
    /// to match contiguous space characters:
801
    ///
802
    /// ```
803
    /// use regex_automata::meta::Regex;
804
    ///
805
    /// let re = Regex::new(r" +")?;
806
    /// let hay = "    a  b c";
807
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
808
    /// // N.B. This does still include a leading empty span because ' +'
809
    /// // matches at the beginning of the haystack.
810
    /// assert_eq!(got, vec!["", "a", "b", "c"]);
811
    ///
812
    /// # Ok::<(), Box<dyn std::error::Error>>(())
813
    /// ```
814
    #[inline]
815
0
    pub fn split<'r, 'h, I: Into<Input<'h>>>(
816
0
        &'r self,
817
0
        input: I,
818
0
    ) -> Split<'r, 'h> {
819
0
        Split { finder: self.find_iter(input), last: 0 }
820
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::split::<_>
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::split::<_>
821
822
    /// Returns an iterator of at most `limit` spans of the haystack given,
823
    /// delimited by a match of the regex. (A `limit` of `0` will return no
824
    /// spans.) Namely, each element of the iterator corresponds to a part
825
    /// of the haystack that *isn't* matched by the regular expression. The
826
    /// remainder of the haystack that is not split will be the last element in
827
    /// the iterator.
828
    ///
829
    /// # Example
830
    ///
831
    /// Get the first two words in some haystack:
832
    ///
833
    /// ```
834
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
835
    /// use regex_automata::meta::Regex;
836
    ///
837
    /// let re = Regex::new(r"\W+").unwrap();
838
    /// let hay = "Hey! How are you?";
839
    /// let fields: Vec<&str> =
840
    ///     re.splitn(hay, 3).map(|span| &hay[span]).collect();
841
    /// assert_eq!(fields, vec!["Hey", "How", "are you?"]);
842
    ///
843
    /// # Ok::<(), Box<dyn std::error::Error>>(())
844
    /// ```
845
    ///
846
    /// # Examples: more cases
847
    ///
848
    /// ```
849
    /// use regex_automata::meta::Regex;
850
    ///
851
    /// let re = Regex::new(r" ")?;
852
    /// let hay = "Mary had a little lamb";
853
    /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
854
    /// assert_eq!(got, vec!["Mary", "had", "a little lamb"]);
855
    ///
856
    /// let re = Regex::new(r"X")?;
857
    /// let hay = "";
858
    /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
859
    /// assert_eq!(got, vec![""]);
860
    ///
861
    /// let re = Regex::new(r"X")?;
862
    /// let hay = "lionXXtigerXleopard";
863
    /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
864
    /// assert_eq!(got, vec!["lion", "", "tigerXleopard"]);
865
    ///
866
    /// let re = Regex::new(r"::")?;
867
    /// let hay = "lion::tiger::leopard";
868
    /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect();
869
    /// assert_eq!(got, vec!["lion", "tiger::leopard"]);
870
    ///
871
    /// let re = Regex::new(r"X")?;
872
    /// let hay = "abcXdef";
873
    /// let got: Vec<&str> = re.splitn(hay, 1).map(|sp| &hay[sp]).collect();
874
    /// assert_eq!(got, vec!["abcXdef"]);
875
    ///
876
    /// let re = Regex::new(r"X")?;
877
    /// let hay = "abcdef";
878
    /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect();
879
    /// assert_eq!(got, vec!["abcdef"]);
880
    ///
881
    /// let re = Regex::new(r"X")?;
882
    /// let hay = "abcXdef";
883
    /// let got: Vec<&str> = re.splitn(hay, 0).map(|sp| &hay[sp]).collect();
884
    /// assert!(got.is_empty());
885
    ///
886
    /// # Ok::<(), Box<dyn std::error::Error>>(())
887
    /// ```
888
0
    pub fn splitn<'r, 'h, I: Into<Input<'h>>>(
889
0
        &'r self,
890
0
        input: I,
891
0
        limit: usize,
892
0
    ) -> SplitN<'r, 'h> {
893
0
        SplitN { splits: self.split(input), limit }
894
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::splitn::<_>
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::splitn::<_>
895
}
896
897
/// Lower level search routines that give more control.
898
impl Regex {
899
    /// Returns the start and end offset of the leftmost match. If no match
900
    /// exists, then `None` is returned.
901
    ///
902
    /// This is like [`Regex::find`] but, but it accepts a concrete `&Input`
903
    /// instead of an `Into<Input>`.
904
    ///
905
    /// # Example
906
    ///
907
    /// ```
908
    /// use regex_automata::{meta::Regex, Input, Match};
909
    ///
910
    /// let re = Regex::new(r"Samwise|Sam")?;
911
    /// let input = Input::new(
912
    ///     "one of the chief characters, Samwise the Brave",
913
    /// );
914
    /// assert_eq!(Some(Match::must(0, 29..36)), re.search(&input));
915
    ///
916
    /// # Ok::<(), Box<dyn std::error::Error>>(())
917
    /// ```
918
    #[inline]
919
0
    pub fn search(&self, input: &Input<'_>) -> Option<Match> {
920
0
        if self.imp.info.is_impossible(input) {
921
0
            return None;
922
0
        }
923
0
        let mut guard = self.pool.get();
924
0
        let result = self.imp.strat.search(&mut guard, input);
925
0
        // We do this dance with the guard and explicitly put it back in the
926
0
        // pool because it seems to result in better codegen. If we let the
927
0
        // guard's Drop impl put it back in the pool, then functions like
928
0
        // ptr::drop_in_place get called and they *don't* get inlined. This
929
0
        // isn't usually a big deal, but in latency sensitive benchmarks the
930
0
        // extra function call can matter.
931
0
        //
932
0
        // I used `rebar measure -f '^grep/every-line$' -e meta` to measure
933
0
        // the effects here.
934
0
        //
935
0
        // Note that this doesn't eliminate the latency effects of using the
936
0
        // pool. There is still some (minor) cost for the "thread owner" of the
937
0
        // pool. (i.e., The thread that first calls a regex search routine.)
938
0
        // However, for other threads using the regex, the pool access can be
939
0
        // quite expensive as it goes through a mutex. Callers can avoid this
940
0
        // by either cloning the Regex (which creates a distinct copy of the
941
0
        // pool), or callers can use the lower level APIs that accept a 'Cache'
942
0
        // directly and do their own handling.
943
0
        PoolGuard::put(guard);
944
0
        result
945
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search
946
947
    /// Returns the end offset of the leftmost match. If no match exists, then
948
    /// `None` is returned.
949
    ///
950
    /// This is distinct from [`Regex::search`] in that it only returns the end
951
    /// of a match and not the start of the match. Depending on a variety of
952
    /// implementation details, this _may_ permit the regex engine to do less
953
    /// overall work. For example, if a DFA is being used to execute a search,
954
    /// then the start of a match usually requires running a separate DFA in
955
    /// reverse to the find the start of a match. If one only needs the end of
956
    /// a match, then the separate reverse scan to find the start of a match
957
    /// can be skipped. (Note that the reverse scan is avoided even when using
958
    /// `Regex::search` when possible, for example, in the case of an anchored
959
    /// search.)
960
    ///
961
    /// # Example
962
    ///
963
    /// ```
964
    /// use regex_automata::{meta::Regex, Input, HalfMatch};
965
    ///
966
    /// let re = Regex::new(r"Samwise|Sam")?;
967
    /// let input = Input::new(
968
    ///     "one of the chief characters, Samwise the Brave",
969
    /// );
970
    /// assert_eq!(Some(HalfMatch::must(0, 36)), re.search_half(&input));
971
    ///
972
    /// # Ok::<(), Box<dyn std::error::Error>>(())
973
    /// ```
974
    #[inline]
975
0
    pub fn search_half(&self, input: &Input<'_>) -> Option<HalfMatch> {
976
0
        if self.imp.info.is_impossible(input) {
977
0
            return None;
978
0
        }
979
0
        let mut guard = self.pool.get();
980
0
        let result = self.imp.strat.search_half(&mut guard, input);
981
0
        // See 'Regex::search' for why we put the guard back explicitly.
982
0
        PoolGuard::put(guard);
983
0
        result
984
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search_half
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search_half
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search_half
985
986
    /// Executes a leftmost forward search and writes the spans of capturing
987
    /// groups that participated in a match into the provided [`Captures`]
988
    /// value. If no match was found, then [`Captures::is_match`] is guaranteed
989
    /// to return `false`.
990
    ///
991
    /// This is like [`Regex::captures`], but it accepts a concrete `&Input`
992
    /// instead of an `Into<Input>`.
993
    ///
994
    /// # Example: specific pattern search
995
    ///
996
    /// This example shows how to build a multi-pattern `Regex` that permits
997
    /// searching for specific patterns.
998
    ///
999
    /// ```
1000
    /// use regex_automata::{
1001
    ///     meta::Regex,
1002
    ///     Anchored, Match, PatternID, Input,
1003
    /// };
1004
    ///
1005
    /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
1006
    /// let mut caps = re.create_captures();
1007
    /// let haystack = "foo123";
1008
    ///
1009
    /// // Since we are using the default leftmost-first match and both
1010
    /// // patterns match at the same starting position, only the first pattern
1011
    /// // will be returned in this case when doing a search for any of the
1012
    /// // patterns.
1013
    /// let expected = Some(Match::must(0, 0..6));
1014
    /// re.search_captures(&Input::new(haystack), &mut caps);
1015
    /// assert_eq!(expected, caps.get_match());
1016
    ///
1017
    /// // But if we want to check whether some other pattern matches, then we
1018
    /// // can provide its pattern ID.
1019
    /// let expected = Some(Match::must(1, 0..6));
1020
    /// let input = Input::new(haystack)
1021
    ///     .anchored(Anchored::Pattern(PatternID::must(1)));
1022
    /// re.search_captures(&input, &mut caps);
1023
    /// assert_eq!(expected, caps.get_match());
1024
    ///
1025
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1026
    /// ```
1027
    ///
1028
    /// # Example: specifying the bounds of a search
1029
    ///
1030
    /// This example shows how providing the bounds of a search can produce
1031
    /// different results than simply sub-slicing the haystack.
1032
    ///
1033
    /// ```
1034
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1035
    /// use regex_automata::{meta::Regex, Match, Input};
1036
    ///
1037
    /// let re = Regex::new(r"\b[0-9]{3}\b")?;
1038
    /// let mut caps = re.create_captures();
1039
    /// let haystack = "foo123bar";
1040
    ///
1041
    /// // Since we sub-slice the haystack, the search doesn't know about
1042
    /// // the larger context and assumes that `123` is surrounded by word
1043
    /// // boundaries. And of course, the match position is reported relative
1044
    /// // to the sub-slice as well, which means we get `0..3` instead of
1045
    /// // `3..6`.
1046
    /// let expected = Some(Match::must(0, 0..3));
1047
    /// let input = Input::new(&haystack[3..6]);
1048
    /// re.search_captures(&input, &mut caps);
1049
    /// assert_eq!(expected, caps.get_match());
1050
    ///
1051
    /// // But if we provide the bounds of the search within the context of the
1052
    /// // entire haystack, then the search can take the surrounding context
1053
    /// // into account. (And if we did find a match, it would be reported
1054
    /// // as a valid offset into `haystack` instead of its sub-slice.)
1055
    /// let expected = None;
1056
    /// let input = Input::new(haystack).range(3..6);
1057
    /// re.search_captures(&input, &mut caps);
1058
    /// assert_eq!(expected, caps.get_match());
1059
    ///
1060
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1061
    /// ```
1062
    #[inline]
1063
33.6k
    pub fn search_captures(&self, input: &Input<'_>, caps: &mut Captures) {
1064
33.6k
        caps.set_pattern(None);
1065
33.6k
        let pid = self.search_slots(input, caps.slots_mut());
1066
33.6k
        caps.set_pattern(pid);
1067
33.6k
    }
<regex_automata::meta::regex::Regex>::search_captures
Line
Count
Source
1063
4.99k
    pub fn search_captures(&self, input: &Input<'_>, caps: &mut Captures) {
1064
4.99k
        caps.set_pattern(None);
1065
4.99k
        let pid = self.search_slots(input, caps.slots_mut());
1066
4.99k
        caps.set_pattern(pid);
1067
4.99k
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search_captures
<regex_automata::meta::regex::Regex>::search_captures
Line
Count
Source
1063
1.30k
    pub fn search_captures(&self, input: &Input<'_>, caps: &mut Captures) {
1064
1.30k
        caps.set_pattern(None);
1065
1.30k
        let pid = self.search_slots(input, caps.slots_mut());
1066
1.30k
        caps.set_pattern(pid);
1067
1.30k
    }
<regex_automata::meta::regex::Regex>::search_captures
Line
Count
Source
1063
7.43k
    pub fn search_captures(&self, input: &Input<'_>, caps: &mut Captures) {
1064
7.43k
        caps.set_pattern(None);
1065
7.43k
        let pid = self.search_slots(input, caps.slots_mut());
1066
7.43k
        caps.set_pattern(pid);
1067
7.43k
    }
<regex_automata::meta::regex::Regex>::search_captures
Line
Count
Source
1063
1.56k
    pub fn search_captures(&self, input: &Input<'_>, caps: &mut Captures) {
1064
1.56k
        caps.set_pattern(None);
1065
1.56k
        let pid = self.search_slots(input, caps.slots_mut());
1066
1.56k
        caps.set_pattern(pid);
1067
1.56k
    }
<regex_automata::meta::regex::Regex>::search_captures
Line
Count
Source
1063
16.3k
    pub fn search_captures(&self, input: &Input<'_>, caps: &mut Captures) {
1064
16.3k
        caps.set_pattern(None);
1065
16.3k
        let pid = self.search_slots(input, caps.slots_mut());
1066
16.3k
        caps.set_pattern(pid);
1067
16.3k
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search_captures
<regex_automata::meta::regex::Regex>::search_captures
Line
Count
Source
1063
1.98k
    pub fn search_captures(&self, input: &Input<'_>, caps: &mut Captures) {
1064
1.98k
        caps.set_pattern(None);
1065
1.98k
        let pid = self.search_slots(input, caps.slots_mut());
1066
1.98k
        caps.set_pattern(pid);
1067
1.98k
    }
1068
1069
    /// Executes a leftmost forward search and writes the spans of capturing
1070
    /// groups that participated in a match into the provided `slots`, and
1071
    /// returns the matching pattern ID. The contents of the slots for patterns
1072
    /// other than the matching pattern are unspecified. If no match was found,
1073
    /// then `None` is returned and the contents of `slots` is unspecified.
1074
    ///
1075
    /// This is like [`Regex::search`], but it accepts a raw slots slice
1076
    /// instead of a `Captures` value. This is useful in contexts where you
1077
    /// don't want or need to allocate a `Captures`.
1078
    ///
1079
    /// It is legal to pass _any_ number of slots to this routine. If the regex
1080
    /// engine would otherwise write a slot offset that doesn't fit in the
1081
    /// provided slice, then it is simply skipped. In general though, there are
1082
    /// usually three slice lengths you might want to use:
1083
    ///
1084
    /// * An empty slice, if you only care about which pattern matched.
1085
    /// * A slice with [`pattern_len() * 2`](Regex::pattern_len) slots, if you
1086
    /// only care about the overall match spans for each matching pattern.
1087
    /// * A slice with
1088
    /// [`slot_len()`](crate::util::captures::GroupInfo::slot_len) slots, which
1089
    /// permits recording match offsets for every capturing group in every
1090
    /// pattern.
1091
    ///
1092
    /// # Example
1093
    ///
1094
    /// This example shows how to find the overall match offsets in a
1095
    /// multi-pattern search without allocating a `Captures` value. Indeed, we
1096
    /// can put our slots right on the stack.
1097
    ///
1098
    /// ```
1099
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1100
    /// use regex_automata::{meta::Regex, PatternID, Input};
1101
    ///
1102
    /// let re = Regex::new_many(&[
1103
    ///     r"\pL+",
1104
    ///     r"\d+",
1105
    /// ])?;
1106
    /// let input = Input::new("!@#123");
1107
    ///
1108
    /// // We only care about the overall match offsets here, so we just
1109
    /// // allocate two slots for each pattern. Each slot records the start
1110
    /// // and end of the match.
1111
    /// let mut slots = [None; 4];
1112
    /// let pid = re.search_slots(&input, &mut slots);
1113
    /// assert_eq!(Some(PatternID::must(1)), pid);
1114
    ///
1115
    /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
1116
    /// // See 'GroupInfo' for more details on the mapping between groups and
1117
    /// // slot indices.
1118
    /// let slot_start = pid.unwrap().as_usize() * 2;
1119
    /// let slot_end = slot_start + 1;
1120
    /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get()));
1121
    /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get()));
1122
    ///
1123
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1124
    /// ```
1125
    #[inline]
1126
33.6k
    pub fn search_slots(
1127
33.6k
        &self,
1128
33.6k
        input: &Input<'_>,
1129
33.6k
        slots: &mut [Option<NonMaxUsize>],
1130
33.6k
    ) -> Option<PatternID> {
1131
33.6k
        if self.imp.info.is_impossible(input) {
1132
0
            return None;
1133
33.6k
        }
1134
33.6k
        let mut guard = self.pool.get();
1135
33.6k
        let result = self.imp.strat.search_slots(&mut guard, input, slots);
1136
33.6k
        // See 'Regex::search' for why we put the guard back explicitly.
1137
33.6k
        PoolGuard::put(guard);
1138
33.6k
        result
1139
33.6k
    }
<regex_automata::meta::regex::Regex>::search_slots
Line
Count
Source
1126
4.99k
    pub fn search_slots(
1127
4.99k
        &self,
1128
4.99k
        input: &Input<'_>,
1129
4.99k
        slots: &mut [Option<NonMaxUsize>],
1130
4.99k
    ) -> Option<PatternID> {
1131
4.99k
        if self.imp.info.is_impossible(input) {
1132
0
            return None;
1133
4.99k
        }
1134
4.99k
        let mut guard = self.pool.get();
1135
4.99k
        let result = self.imp.strat.search_slots(&mut guard, input, slots);
1136
4.99k
        // See 'Regex::search' for why we put the guard back explicitly.
1137
4.99k
        PoolGuard::put(guard);
1138
4.99k
        result
1139
4.99k
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search_slots
<regex_automata::meta::regex::Regex>::search_slots
Line
Count
Source
1126
1.30k
    pub fn search_slots(
1127
1.30k
        &self,
1128
1.30k
        input: &Input<'_>,
1129
1.30k
        slots: &mut [Option<NonMaxUsize>],
1130
1.30k
    ) -> Option<PatternID> {
1131
1.30k
        if self.imp.info.is_impossible(input) {
1132
0
            return None;
1133
1.30k
        }
1134
1.30k
        let mut guard = self.pool.get();
1135
1.30k
        let result = self.imp.strat.search_slots(&mut guard, input, slots);
1136
1.30k
        // See 'Regex::search' for why we put the guard back explicitly.
1137
1.30k
        PoolGuard::put(guard);
1138
1.30k
        result
1139
1.30k
    }
<regex_automata::meta::regex::Regex>::search_slots
Line
Count
Source
1126
7.43k
    pub fn search_slots(
1127
7.43k
        &self,
1128
7.43k
        input: &Input<'_>,
1129
7.43k
        slots: &mut [Option<NonMaxUsize>],
1130
7.43k
    ) -> Option<PatternID> {
1131
7.43k
        if self.imp.info.is_impossible(input) {
1132
0
            return None;
1133
7.43k
        }
1134
7.43k
        let mut guard = self.pool.get();
1135
7.43k
        let result = self.imp.strat.search_slots(&mut guard, input, slots);
1136
7.43k
        // See 'Regex::search' for why we put the guard back explicitly.
1137
7.43k
        PoolGuard::put(guard);
1138
7.43k
        result
1139
7.43k
    }
<regex_automata::meta::regex::Regex>::search_slots
Line
Count
Source
1126
1.56k
    pub fn search_slots(
1127
1.56k
        &self,
1128
1.56k
        input: &Input<'_>,
1129
1.56k
        slots: &mut [Option<NonMaxUsize>],
1130
1.56k
    ) -> Option<PatternID> {
1131
1.56k
        if self.imp.info.is_impossible(input) {
1132
0
            return None;
1133
1.56k
        }
1134
1.56k
        let mut guard = self.pool.get();
1135
1.56k
        let result = self.imp.strat.search_slots(&mut guard, input, slots);
1136
1.56k
        // See 'Regex::search' for why we put the guard back explicitly.
1137
1.56k
        PoolGuard::put(guard);
1138
1.56k
        result
1139
1.56k
    }
<regex_automata::meta::regex::Regex>::search_slots
Line
Count
Source
1126
16.3k
    pub fn search_slots(
1127
16.3k
        &self,
1128
16.3k
        input: &Input<'_>,
1129
16.3k
        slots: &mut [Option<NonMaxUsize>],
1130
16.3k
    ) -> Option<PatternID> {
1131
16.3k
        if self.imp.info.is_impossible(input) {
1132
0
            return None;
1133
16.3k
        }
1134
16.3k
        let mut guard = self.pool.get();
1135
16.3k
        let result = self.imp.strat.search_slots(&mut guard, input, slots);
1136
16.3k
        // See 'Regex::search' for why we put the guard back explicitly.
1137
16.3k
        PoolGuard::put(guard);
1138
16.3k
        result
1139
16.3k
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search_slots
<regex_automata::meta::regex::Regex>::search_slots
Line
Count
Source
1126
1.98k
    pub fn search_slots(
1127
1.98k
        &self,
1128
1.98k
        input: &Input<'_>,
1129
1.98k
        slots: &mut [Option<NonMaxUsize>],
1130
1.98k
    ) -> Option<PatternID> {
1131
1.98k
        if self.imp.info.is_impossible(input) {
1132
0
            return None;
1133
1.98k
        }
1134
1.98k
        let mut guard = self.pool.get();
1135
1.98k
        let result = self.imp.strat.search_slots(&mut guard, input, slots);
1136
1.98k
        // See 'Regex::search' for why we put the guard back explicitly.
1137
1.98k
        PoolGuard::put(guard);
1138
1.98k
        result
1139
1.98k
    }
1140
1141
    /// Writes the set of patterns that match anywhere in the given search
1142
    /// configuration to `patset`. If multiple patterns match at the same
1143
    /// position and this `Regex` was configured with [`MatchKind::All`]
1144
    /// semantics, then all matching patterns are written to the given set.
1145
    ///
1146
    /// Unless all of the patterns in this `Regex` are anchored, then generally
1147
    /// speaking, this will scan the entire haystack.
1148
    ///
1149
    /// This search routine *does not* clear the pattern set. This gives some
1150
    /// flexibility to the caller (e.g., running multiple searches with the
1151
    /// same pattern set), but does make the API bug-prone if you're reusing
1152
    /// the same pattern set for multiple searches but intended them to be
1153
    /// independent.
1154
    ///
1155
    /// If a pattern ID matched but the given `PatternSet` does not have
1156
    /// sufficient capacity to store it, then it is not inserted and silently
1157
    /// dropped.
1158
    ///
1159
    /// # Example
1160
    ///
1161
    /// This example shows how to find all matching patterns in a haystack,
1162
    /// even when some patterns match at the same position as other patterns.
1163
    /// It is important that we configure the `Regex` with [`MatchKind::All`]
1164
    /// semantics here, or else overlapping matches will not be reported.
1165
    ///
1166
    /// ```
1167
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1168
    /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet};
1169
    ///
1170
    /// let patterns = &[
1171
    ///     r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar",
1172
    /// ];
1173
    /// let re = Regex::builder()
1174
    ///     .configure(Regex::config().match_kind(MatchKind::All))
1175
    ///     .build_many(patterns)?;
1176
    ///
1177
    /// let input = Input::new("foobar");
1178
    /// let mut patset = PatternSet::new(re.pattern_len());
1179
    /// re.which_overlapping_matches(&input, &mut patset);
1180
    /// let expected = vec![0, 2, 3, 4, 6];
1181
    /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect();
1182
    /// assert_eq!(expected, got);
1183
    ///
1184
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1185
    /// ```
1186
    #[inline]
1187
0
    pub fn which_overlapping_matches(
1188
0
        &self,
1189
0
        input: &Input<'_>,
1190
0
        patset: &mut PatternSet,
1191
0
    ) {
1192
0
        if self.imp.info.is_impossible(input) {
1193
0
            return;
1194
0
        }
1195
0
        let mut guard = self.pool.get();
1196
0
        let result = self
1197
0
            .imp
1198
0
            .strat
1199
0
            .which_overlapping_matches(&mut guard, input, patset);
1200
0
        // See 'Regex::search' for why we put the guard back explicitly.
1201
0
        PoolGuard::put(guard);
1202
0
        result
1203
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::which_overlapping_matches
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::which_overlapping_matches
1204
}
1205
1206
/// Lower level search routines that give more control, and require the caller
1207
/// to provide an explicit [`Cache`] parameter.
1208
impl Regex {
1209
    /// This is like [`Regex::search`], but requires the caller to
1210
    /// explicitly pass a [`Cache`].
1211
    ///
1212
    /// # Why pass a `Cache` explicitly?
1213
    ///
1214
    /// Passing a `Cache` explicitly will bypass the use of an internal memory
1215
    /// pool used by `Regex` to get a `Cache` for a search. The use of this
1216
    /// pool can be slower in some cases when a `Regex` is used from multiple
1217
    /// threads simultaneously. Typically, performance only becomes an issue
1218
    /// when there is heavy contention, which in turn usually only occurs
1219
    /// when each thread's primary unit of work is a regex search on a small
1220
    /// haystack.
1221
    ///
1222
    /// # Example
1223
    ///
1224
    /// ```
1225
    /// use regex_automata::{meta::Regex, Input, Match};
1226
    ///
1227
    /// let re = Regex::new(r"Samwise|Sam")?;
1228
    /// let mut cache = re.create_cache();
1229
    /// let input = Input::new(
1230
    ///     "one of the chief characters, Samwise the Brave",
1231
    /// );
1232
    /// assert_eq!(
1233
    ///     Some(Match::must(0, 29..36)),
1234
    ///     re.search_with(&mut cache, &input),
1235
    /// );
1236
    ///
1237
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1238
    /// ```
1239
    #[inline]
1240
0
    pub fn search_with(
1241
0
        &self,
1242
0
        cache: &mut Cache,
1243
0
        input: &Input<'_>,
1244
0
    ) -> Option<Match> {
1245
0
        if self.imp.info.is_impossible(input) {
1246
0
            return None;
1247
0
        }
1248
0
        self.imp.strat.search(cache, input)
1249
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search_with
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search_with
1250
1251
    /// This is like [`Regex::search_half`], but requires the caller to
1252
    /// explicitly pass a [`Cache`].
1253
    ///
1254
    /// # Why pass a `Cache` explicitly?
1255
    ///
1256
    /// Passing a `Cache` explicitly will bypass the use of an internal memory
1257
    /// pool used by `Regex` to get a `Cache` for a search. The use of this
1258
    /// pool can be slower in some cases when a `Regex` is used from multiple
1259
    /// threads simultaneously. Typically, performance only becomes an issue
1260
    /// when there is heavy contention, which in turn usually only occurs
1261
    /// when each thread's primary unit of work is a regex search on a small
1262
    /// haystack.
1263
    ///
1264
    /// # Example
1265
    ///
1266
    /// ```
1267
    /// use regex_automata::{meta::Regex, Input, HalfMatch};
1268
    ///
1269
    /// let re = Regex::new(r"Samwise|Sam")?;
1270
    /// let mut cache = re.create_cache();
1271
    /// let input = Input::new(
1272
    ///     "one of the chief characters, Samwise the Brave",
1273
    /// );
1274
    /// assert_eq!(
1275
    ///     Some(HalfMatch::must(0, 36)),
1276
    ///     re.search_half_with(&mut cache, &input),
1277
    /// );
1278
    ///
1279
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1280
    /// ```
1281
    #[inline]
1282
0
    pub fn search_half_with(
1283
0
        &self,
1284
0
        cache: &mut Cache,
1285
0
        input: &Input<'_>,
1286
0
    ) -> Option<HalfMatch> {
1287
0
        if self.imp.info.is_impossible(input) {
1288
0
            return None;
1289
0
        }
1290
0
        self.imp.strat.search_half(cache, input)
1291
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search_half_with
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search_half_with
1292
1293
    /// This is like [`Regex::search_captures`], but requires the caller to
1294
    /// explicitly pass a [`Cache`].
1295
    ///
1296
    /// # Why pass a `Cache` explicitly?
1297
    ///
1298
    /// Passing a `Cache` explicitly will bypass the use of an internal memory
1299
    /// pool used by `Regex` to get a `Cache` for a search. The use of this
1300
    /// pool can be slower in some cases when a `Regex` is used from multiple
1301
    /// threads simultaneously. Typically, performance only becomes an issue
1302
    /// when there is heavy contention, which in turn usually only occurs
1303
    /// when each thread's primary unit of work is a regex search on a small
1304
    /// haystack.
1305
    ///
1306
    /// # Example: specific pattern search
1307
    ///
1308
    /// This example shows how to build a multi-pattern `Regex` that permits
1309
    /// searching for specific patterns.
1310
    ///
1311
    /// ```
1312
    /// use regex_automata::{
1313
    ///     meta::Regex,
1314
    ///     Anchored, Match, PatternID, Input,
1315
    /// };
1316
    ///
1317
    /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
1318
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1319
    /// let haystack = "foo123";
1320
    ///
1321
    /// // Since we are using the default leftmost-first match and both
1322
    /// // patterns match at the same starting position, only the first pattern
1323
    /// // will be returned in this case when doing a search for any of the
1324
    /// // patterns.
1325
    /// let expected = Some(Match::must(0, 0..6));
1326
    /// re.search_captures_with(&mut cache, &Input::new(haystack), &mut caps);
1327
    /// assert_eq!(expected, caps.get_match());
1328
    ///
1329
    /// // But if we want to check whether some other pattern matches, then we
1330
    /// // can provide its pattern ID.
1331
    /// let expected = Some(Match::must(1, 0..6));
1332
    /// let input = Input::new(haystack)
1333
    ///     .anchored(Anchored::Pattern(PatternID::must(1)));
1334
    /// re.search_captures_with(&mut cache, &input, &mut caps);
1335
    /// assert_eq!(expected, caps.get_match());
1336
    ///
1337
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1338
    /// ```
1339
    ///
1340
    /// # Example: specifying the bounds of a search
1341
    ///
1342
    /// This example shows how providing the bounds of a search can produce
1343
    /// different results than simply sub-slicing the haystack.
1344
    ///
1345
    /// ```
1346
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1347
    /// use regex_automata::{meta::Regex, Match, Input};
1348
    ///
1349
    /// let re = Regex::new(r"\b[0-9]{3}\b")?;
1350
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1351
    /// let haystack = "foo123bar";
1352
    ///
1353
    /// // Since we sub-slice the haystack, the search doesn't know about
1354
    /// // the larger context and assumes that `123` is surrounded by word
1355
    /// // boundaries. And of course, the match position is reported relative
1356
    /// // to the sub-slice as well, which means we get `0..3` instead of
1357
    /// // `3..6`.
1358
    /// let expected = Some(Match::must(0, 0..3));
1359
    /// let input = Input::new(&haystack[3..6]);
1360
    /// re.search_captures_with(&mut cache, &input, &mut caps);
1361
    /// assert_eq!(expected, caps.get_match());
1362
    ///
1363
    /// // But if we provide the bounds of the search within the context of the
1364
    /// // entire haystack, then the search can take the surrounding context
1365
    /// // into account. (And if we did find a match, it would be reported
1366
    /// // as a valid offset into `haystack` instead of its sub-slice.)
1367
    /// let expected = None;
1368
    /// let input = Input::new(haystack).range(3..6);
1369
    /// re.search_captures_with(&mut cache, &input, &mut caps);
1370
    /// assert_eq!(expected, caps.get_match());
1371
    ///
1372
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1373
    /// ```
1374
    #[inline]
1375
0
    pub fn search_captures_with(
1376
0
        &self,
1377
0
        cache: &mut Cache,
1378
0
        input: &Input<'_>,
1379
0
        caps: &mut Captures,
1380
0
    ) {
1381
0
        caps.set_pattern(None);
1382
0
        let pid = self.search_slots_with(cache, input, caps.slots_mut());
1383
0
        caps.set_pattern(pid);
1384
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search_captures_with
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search_captures_with
1385
1386
    /// This is like [`Regex::search_slots`], but requires the caller to
1387
    /// explicitly pass a [`Cache`].
1388
    ///
1389
    /// # Why pass a `Cache` explicitly?
1390
    ///
1391
    /// Passing a `Cache` explicitly will bypass the use of an internal memory
1392
    /// pool used by `Regex` to get a `Cache` for a search. The use of this
1393
    /// pool can be slower in some cases when a `Regex` is used from multiple
1394
    /// threads simultaneously. Typically, performance only becomes an issue
1395
    /// when there is heavy contention, which in turn usually only occurs
1396
    /// when each thread's primary unit of work is a regex search on a small
1397
    /// haystack.
1398
    ///
1399
    /// # Example
1400
    ///
1401
    /// This example shows how to find the overall match offsets in a
1402
    /// multi-pattern search without allocating a `Captures` value. Indeed, we
1403
    /// can put our slots right on the stack.
1404
    ///
1405
    /// ```
1406
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1407
    /// use regex_automata::{meta::Regex, PatternID, Input};
1408
    ///
1409
    /// let re = Regex::new_many(&[
1410
    ///     r"\pL+",
1411
    ///     r"\d+",
1412
    /// ])?;
1413
    /// let mut cache = re.create_cache();
1414
    /// let input = Input::new("!@#123");
1415
    ///
1416
    /// // We only care about the overall match offsets here, so we just
1417
    /// // allocate two slots for each pattern. Each slot records the start
1418
    /// // and end of the match.
1419
    /// let mut slots = [None; 4];
1420
    /// let pid = re.search_slots_with(&mut cache, &input, &mut slots);
1421
    /// assert_eq!(Some(PatternID::must(1)), pid);
1422
    ///
1423
    /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
1424
    /// // See 'GroupInfo' for more details on the mapping between groups and
1425
    /// // slot indices.
1426
    /// let slot_start = pid.unwrap().as_usize() * 2;
1427
    /// let slot_end = slot_start + 1;
1428
    /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get()));
1429
    /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get()));
1430
    ///
1431
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1432
    /// ```
1433
    #[inline]
1434
0
    pub fn search_slots_with(
1435
0
        &self,
1436
0
        cache: &mut Cache,
1437
0
        input: &Input<'_>,
1438
0
        slots: &mut [Option<NonMaxUsize>],
1439
0
    ) -> Option<PatternID> {
1440
0
        if self.imp.info.is_impossible(input) {
1441
0
            return None;
1442
0
        }
1443
0
        self.imp.strat.search_slots(cache, input, slots)
1444
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search_slots_with
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search_slots_with
1445
1446
    /// This is like [`Regex::which_overlapping_matches`], but requires the
1447
    /// caller to explicitly pass a [`Cache`].
1448
    ///
1449
    /// Passing a `Cache` explicitly will bypass the use of an internal memory
1450
    /// pool used by `Regex` to get a `Cache` for a search. The use of this
1451
    /// pool can be slower in some cases when a `Regex` is used from multiple
1452
    /// threads simultaneously. Typically, performance only becomes an issue
1453
    /// when there is heavy contention, which in turn usually only occurs
1454
    /// when each thread's primary unit of work is a regex search on a small
1455
    /// haystack.
1456
    ///
1457
    /// # Why pass a `Cache` explicitly?
1458
    ///
1459
    /// # Example
1460
    ///
1461
    /// ```
1462
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1463
    /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet};
1464
    ///
1465
    /// let patterns = &[
1466
    ///     r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar",
1467
    /// ];
1468
    /// let re = Regex::builder()
1469
    ///     .configure(Regex::config().match_kind(MatchKind::All))
1470
    ///     .build_many(patterns)?;
1471
    /// let mut cache = re.create_cache();
1472
    ///
1473
    /// let input = Input::new("foobar");
1474
    /// let mut patset = PatternSet::new(re.pattern_len());
1475
    /// re.which_overlapping_matches_with(&mut cache, &input, &mut patset);
1476
    /// let expected = vec![0, 2, 3, 4, 6];
1477
    /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect();
1478
    /// assert_eq!(expected, got);
1479
    ///
1480
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1481
    /// ```
1482
    #[inline]
1483
0
    pub fn which_overlapping_matches_with(
1484
0
        &self,
1485
0
        cache: &mut Cache,
1486
0
        input: &Input<'_>,
1487
0
        patset: &mut PatternSet,
1488
0
    ) {
1489
0
        if self.imp.info.is_impossible(input) {
1490
0
            return;
1491
0
        }
1492
0
        self.imp.strat.which_overlapping_matches(cache, input, patset)
1493
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::which_overlapping_matches_with
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::which_overlapping_matches_with
1494
}
1495
1496
/// Various non-search routines for querying properties of a `Regex` and
1497
/// convenience routines for creating [`Captures`] and [`Cache`] values.
1498
impl Regex {
1499
    /// Creates a new object for recording capture group offsets. This is used
1500
    /// in search APIs like [`Regex::captures`] and [`Regex::search_captures`].
1501
    ///
1502
    /// This is a convenience routine for
1503
    /// `Captures::all(re.group_info().clone())`. Callers may build other types
1504
    /// of `Captures` values that record less information (and thus require
1505
    /// less work from the regex engine) using [`Captures::matches`] and
1506
    /// [`Captures::empty`].
1507
    ///
1508
    /// # Example
1509
    ///
1510
    /// This shows some alternatives to [`Regex::create_captures`]:
1511
    ///
1512
    /// ```
1513
    /// use regex_automata::{
1514
    ///     meta::Regex,
1515
    ///     util::captures::Captures,
1516
    ///     Match, PatternID, Span,
1517
    /// };
1518
    ///
1519
    /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)")?;
1520
    ///
1521
    /// // This is equivalent to Regex::create_captures. It stores matching
1522
    /// // offsets for all groups in the regex.
1523
    /// let mut all = Captures::all(re.group_info().clone());
1524
    /// re.captures("Bruce Springsteen", &mut all);
1525
    /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match());
1526
    /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first"));
1527
    /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last"));
1528
    ///
1529
    /// // In this version, we only care about the implicit groups, which
1530
    /// // means offsets for the explicit groups will be unavailable. It can
1531
    /// // sometimes be faster to ask for fewer groups, since the underlying
1532
    /// // regex engine needs to do less work to keep track of them.
1533
    /// let mut matches = Captures::matches(re.group_info().clone());
1534
    /// re.captures("Bruce Springsteen", &mut matches);
1535
    /// // We still get the overall match info.
1536
    /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match());
1537
    /// // But now the explicit groups are unavailable.
1538
    /// assert_eq!(None, matches.get_group_by_name("first"));
1539
    /// assert_eq!(None, matches.get_group_by_name("last"));
1540
    ///
1541
    /// // Finally, in this version, we don't ask to keep track of offsets for
1542
    /// // *any* groups. All we get back is whether a match occurred, and if
1543
    /// // so, the ID of the pattern that matched.
1544
    /// let mut empty = Captures::empty(re.group_info().clone());
1545
    /// re.captures("Bruce Springsteen", &mut empty);
1546
    /// // it's a match!
1547
    /// assert!(empty.is_match());
1548
    /// // for pattern ID 0
1549
    /// assert_eq!(Some(PatternID::ZERO), empty.pattern());
1550
    /// // Match offsets are unavailable.
1551
    /// assert_eq!(None, empty.get_match());
1552
    /// // And of course, explicit groups are unavailable too.
1553
    /// assert_eq!(None, empty.get_group_by_name("first"));
1554
    /// assert_eq!(None, empty.get_group_by_name("last"));
1555
    ///
1556
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1557
    /// ```
1558
33.6k
    pub fn create_captures(&self) -> Captures {
1559
33.6k
        Captures::all(self.group_info().clone())
1560
33.6k
    }
<regex_automata::meta::regex::Regex>::create_captures
Line
Count
Source
1558
17.2k
    pub fn create_captures(&self) -> Captures {
1559
17.2k
        Captures::all(self.group_info().clone())
1560
17.2k
    }
<regex_automata::meta::regex::Regex>::create_captures
Line
Count
Source
1558
16.3k
    pub fn create_captures(&self) -> Captures {
1559
16.3k
        Captures::all(self.group_info().clone())
1560
16.3k
    }
1561
1562
    /// Creates a new cache for use with lower level search APIs like
1563
    /// [`Regex::search_with`].
1564
    ///
1565
    /// The cache returned should only be used for searches for this `Regex`.
1566
    /// If you want to reuse the cache for another `Regex`, then you must call
1567
    /// [`Cache::reset`] with that `Regex`.
1568
    ///
1569
    /// This is a convenience routine for [`Cache::new`].
1570
    ///
1571
    /// # Example
1572
    ///
1573
    /// ```
1574
    /// use regex_automata::{meta::Regex, Input, Match};
1575
    ///
1576
    /// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?;
1577
    /// let mut cache = re.create_cache();
1578
    /// let input = Input::new("crazy janey and her mission man");
1579
    /// assert_eq!(
1580
    ///     Some(Match::must(0, 20..31)),
1581
    ///     re.search_with(&mut cache, &input),
1582
    /// );
1583
    ///
1584
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1585
    /// ```
1586
0
    pub fn create_cache(&self) -> Cache {
1587
0
        self.imp.strat.create_cache()
1588
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::create_cache
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::create_cache
1589
1590
    /// Returns the total number of patterns in this regex.
1591
    ///
1592
    /// The standard [`Regex::new`] constructor always results in a `Regex`
1593
    /// with a single pattern, but [`Regex::new_many`] permits building a
1594
    /// multi-pattern regex.
1595
    ///
1596
    /// A `Regex` guarantees that the maximum possible `PatternID` returned in
1597
    /// any match is `Regex::pattern_len() - 1`. In the case where the number
1598
    /// of patterns is `0`, a match is impossible.
1599
    ///
1600
    /// # Example
1601
    ///
1602
    /// ```
1603
    /// use regex_automata::meta::Regex;
1604
    ///
1605
    /// let re = Regex::new(r"(?m)^[a-z]$")?;
1606
    /// assert_eq!(1, re.pattern_len());
1607
    ///
1608
    /// let re = Regex::new_many::<&str>(&[])?;
1609
    /// assert_eq!(0, re.pattern_len());
1610
    ///
1611
    /// let re = Regex::new_many(&["a", "b", "c"])?;
1612
    /// assert_eq!(3, re.pattern_len());
1613
    ///
1614
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1615
    /// ```
1616
0
    pub fn pattern_len(&self) -> usize {
1617
0
        self.imp.info.pattern_len()
1618
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::pattern_len
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::pattern_len
1619
1620
    /// Returns the total number of capturing groups.
1621
    ///
1622
    /// This includes the implicit capturing group corresponding to the
1623
    /// entire match. Therefore, the minimum value returned is `1`.
1624
    ///
1625
    /// # Example
1626
    ///
1627
    /// This shows a few patterns and how many capture groups they have.
1628
    ///
1629
    /// ```
1630
    /// use regex_automata::meta::Regex;
1631
    ///
1632
    /// let len = |pattern| {
1633
    ///     Regex::new(pattern).map(|re| re.captures_len())
1634
    /// };
1635
    ///
1636
    /// assert_eq!(1, len("a")?);
1637
    /// assert_eq!(2, len("(a)")?);
1638
    /// assert_eq!(3, len("(a)|(b)")?);
1639
    /// assert_eq!(5, len("(a)(b)|(c)(d)")?);
1640
    /// assert_eq!(2, len("(a)|b")?);
1641
    /// assert_eq!(2, len("a|(b)")?);
1642
    /// assert_eq!(2, len("(b)*")?);
1643
    /// assert_eq!(2, len("(b)+")?);
1644
    ///
1645
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1646
    /// ```
1647
    ///
1648
    /// # Example: multiple patterns
1649
    ///
1650
    /// This routine also works for multiple patterns. The total number is
1651
    /// the sum of the capture groups of each pattern.
1652
    ///
1653
    /// ```
1654
    /// use regex_automata::meta::Regex;
1655
    ///
1656
    /// let len = |patterns| {
1657
    ///     Regex::new_many(patterns).map(|re| re.captures_len())
1658
    /// };
1659
    ///
1660
    /// assert_eq!(2, len(&["a", "b"])?);
1661
    /// assert_eq!(4, len(&["(a)", "(b)"])?);
1662
    /// assert_eq!(6, len(&["(a)|(b)", "(c)|(d)"])?);
1663
    /// assert_eq!(8, len(&["(a)(b)|(c)(d)", "(x)(y)"])?);
1664
    /// assert_eq!(3, len(&["(a)", "b"])?);
1665
    /// assert_eq!(3, len(&["a", "(b)"])?);
1666
    /// assert_eq!(4, len(&["(a)", "(b)*"])?);
1667
    /// assert_eq!(4, len(&["(a)+", "(b)+"])?);
1668
    ///
1669
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1670
    /// ```
1671
0
    pub fn captures_len(&self) -> usize {
1672
0
        self.imp
1673
0
            .info
1674
0
            .props_union()
1675
0
            .explicit_captures_len()
1676
0
            .saturating_add(self.pattern_len())
1677
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::captures_len
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::captures_len
1678
1679
    /// Returns the total number of capturing groups that appear in every
1680
    /// possible match.
1681
    ///
1682
    /// If the number of capture groups can vary depending on the match, then
1683
    /// this returns `None`. That is, a value is only returned when the number
1684
    /// of matching groups is invariant or "static."
1685
    ///
1686
    /// Note that like [`Regex::captures_len`], this **does** include the
1687
    /// implicit capturing group corresponding to the entire match. Therefore,
1688
    /// when a non-None value is returned, it is guaranteed to be at least `1`.
1689
    /// Stated differently, a return value of `Some(0)` is impossible.
1690
    ///
1691
    /// # Example
1692
    ///
1693
    /// This shows a few cases where a static number of capture groups is
1694
    /// available and a few cases where it is not.
1695
    ///
1696
    /// ```
1697
    /// use regex_automata::meta::Regex;
1698
    ///
1699
    /// let len = |pattern| {
1700
    ///     Regex::new(pattern).map(|re| re.static_captures_len())
1701
    /// };
1702
    ///
1703
    /// assert_eq!(Some(1), len("a")?);
1704
    /// assert_eq!(Some(2), len("(a)")?);
1705
    /// assert_eq!(Some(2), len("(a)|(b)")?);
1706
    /// assert_eq!(Some(3), len("(a)(b)|(c)(d)")?);
1707
    /// assert_eq!(None, len("(a)|b")?);
1708
    /// assert_eq!(None, len("a|(b)")?);
1709
    /// assert_eq!(None, len("(b)*")?);
1710
    /// assert_eq!(Some(2), len("(b)+")?);
1711
    ///
1712
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1713
    /// ```
1714
    ///
1715
    /// # Example: multiple patterns
1716
    ///
1717
    /// This property extends to regexes with multiple patterns as well. In
1718
    /// order for their to be a static number of capture groups in this case,
1719
    /// every pattern must have the same static number.
1720
    ///
1721
    /// ```
1722
    /// use regex_automata::meta::Regex;
1723
    ///
1724
    /// let len = |patterns| {
1725
    ///     Regex::new_many(patterns).map(|re| re.static_captures_len())
1726
    /// };
1727
    ///
1728
    /// assert_eq!(Some(1), len(&["a", "b"])?);
1729
    /// assert_eq!(Some(2), len(&["(a)", "(b)"])?);
1730
    /// assert_eq!(Some(2), len(&["(a)|(b)", "(c)|(d)"])?);
1731
    /// assert_eq!(Some(3), len(&["(a)(b)|(c)(d)", "(x)(y)"])?);
1732
    /// assert_eq!(None, len(&["(a)", "b"])?);
1733
    /// assert_eq!(None, len(&["a", "(b)"])?);
1734
    /// assert_eq!(None, len(&["(a)", "(b)*"])?);
1735
    /// assert_eq!(Some(2), len(&["(a)+", "(b)+"])?);
1736
    ///
1737
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1738
    /// ```
1739
    #[inline]
1740
33.6k
    pub fn static_captures_len(&self) -> Option<usize> {
1741
33.6k
        self.imp
1742
33.6k
            .info
1743
33.6k
            .props_union()
1744
33.6k
            .static_explicit_captures_len()
1745
33.6k
            .map(|len| len.saturating_add(1))
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::static_captures_len::{closure#0}
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::static_captures_len::{closure#0}
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::static_captures_len::{closure#0}
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::static_captures_len::{closure#0}
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::static_captures_len::{closure#0}
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::static_captures_len::{closure#0}
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::static_captures_len::{closure#0}
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::static_captures_len::{closure#0}
1746
33.6k
    }
<regex_automata::meta::regex::Regex>::static_captures_len
Line
Count
Source
1740
4.99k
    pub fn static_captures_len(&self) -> Option<usize> {
1741
4.99k
        self.imp
1742
4.99k
            .info
1743
4.99k
            .props_union()
1744
4.99k
            .static_explicit_captures_len()
1745
4.99k
            .map(|len| len.saturating_add(1))
1746
4.99k
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::static_captures_len
<regex_automata::meta::regex::Regex>::static_captures_len
Line
Count
Source
1740
1.30k
    pub fn static_captures_len(&self) -> Option<usize> {
1741
1.30k
        self.imp
1742
1.30k
            .info
1743
1.30k
            .props_union()
1744
1.30k
            .static_explicit_captures_len()
1745
1.30k
            .map(|len| len.saturating_add(1))
1746
1.30k
    }
<regex_automata::meta::regex::Regex>::static_captures_len
Line
Count
Source
1740
7.43k
    pub fn static_captures_len(&self) -> Option<usize> {
1741
7.43k
        self.imp
1742
7.43k
            .info
1743
7.43k
            .props_union()
1744
7.43k
            .static_explicit_captures_len()
1745
7.43k
            .map(|len| len.saturating_add(1))
1746
7.43k
    }
<regex_automata::meta::regex::Regex>::static_captures_len
Line
Count
Source
1740
1.56k
    pub fn static_captures_len(&self) -> Option<usize> {
1741
1.56k
        self.imp
1742
1.56k
            .info
1743
1.56k
            .props_union()
1744
1.56k
            .static_explicit_captures_len()
1745
1.56k
            .map(|len| len.saturating_add(1))
1746
1.56k
    }
<regex_automata::meta::regex::Regex>::static_captures_len
Line
Count
Source
1740
16.3k
    pub fn static_captures_len(&self) -> Option<usize> {
1741
16.3k
        self.imp
1742
16.3k
            .info
1743
16.3k
            .props_union()
1744
16.3k
            .static_explicit_captures_len()
1745
16.3k
            .map(|len| len.saturating_add(1))
1746
16.3k
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::static_captures_len
<regex_automata::meta::regex::Regex>::static_captures_len
Line
Count
Source
1740
1.98k
    pub fn static_captures_len(&self) -> Option<usize> {
1741
1.98k
        self.imp
1742
1.98k
            .info
1743
1.98k
            .props_union()
1744
1.98k
            .static_explicit_captures_len()
1745
1.98k
            .map(|len| len.saturating_add(1))
1746
1.98k
    }
1747
1748
    /// Return information about the capture groups in this `Regex`.
1749
    ///
1750
    /// A `GroupInfo` is an immutable object that can be cheaply cloned. It
1751
    /// is responsible for maintaining a mapping between the capture groups
1752
    /// in the concrete syntax of zero or more regex patterns and their
1753
    /// internal representation used by some of the regex matchers. It is also
1754
    /// responsible for maintaining a mapping between the name of each group
1755
    /// (if one exists) and its corresponding group index.
1756
    ///
1757
    /// A `GroupInfo` is ultimately what is used to build a [`Captures`] value,
1758
    /// which is some mutable space where group offsets are stored as a result
1759
    /// of a search.
1760
    ///
1761
    /// # Example
1762
    ///
1763
    /// This shows some alternatives to [`Regex::create_captures`]:
1764
    ///
1765
    /// ```
1766
    /// use regex_automata::{
1767
    ///     meta::Regex,
1768
    ///     util::captures::Captures,
1769
    ///     Match, PatternID, Span,
1770
    /// };
1771
    ///
1772
    /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)")?;
1773
    ///
1774
    /// // This is equivalent to Regex::create_captures. It stores matching
1775
    /// // offsets for all groups in the regex.
1776
    /// let mut all = Captures::all(re.group_info().clone());
1777
    /// re.captures("Bruce Springsteen", &mut all);
1778
    /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match());
1779
    /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first"));
1780
    /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last"));
1781
    ///
1782
    /// // In this version, we only care about the implicit groups, which
1783
    /// // means offsets for the explicit groups will be unavailable. It can
1784
    /// // sometimes be faster to ask for fewer groups, since the underlying
1785
    /// // regex engine needs to do less work to keep track of them.
1786
    /// let mut matches = Captures::matches(re.group_info().clone());
1787
    /// re.captures("Bruce Springsteen", &mut matches);
1788
    /// // We still get the overall match info.
1789
    /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match());
1790
    /// // But now the explicit groups are unavailable.
1791
    /// assert_eq!(None, matches.get_group_by_name("first"));
1792
    /// assert_eq!(None, matches.get_group_by_name("last"));
1793
    ///
1794
    /// // Finally, in this version, we don't ask to keep track of offsets for
1795
    /// // *any* groups. All we get back is whether a match occurred, and if
1796
    /// // so, the ID of the pattern that matched.
1797
    /// let mut empty = Captures::empty(re.group_info().clone());
1798
    /// re.captures("Bruce Springsteen", &mut empty);
1799
    /// // it's a match!
1800
    /// assert!(empty.is_match());
1801
    /// // for pattern ID 0
1802
    /// assert_eq!(Some(PatternID::ZERO), empty.pattern());
1803
    /// // Match offsets are unavailable.
1804
    /// assert_eq!(None, empty.get_match());
1805
    /// // And of course, explicit groups are unavailable too.
1806
    /// assert_eq!(None, empty.get_group_by_name("first"));
1807
    /// assert_eq!(None, empty.get_group_by_name("last"));
1808
    ///
1809
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1810
    /// ```
1811
    #[inline]
1812
33.6k
    pub fn group_info(&self) -> &GroupInfo {
1813
33.6k
        self.imp.strat.group_info()
1814
33.6k
    }
<regex_automata::meta::regex::Regex>::group_info
Line
Count
Source
1812
17.2k
    pub fn group_info(&self) -> &GroupInfo {
1813
17.2k
        self.imp.strat.group_info()
1814
17.2k
    }
<regex_automata::meta::regex::Regex>::group_info
Line
Count
Source
1812
16.3k
    pub fn group_info(&self) -> &GroupInfo {
1813
16.3k
        self.imp.strat.group_info()
1814
16.3k
    }
1815
1816
    /// Returns the configuration object used to build this `Regex`.
1817
    ///
1818
    /// If no configuration object was explicitly passed, then the
1819
    /// configuration returned represents the default.
1820
    #[inline]
1821
0
    pub fn get_config(&self) -> &Config {
1822
0
        self.imp.info.config()
1823
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::get_config
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::get_config
1824
1825
    /// Returns true if this regex has a high chance of being "accelerated."
1826
    ///
1827
    /// The precise meaning of "accelerated" is specifically left unspecified,
1828
    /// but the general meaning is that the search is a high likelihood of
1829
    /// running faster than a character-at-a-time loop inside a standard
1830
    /// regex engine.
1831
    ///
1832
    /// When a regex is accelerated, it is only a *probabilistic* claim. That
1833
    /// is, just because the regex is believed to be accelerated, that doesn't
1834
    /// mean it will definitely execute searches very fast. Similarly, if a
1835
    /// regex is *not* accelerated, that is also a probabilistic claim. That
1836
    /// is, a regex for which `is_accelerated` returns `false` could still run
1837
    /// searches more quickly than a regex for which `is_accelerated` returns
1838
    /// `true`.
1839
    ///
1840
    /// Whether a regex is marked as accelerated or not is dependent on
1841
    /// implementations details that may change in a semver compatible release.
1842
    /// That is, a regex that is accelerated in a `x.y.1` release might not be
1843
    /// accelerated in a `x.y.2` release.
1844
    ///
1845
    /// Basically, the value of acceleration boils down to a hedge: a hodge
1846
    /// podge of internal heuristics combine to make a probabilistic guess
1847
    /// that this regex search may run "fast." The value in knowing this from
1848
    /// a caller's perspective is that it may act as a signal that no further
1849
    /// work should be done to accelerate a search. For example, a grep-like
1850
    /// tool might try to do some extra work extracting literals from a regex
1851
    /// to create its own heuristic acceleration strategies. But it might
1852
    /// choose to defer to this crate's acceleration strategy if one exists.
1853
    /// This routine permits querying whether such a strategy is active for a
1854
    /// particular regex.
1855
    ///
1856
    /// # Example
1857
    ///
1858
    /// ```
1859
    /// use regex_automata::meta::Regex;
1860
    ///
1861
    /// // A simple literal is very likely to be accelerated.
1862
    /// let re = Regex::new(r"foo")?;
1863
    /// assert!(re.is_accelerated());
1864
    ///
1865
    /// // A regex with no literals is likely to not be accelerated.
1866
    /// let re = Regex::new(r"\w")?;
1867
    /// assert!(!re.is_accelerated());
1868
    ///
1869
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1870
    /// ```
1871
    #[inline]
1872
0
    pub fn is_accelerated(&self) -> bool {
1873
0
        self.imp.strat.is_accelerated()
1874
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::is_accelerated
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::is_accelerated
1875
1876
    /// Return the total approximate heap memory, in bytes, used by this `Regex`.
1877
    ///
1878
    /// Note that currently, there is no high level configuration for setting
1879
    /// a limit on the specific value returned by this routine. Instead, the
1880
    /// following routines can be used to control heap memory at a bit of a
1881
    /// lower level:
1882
    ///
1883
    /// * [`Config::nfa_size_limit`] controls how big _any_ of the NFAs are
1884
    /// allowed to be.
1885
    /// * [`Config::onepass_size_limit`] controls how big the one-pass DFA is
1886
    /// allowed to be.
1887
    /// * [`Config::hybrid_cache_capacity`] controls how much memory the lazy
1888
    /// DFA is permitted to allocate to store its transition table.
1889
    /// * [`Config::dfa_size_limit`] controls how big a fully compiled DFA is
1890
    /// allowed to be.
1891
    /// * [`Config::dfa_state_limit`] controls the conditions under which the
1892
    /// meta regex engine will even attempt to build a fully compiled DFA.
1893
    #[inline]
1894
0
    pub fn memory_usage(&self) -> usize {
1895
0
        self.imp.strat.memory_usage()
1896
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::memory_usage
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::memory_usage
1897
}
1898
1899
impl Clone for Regex {
1900
0
    fn clone(&self) -> Regex {
1901
0
        let imp = Arc::clone(&self.imp);
1902
0
        let pool = {
1903
0
            let strat = Arc::clone(&imp.strat);
1904
0
            let create: CachePoolFn = Box::new(move || strat.create_cache());
Unexecuted instantiation: <regex_automata::meta::regex::Regex as core::clone::Clone>::clone::{closure#0}
Unexecuted instantiation: <regex_automata::meta::regex::Regex as core::clone::Clone>::clone::{closure#0}
1905
0
            Pool::new(create)
1906
0
        };
1907
0
        Regex { imp, pool }
1908
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex as core::clone::Clone>::clone
Unexecuted instantiation: <regex_automata::meta::regex::Regex as core::clone::Clone>::clone
1909
}
1910
1911
#[derive(Clone, Debug)]
1912
pub(crate) struct RegexInfo(Arc<RegexInfoI>);
1913
1914
#[derive(Clone, Debug)]
1915
struct RegexInfoI {
1916
    config: Config,
1917
    props: Vec<hir::Properties>,
1918
    props_union: hir::Properties,
1919
}
1920
1921
impl RegexInfo {
1922
7
    fn new(config: Config, hirs: &[&Hir]) -> RegexInfo {
1923
7
        // Collect all of the properties from each of the HIRs, and also
1924
7
        // union them into one big set of properties representing all HIRs
1925
7
        // as if they were in one big alternation.
1926
7
        let mut props = vec![];
1927
7
        for hir in hirs.iter() {
1928
7
            props.push(hir.properties().clone());
1929
7
        }
1930
7
        let props_union = hir::Properties::union(&props);
1931
7
1932
7
        RegexInfo(Arc::new(RegexInfoI { config, props, props_union }))
1933
7
    }
<regex_automata::meta::regex::RegexInfo>::new
Line
Count
Source
1922
6
    fn new(config: Config, hirs: &[&Hir]) -> RegexInfo {
1923
6
        // Collect all of the properties from each of the HIRs, and also
1924
6
        // union them into one big set of properties representing all HIRs
1925
6
        // as if they were in one big alternation.
1926
6
        let mut props = vec![];
1927
6
        for hir in hirs.iter() {
1928
6
            props.push(hir.properties().clone());
1929
6
        }
1930
6
        let props_union = hir::Properties::union(&props);
1931
6
1932
6
        RegexInfo(Arc::new(RegexInfoI { config, props, props_union }))
1933
6
    }
<regex_automata::meta::regex::RegexInfo>::new
Line
Count
Source
1922
1
    fn new(config: Config, hirs: &[&Hir]) -> RegexInfo {
1923
1
        // Collect all of the properties from each of the HIRs, and also
1924
1
        // union them into one big set of properties representing all HIRs
1925
1
        // as if they were in one big alternation.
1926
1
        let mut props = vec![];
1927
1
        for hir in hirs.iter() {
1928
1
            props.push(hir.properties().clone());
1929
1
        }
1930
1
        let props_union = hir::Properties::union(&props);
1931
1
1932
1
        RegexInfo(Arc::new(RegexInfoI { config, props, props_union }))
1933
1
    }
1934
1935
81
    pub(crate) fn config(&self) -> &Config {
1936
81
        &self.0.config
1937
81
    }
<regex_automata::meta::regex::RegexInfo>::config
Line
Count
Source
1935
60
    pub(crate) fn config(&self) -> &Config {
1936
60
        &self.0.config
1937
60
    }
<regex_automata::meta::regex::RegexInfo>::config
Line
Count
Source
1935
21
    pub(crate) fn config(&self) -> &Config {
1936
21
        &self.0.config
1937
21
    }
1938
1939
0
    pub(crate) fn props(&self) -> &[hir::Properties] {
1940
0
        &self.0.props
1941
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::RegexInfo>::props
Unexecuted instantiation: <regex_automata::meta::regex::RegexInfo>::props
1942
1943
168k
    pub(crate) fn props_union(&self) -> &hir::Properties {
1944
168k
        &self.0.props_union
1945
168k
    }
<regex_automata::meta::regex::RegexInfo>::props_union
Line
Count
Source
1943
86.4k
    pub(crate) fn props_union(&self) -> &hir::Properties {
1944
86.4k
        &self.0.props_union
1945
86.4k
    }
<regex_automata::meta::regex::RegexInfo>::props_union
Line
Count
Source
1943
81.9k
    pub(crate) fn props_union(&self) -> &hir::Properties {
1944
81.9k
        &self.0.props_union
1945
81.9k
    }
1946
1947
0
    pub(crate) fn pattern_len(&self) -> usize {
1948
0
        self.props().len()
1949
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::RegexInfo>::pattern_len
Unexecuted instantiation: <regex_automata::meta::regex::RegexInfo>::pattern_len
1950
1951
0
    pub(crate) fn memory_usage(&self) -> usize {
1952
0
        self.props().iter().map(|p| p.memory_usage()).sum::<usize>()
Unexecuted instantiation: <regex_automata::meta::regex::RegexInfo>::memory_usage::{closure#0}
Unexecuted instantiation: <regex_automata::meta::regex::RegexInfo>::memory_usage::{closure#0}
1953
0
            + self.props_union().memory_usage()
1954
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::RegexInfo>::memory_usage
Unexecuted instantiation: <regex_automata::meta::regex::RegexInfo>::memory_usage
1955
1956
    /// Returns true when the search is guaranteed to be anchored. That is,
1957
    /// when a match is reported, its offset is guaranteed to correspond to
1958
    /// the start of the search.
1959
    ///
1960
    /// This includes returning true when `input` _isn't_ anchored but the
1961
    /// underlying regex is.
1962
    #[cfg_attr(feature = "perf-inline", inline(always))]
1963
33.6k
    pub(crate) fn is_anchored_start(&self, input: &Input<'_>) -> bool {
1964
33.6k
        input.get_anchored().is_anchored() || self.is_always_anchored_start()
1965
33.6k
    }
<regex_automata::meta::regex::RegexInfo>::is_anchored_start
Line
Count
Source
1963
17.2k
    pub(crate) fn is_anchored_start(&self, input: &Input<'_>) -> bool {
1964
17.2k
        input.get_anchored().is_anchored() || self.is_always_anchored_start()
1965
17.2k
    }
<regex_automata::meta::regex::RegexInfo>::is_anchored_start
Line
Count
Source
1963
16.3k
    pub(crate) fn is_anchored_start(&self, input: &Input<'_>) -> bool {
1964
16.3k
        input.get_anchored().is_anchored() || self.is_always_anchored_start()
1965
16.3k
    }
1966
1967
    /// Returns true when this regex is always anchored to the start of a
1968
    /// search. And in particular, that regardless of an `Input` configuration,
1969
    /// if any match is reported it must start at `0`.
1970
    #[cfg_attr(feature = "perf-inline", inline(always))]
1971
33.6k
    pub(crate) fn is_always_anchored_start(&self) -> bool {
1972
        use regex_syntax::hir::Look;
1973
33.6k
        self.props_union().look_set_prefix().contains(Look::Start)
1974
33.6k
    }
<regex_automata::meta::regex::RegexInfo>::is_always_anchored_start
Line
Count
Source
1971
17.3k
    pub(crate) fn is_always_anchored_start(&self) -> bool {
1972
        use regex_syntax::hir::Look;
1973
17.3k
        self.props_union().look_set_prefix().contains(Look::Start)
1974
17.3k
    }
<regex_automata::meta::regex::RegexInfo>::is_always_anchored_start
Line
Count
Source
1971
16.3k
    pub(crate) fn is_always_anchored_start(&self) -> bool {
1972
        use regex_syntax::hir::Look;
1973
16.3k
        self.props_union().look_set_prefix().contains(Look::Start)
1974
16.3k
    }
1975
1976
    /// Returns true when this regex is always anchored to the end of a
1977
    /// search. And in particular, that regardless of an `Input` configuration,
1978
    /// if any match is reported it must end at the end of the haystack.
1979
    #[cfg_attr(feature = "perf-inline", inline(always))]
1980
33.6k
    pub(crate) fn is_always_anchored_end(&self) -> bool {
1981
        use regex_syntax::hir::Look;
1982
33.6k
        self.props_union().look_set_suffix().contains(Look::End)
1983
33.6k
    }
<regex_automata::meta::regex::RegexInfo>::is_always_anchored_end
Line
Count
Source
1980
17.2k
    pub(crate) fn is_always_anchored_end(&self) -> bool {
1981
        use regex_syntax::hir::Look;
1982
17.2k
        self.props_union().look_set_suffix().contains(Look::End)
1983
17.2k
    }
<regex_automata::meta::regex::RegexInfo>::is_always_anchored_end
Line
Count
Source
1980
16.3k
    pub(crate) fn is_always_anchored_end(&self) -> bool {
1981
        use regex_syntax::hir::Look;
1982
16.3k
        self.props_union().look_set_suffix().contains(Look::End)
1983
16.3k
    }
1984
1985
    /// Returns true if and only if it is known that a match is impossible
1986
    /// for the given input. This is useful for short-circuiting and avoiding
1987
    /// running the regex engine if it's known no match can be reported.
1988
    ///
1989
    /// Note that this doesn't necessarily detect every possible case. For
1990
    /// example, when `pattern_len() == 0`, a match is impossible, but that
1991
    /// case is so rare that it's fine to be handled by the regex engine
1992
    /// itself. That is, it's not worth the cost of adding it here in order to
1993
    /// make it a little faster. The reason is that this is called for every
1994
    /// search. so there is some cost to adding checks here. Arguably, some of
1995
    /// the checks that are here already probably shouldn't be here...
1996
    #[cfg_attr(feature = "perf-inline", inline(always))]
1997
33.6k
    fn is_impossible(&self, input: &Input<'_>) -> bool {
1998
33.6k
        // The underlying regex is anchored, so if we don't start the search
1999
33.6k
        // at position 0, a match is impossible, because the anchor can only
2000
33.6k
        // match at position 0.
2001
33.6k
        if input.start() > 0 && self.is_always_anchored_start() {
2002
0
            return true;
2003
33.6k
        }
2004
33.6k
        // Same idea, but for the end anchor.
2005
33.6k
        if input.end() < input.haystack().len()
2006
0
            && self.is_always_anchored_end()
2007
        {
2008
0
            return true;
2009
33.6k
        }
2010
        // If the haystack is smaller than the minimum length required, then
2011
        // we know there can be no match.
2012
33.6k
        let minlen = match self.props_union().minimum_len() {
2013
0
            None => return false,
2014
33.6k
            Some(minlen) => minlen,
2015
33.6k
        };
2016
33.6k
        if input.get_span().len() < minlen {
2017
0
            return true;
2018
33.6k
        }
2019
33.6k
        // Same idea as minimum, but for maximum. This is trickier. We can
2020
33.6k
        // only apply the maximum when we know the entire span that we're
2021
33.6k
        // searching *has* to match according to the regex (and possibly the
2022
33.6k
        // input configuration). If we know there is too much for the regex
2023
33.6k
        // to match, we can bail early.
2024
33.6k
        //
2025
33.6k
        // I don't think we can apply the maximum otherwise unfortunately.
2026
33.6k
        if self.is_anchored_start(input) && self.is_always_anchored_end() {
2027
33.6k
            let maxlen = match self.props_union().maximum_len() {
2028
33.6k
                None => return false,
2029
0
                Some(maxlen) => maxlen,
2030
0
            };
2031
0
            if input.get_span().len() > maxlen {
2032
0
                return true;
2033
0
            }
2034
0
        }
2035
0
        false
2036
33.6k
    }
<regex_automata::meta::regex::RegexInfo>::is_impossible
Line
Count
Source
1997
17.2k
    fn is_impossible(&self, input: &Input<'_>) -> bool {
1998
17.2k
        // The underlying regex is anchored, so if we don't start the search
1999
17.2k
        // at position 0, a match is impossible, because the anchor can only
2000
17.2k
        // match at position 0.
2001
17.2k
        if input.start() > 0 && self.is_always_anchored_start() {
2002
0
            return true;
2003
17.2k
        }
2004
17.2k
        // Same idea, but for the end anchor.
2005
17.2k
        if input.end() < input.haystack().len()
2006
0
            && self.is_always_anchored_end()
2007
        {
2008
0
            return true;
2009
17.2k
        }
2010
        // If the haystack is smaller than the minimum length required, then
2011
        // we know there can be no match.
2012
17.2k
        let minlen = match self.props_union().minimum_len() {
2013
0
            None => return false,
2014
17.2k
            Some(minlen) => minlen,
2015
17.2k
        };
2016
17.2k
        if input.get_span().len() < minlen {
2017
0
            return true;
2018
17.2k
        }
2019
17.2k
        // Same idea as minimum, but for maximum. This is trickier. We can
2020
17.2k
        // only apply the maximum when we know the entire span that we're
2021
17.2k
        // searching *has* to match according to the regex (and possibly the
2022
17.2k
        // input configuration). If we know there is too much for the regex
2023
17.2k
        // to match, we can bail early.
2024
17.2k
        //
2025
17.2k
        // I don't think we can apply the maximum otherwise unfortunately.
2026
17.2k
        if self.is_anchored_start(input) && self.is_always_anchored_end() {
2027
17.2k
            let maxlen = match self.props_union().maximum_len() {
2028
17.2k
                None => return false,
2029
0
                Some(maxlen) => maxlen,
2030
0
            };
2031
0
            if input.get_span().len() > maxlen {
2032
0
                return true;
2033
0
            }
2034
0
        }
2035
0
        false
2036
17.2k
    }
<regex_automata::meta::regex::RegexInfo>::is_impossible
Line
Count
Source
1997
16.3k
    fn is_impossible(&self, input: &Input<'_>) -> bool {
1998
16.3k
        // The underlying regex is anchored, so if we don't start the search
1999
16.3k
        // at position 0, a match is impossible, because the anchor can only
2000
16.3k
        // match at position 0.
2001
16.3k
        if input.start() > 0 && self.is_always_anchored_start() {
2002
0
            return true;
2003
16.3k
        }
2004
16.3k
        // Same idea, but for the end anchor.
2005
16.3k
        if input.end() < input.haystack().len()
2006
0
            && self.is_always_anchored_end()
2007
        {
2008
0
            return true;
2009
16.3k
        }
2010
        // If the haystack is smaller than the minimum length required, then
2011
        // we know there can be no match.
2012
16.3k
        let minlen = match self.props_union().minimum_len() {
2013
0
            None => return false,
2014
16.3k
            Some(minlen) => minlen,
2015
16.3k
        };
2016
16.3k
        if input.get_span().len() < minlen {
2017
0
            return true;
2018
16.3k
        }
2019
16.3k
        // Same idea as minimum, but for maximum. This is trickier. We can
2020
16.3k
        // only apply the maximum when we know the entire span that we're
2021
16.3k
        // searching *has* to match according to the regex (and possibly the
2022
16.3k
        // input configuration). If we know there is too much for the regex
2023
16.3k
        // to match, we can bail early.
2024
16.3k
        //
2025
16.3k
        // I don't think we can apply the maximum otherwise unfortunately.
2026
16.3k
        if self.is_anchored_start(input) && self.is_always_anchored_end() {
2027
16.3k
            let maxlen = match self.props_union().maximum_len() {
2028
16.3k
                None => return false,
2029
0
                Some(maxlen) => maxlen,
2030
0
            };
2031
0
            if input.get_span().len() > maxlen {
2032
0
                return true;
2033
0
            }
2034
0
        }
2035
0
        false
2036
16.3k
    }
2037
}
2038
2039
/// An iterator over all non-overlapping matches.
2040
///
2041
/// The iterator yields a [`Match`] value until no more matches could be found.
2042
///
2043
/// The lifetime parameters are as follows:
2044
///
2045
/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2046
/// * `'h` represents the lifetime of the haystack being searched.
2047
///
2048
/// This iterator can be created with the [`Regex::find_iter`] method.
2049
#[derive(Debug)]
2050
pub struct FindMatches<'r, 'h> {
2051
    re: &'r Regex,
2052
    cache: CachePoolGuard<'r>,
2053
    it: iter::Searcher<'h>,
2054
}
2055
2056
impl<'r, 'h> FindMatches<'r, 'h> {
2057
    /// Returns the `Regex` value that created this iterator.
2058
    #[inline]
2059
0
    pub fn regex(&self) -> &'r Regex {
2060
0
        self.re
2061
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::FindMatches>::regex
Unexecuted instantiation: <regex_automata::meta::regex::FindMatches>::regex
2062
2063
    /// Returns the current `Input` associated with this iterator.
2064
    ///
2065
    /// The `start` position on the given `Input` may change during iteration,
2066
    /// but all other values are guaranteed to remain invariant.
2067
    #[inline]
2068
0
    pub fn input<'s>(&'s self) -> &'s Input<'h> {
2069
0
        self.it.input()
2070
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::FindMatches>::input
Unexecuted instantiation: <regex_automata::meta::regex::FindMatches>::input
2071
}
2072
2073
impl<'r, 'h> Iterator for FindMatches<'r, 'h> {
2074
    type Item = Match;
2075
2076
    #[inline]
2077
0
    fn next(&mut self) -> Option<Match> {
2078
0
        let FindMatches { re, ref mut cache, ref mut it } = *self;
2079
0
        it.advance(|input| Ok(re.search_with(cache, input)))
Unexecuted instantiation: <regex_automata::meta::regex::FindMatches as core::iter::traits::iterator::Iterator>::next::{closure#0}
Unexecuted instantiation: <regex_automata::meta::regex::FindMatches as core::iter::traits::iterator::Iterator>::next::{closure#0}
2080
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::FindMatches as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex_automata::meta::regex::FindMatches as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex_automata::meta::regex::FindMatches as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex_automata::meta::regex::FindMatches as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex_automata::meta::regex::FindMatches as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex_automata::meta::regex::FindMatches as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex_automata::meta::regex::FindMatches as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex_automata::meta::regex::FindMatches as core::iter::traits::iterator::Iterator>::next
2081
2082
    #[inline]
2083
0
    fn count(self) -> usize {
2084
0
        // If all we care about is a count of matches, then we only need to
2085
0
        // find the end position of each match. This can give us a 2x perf
2086
0
        // boost in some cases, because it avoids needing to do a reverse scan
2087
0
        // to find the start of a match.
2088
0
        let FindMatches { re, mut cache, it } = self;
2089
0
        // This does the deref for PoolGuard once instead of every iter.
2090
0
        let cache = &mut *cache;
2091
0
        it.into_half_matches_iter(
2092
0
            |input| Ok(re.search_half_with(cache, input)),
Unexecuted instantiation: <regex_automata::meta::regex::FindMatches as core::iter::traits::iterator::Iterator>::count::{closure#0}
Unexecuted instantiation: <regex_automata::meta::regex::FindMatches as core::iter::traits::iterator::Iterator>::count::{closure#0}
2093
0
        )
2094
0
        .count()
2095
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::FindMatches as core::iter::traits::iterator::Iterator>::count
Unexecuted instantiation: <regex_automata::meta::regex::FindMatches as core::iter::traits::iterator::Iterator>::count
2096
}
2097
2098
impl<'r, 'h> core::iter::FusedIterator for FindMatches<'r, 'h> {}
2099
2100
/// An iterator over all non-overlapping leftmost matches with their capturing
2101
/// groups.
2102
///
2103
/// The iterator yields a [`Captures`] value until no more matches could be
2104
/// found.
2105
///
2106
/// The lifetime parameters are as follows:
2107
///
2108
/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2109
/// * `'h` represents the lifetime of the haystack being searched.
2110
///
2111
/// This iterator can be created with the [`Regex::captures_iter`] method.
2112
#[derive(Debug)]
2113
pub struct CapturesMatches<'r, 'h> {
2114
    re: &'r Regex,
2115
    cache: CachePoolGuard<'r>,
2116
    caps: Captures,
2117
    it: iter::Searcher<'h>,
2118
}
2119
2120
impl<'r, 'h> CapturesMatches<'r, 'h> {
2121
    /// Returns the `Regex` value that created this iterator.
2122
    #[inline]
2123
0
    pub fn regex(&self) -> &'r Regex {
2124
0
        self.re
2125
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::CapturesMatches>::regex
Unexecuted instantiation: <regex_automata::meta::regex::CapturesMatches>::regex
2126
2127
    /// Returns the current `Input` associated with this iterator.
2128
    ///
2129
    /// The `start` position on the given `Input` may change during iteration,
2130
    /// but all other values are guaranteed to remain invariant.
2131
    #[inline]
2132
0
    pub fn input<'s>(&'s self) -> &'s Input<'h> {
2133
0
        self.it.input()
2134
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::CapturesMatches>::input
Unexecuted instantiation: <regex_automata::meta::regex::CapturesMatches>::input
2135
}
2136
2137
impl<'r, 'h> Iterator for CapturesMatches<'r, 'h> {
2138
    type Item = Captures;
2139
2140
    #[inline]
2141
0
    fn next(&mut self) -> Option<Captures> {
2142
0
        // Splitting 'self' apart seems necessary to appease borrowck.
2143
0
        let CapturesMatches { re, ref mut cache, ref mut caps, ref mut it } =
2144
0
            *self;
2145
0
        let _ = it.advance(|input| {
2146
0
            re.search_captures_with(cache, input, caps);
2147
0
            Ok(caps.get_match())
2148
0
        });
Unexecuted instantiation: <regex_automata::meta::regex::CapturesMatches as core::iter::traits::iterator::Iterator>::next::{closure#0}
Unexecuted instantiation: <regex_automata::meta::regex::CapturesMatches as core::iter::traits::iterator::Iterator>::next::{closure#0}
2149
0
        if caps.is_match() {
2150
0
            Some(caps.clone())
2151
        } else {
2152
0
            None
2153
        }
2154
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::CapturesMatches as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex_automata::meta::regex::CapturesMatches as core::iter::traits::iterator::Iterator>::next
2155
2156
    #[inline]
2157
0
    fn count(self) -> usize {
2158
0
        let CapturesMatches { re, mut cache, it, .. } = self;
2159
0
        // This does the deref for PoolGuard once instead of every iter.
2160
0
        let cache = &mut *cache;
2161
0
        it.into_half_matches_iter(
2162
0
            |input| Ok(re.search_half_with(cache, input)),
Unexecuted instantiation: <regex_automata::meta::regex::CapturesMatches as core::iter::traits::iterator::Iterator>::count::{closure#0}
Unexecuted instantiation: <regex_automata::meta::regex::CapturesMatches as core::iter::traits::iterator::Iterator>::count::{closure#0}
2163
0
        )
2164
0
        .count()
2165
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::CapturesMatches as core::iter::traits::iterator::Iterator>::count
Unexecuted instantiation: <regex_automata::meta::regex::CapturesMatches as core::iter::traits::iterator::Iterator>::count
2166
}
2167
2168
impl<'r, 'h> core::iter::FusedIterator for CapturesMatches<'r, 'h> {}
2169
2170
/// Yields all substrings delimited by a regular expression match.
2171
///
2172
/// The spans correspond to the offsets between matches.
2173
///
2174
/// The lifetime parameters are as follows:
2175
///
2176
/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2177
/// * `'h` represents the lifetime of the haystack being searched.
2178
///
2179
/// This iterator can be created with the [`Regex::split`] method.
2180
#[derive(Debug)]
2181
pub struct Split<'r, 'h> {
2182
    finder: FindMatches<'r, 'h>,
2183
    last: usize,
2184
}
2185
2186
impl<'r, 'h> Split<'r, 'h> {
2187
    /// Returns the current `Input` associated with this iterator.
2188
    ///
2189
    /// The `start` position on the given `Input` may change during iteration,
2190
    /// but all other values are guaranteed to remain invariant.
2191
    #[inline]
2192
0
    pub fn input<'s>(&'s self) -> &'s Input<'h> {
2193
0
        self.finder.input()
2194
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Split>::input
Unexecuted instantiation: <regex_automata::meta::regex::Split>::input
2195
}
2196
2197
impl<'r, 'h> Iterator for Split<'r, 'h> {
2198
    type Item = Span;
2199
2200
0
    fn next(&mut self) -> Option<Span> {
2201
0
        match self.finder.next() {
2202
            None => {
2203
0
                let len = self.finder.it.input().haystack().len();
2204
0
                if self.last > len {
2205
0
                    None
2206
                } else {
2207
0
                    let span = Span::from(self.last..len);
2208
0
                    self.last = len + 1; // Next call will return None
2209
0
                    Some(span)
2210
                }
2211
            }
2212
0
            Some(m) => {
2213
0
                let span = Span::from(self.last..m.start());
2214
0
                self.last = m.end();
2215
0
                Some(span)
2216
            }
2217
        }
2218
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Split as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex_automata::meta::regex::Split as core::iter::traits::iterator::Iterator>::next
2219
}
2220
2221
impl<'r, 'h> core::iter::FusedIterator for Split<'r, 'h> {}
2222
2223
/// Yields at most `N` spans delimited by a regular expression match.
2224
///
2225
/// The spans correspond to the offsets between matches. The last span will be
2226
/// whatever remains after splitting.
2227
///
2228
/// The lifetime parameters are as follows:
2229
///
2230
/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2231
/// * `'h` represents the lifetime of the haystack being searched.
2232
///
2233
/// This iterator can be created with the [`Regex::splitn`] method.
2234
#[derive(Debug)]
2235
pub struct SplitN<'r, 'h> {
2236
    splits: Split<'r, 'h>,
2237
    limit: usize,
2238
}
2239
2240
impl<'r, 'h> SplitN<'r, 'h> {
2241
    /// Returns the current `Input` associated with this iterator.
2242
    ///
2243
    /// The `start` position on the given `Input` may change during iteration,
2244
    /// but all other values are guaranteed to remain invariant.
2245
    #[inline]
2246
0
    pub fn input<'s>(&'s self) -> &'s Input<'h> {
2247
0
        self.splits.input()
2248
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::SplitN>::input
Unexecuted instantiation: <regex_automata::meta::regex::SplitN>::input
2249
}
2250
2251
impl<'r, 'h> Iterator for SplitN<'r, 'h> {
2252
    type Item = Span;
2253
2254
0
    fn next(&mut self) -> Option<Span> {
2255
0
        if self.limit == 0 {
2256
0
            return None;
2257
0
        }
2258
0
2259
0
        self.limit -= 1;
2260
0
        if self.limit > 0 {
2261
0
            return self.splits.next();
2262
0
        }
2263
0
2264
0
        let len = self.splits.finder.it.input().haystack().len();
2265
0
        if self.splits.last > len {
2266
            // We've already returned all substrings.
2267
0
            None
2268
        } else {
2269
            // self.n == 0, so future calls will return None immediately
2270
0
            Some(Span::from(self.splits.last..len))
2271
        }
2272
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::SplitN as core::iter::traits::iterator::Iterator>::next
Unexecuted instantiation: <regex_automata::meta::regex::SplitN as core::iter::traits::iterator::Iterator>::next
2273
2274
0
    fn size_hint(&self) -> (usize, Option<usize>) {
2275
0
        (0, Some(self.limit))
2276
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::SplitN as core::iter::traits::iterator::Iterator>::size_hint
Unexecuted instantiation: <regex_automata::meta::regex::SplitN as core::iter::traits::iterator::Iterator>::size_hint
2277
}
2278
2279
impl<'r, 'h> core::iter::FusedIterator for SplitN<'r, 'h> {}
2280
2281
/// Represents mutable scratch space used by regex engines during a search.
2282
///
2283
/// Most of the regex engines in this crate require some kind of
2284
/// mutable state in order to execute a search. This mutable state is
2285
/// explicitly separated from the core regex object (such as a
2286
/// [`thompson::NFA`](crate::nfa::thompson::NFA)) so that the read-only regex
2287
/// object can be shared across multiple threads simultaneously without any
2288
/// synchronization. Conversely, a `Cache` must either be duplicated if using
2289
/// the same `Regex` from multiple threads, or else there must be some kind of
2290
/// synchronization that guarantees exclusive access while it's in use by one
2291
/// thread.
2292
///
2293
/// A `Regex` attempts to do this synchronization for you by using a thread
2294
/// pool internally. Its size scales roughly with the number of simultaneous
2295
/// regex searches.
2296
///
2297
/// For cases where one does not want to rely on a `Regex`'s internal thread
2298
/// pool, lower level routines such as [`Regex::search_with`] are provided
2299
/// that permit callers to pass a `Cache` into the search routine explicitly.
2300
///
2301
/// General advice is that the thread pool is often more than good enough.
2302
/// However, it may be possible to observe the effects of its latency,
2303
/// especially when searching many small haystacks from many threads
2304
/// simultaneously.
2305
///
2306
/// Caches can be created from their corresponding `Regex` via
2307
/// [`Regex::create_cache`]. A cache can only be used with either the `Regex`
2308
/// that created it, or the `Regex` that was most recently used to reset it
2309
/// with [`Cache::reset`]. Using a cache with any other `Regex` may result in
2310
/// panics or incorrect results.
2311
///
2312
/// # Example
2313
///
2314
/// ```
2315
/// use regex_automata::{meta::Regex, Input, Match};
2316
///
2317
/// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?;
2318
/// let mut cache = re.create_cache();
2319
/// let input = Input::new("crazy janey and her mission man");
2320
/// assert_eq!(
2321
///     Some(Match::must(0, 20..31)),
2322
///     re.search_with(&mut cache, &input),
2323
/// );
2324
///
2325
/// # Ok::<(), Box<dyn std::error::Error>>(())
2326
/// ```
2327
#[derive(Debug, Clone)]
2328
pub struct Cache {
2329
    pub(crate) capmatches: Captures,
2330
    pub(crate) pikevm: wrappers::PikeVMCache,
2331
    pub(crate) backtrack: wrappers::BoundedBacktrackerCache,
2332
    pub(crate) onepass: wrappers::OnePassCache,
2333
    pub(crate) hybrid: wrappers::HybridCache,
2334
    pub(crate) revhybrid: wrappers::ReverseHybridCache,
2335
}
2336
2337
impl Cache {
2338
    /// Creates a new `Cache` for use with this regex.
2339
    ///
2340
    /// The cache returned should only be used for searches for the given
2341
    /// `Regex`. If you want to reuse the cache for another `Regex`, then you
2342
    /// must call [`Cache::reset`] with that `Regex`.
2343
0
    pub fn new(re: &Regex) -> Cache {
2344
0
        re.create_cache()
2345
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Cache>::new
Unexecuted instantiation: <regex_automata::meta::regex::Cache>::new
2346
2347
    /// Reset this cache such that it can be used for searching with the given
2348
    /// `Regex` (and only that `Regex`).
2349
    ///
2350
    /// A cache reset permits potentially reusing memory already allocated in
2351
    /// this cache with a different `Regex`.
2352
    ///
2353
    /// # Example
2354
    ///
2355
    /// This shows how to re-purpose a cache for use with a different `Regex`.
2356
    ///
2357
    /// ```
2358
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2359
    /// use regex_automata::{meta::Regex, Match, Input};
2360
    ///
2361
    /// let re1 = Regex::new(r"\w")?;
2362
    /// let re2 = Regex::new(r"\W")?;
2363
    ///
2364
    /// let mut cache = re1.create_cache();
2365
    /// assert_eq!(
2366
    ///     Some(Match::must(0, 0..2)),
2367
    ///     re1.search_with(&mut cache, &Input::new("Δ")),
2368
    /// );
2369
    ///
2370
    /// // Using 'cache' with re2 is not allowed. It may result in panics or
2371
    /// // incorrect results. In order to re-purpose the cache, we must reset
2372
    /// // it with the Regex we'd like to use it with.
2373
    /// //
2374
    /// // Similarly, after this reset, using the cache with 're1' is also not
2375
    /// // allowed.
2376
    /// cache.reset(&re2);
2377
    /// assert_eq!(
2378
    ///     Some(Match::must(0, 0..3)),
2379
    ///     re2.search_with(&mut cache, &Input::new("☃")),
2380
    /// );
2381
    ///
2382
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2383
    /// ```
2384
0
    pub fn reset(&mut self, re: &Regex) {
2385
0
        re.imp.strat.reset_cache(self)
2386
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Cache>::reset
Unexecuted instantiation: <regex_automata::meta::regex::Cache>::reset
2387
2388
    /// Returns the heap memory usage, in bytes, of this cache.
2389
    ///
2390
    /// This does **not** include the stack size used up by this cache. To
2391
    /// compute that, use `std::mem::size_of::<Cache>()`.
2392
0
    pub fn memory_usage(&self) -> usize {
2393
0
        let mut bytes = 0;
2394
0
        bytes += self.pikevm.memory_usage();
2395
0
        bytes += self.backtrack.memory_usage();
2396
0
        bytes += self.onepass.memory_usage();
2397
0
        bytes += self.hybrid.memory_usage();
2398
0
        bytes += self.revhybrid.memory_usage();
2399
0
        bytes
2400
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Cache>::memory_usage
Unexecuted instantiation: <regex_automata::meta::regex::Cache>::memory_usage
2401
}
2402
2403
/// An object describing the configuration of a `Regex`.
2404
///
2405
/// This configuration only includes options for the
2406
/// non-syntax behavior of a `Regex`, and can be applied via the
2407
/// [`Builder::configure`] method. For configuring the syntax options, see
2408
/// [`util::syntax::Config`](crate::util::syntax::Config).
2409
///
2410
/// # Example: lower the NFA size limit
2411
///
2412
/// In some cases, the default size limit might be too big. The size limit can
2413
/// be lowered, which will prevent large regex patterns from compiling.
2414
///
2415
/// ```
2416
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
2417
/// use regex_automata::meta::Regex;
2418
///
2419
/// let result = Regex::builder()
2420
///     .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
2421
///     // Not even 20KB is enough to build a single large Unicode class!
2422
///     .build(r"\pL");
2423
/// assert!(result.is_err());
2424
///
2425
/// # Ok::<(), Box<dyn std::error::Error>>(())
2426
/// ```
2427
#[derive(Clone, Debug, Default)]
2428
pub struct Config {
2429
    // As with other configuration types in this crate, we put all our knobs
2430
    // in options so that we can distinguish between "default" and "not set."
2431
    // This makes it possible to easily combine multiple configurations
2432
    // without default values overwriting explicitly specified values. See the
2433
    // 'overwrite' method.
2434
    //
2435
    // For docs on the fields below, see the corresponding method setters.
2436
    match_kind: Option<MatchKind>,
2437
    utf8_empty: Option<bool>,
2438
    autopre: Option<bool>,
2439
    pre: Option<Option<Prefilter>>,
2440
    which_captures: Option<WhichCaptures>,
2441
    nfa_size_limit: Option<Option<usize>>,
2442
    onepass_size_limit: Option<Option<usize>>,
2443
    hybrid_cache_capacity: Option<usize>,
2444
    hybrid: Option<bool>,
2445
    dfa: Option<bool>,
2446
    dfa_size_limit: Option<Option<usize>>,
2447
    dfa_state_limit: Option<Option<usize>>,
2448
    onepass: Option<bool>,
2449
    backtrack: Option<bool>,
2450
    byte_classes: Option<bool>,
2451
    line_terminator: Option<u8>,
2452
}
2453
2454
impl Config {
2455
    /// Create a new configuration object for a `Regex`.
2456
7
    pub fn new() -> Config {
2457
7
        Config::default()
2458
7
    }
<regex_automata::meta::regex::Config>::new
Line
Count
Source
2456
6
    pub fn new() -> Config {
2457
6
        Config::default()
2458
6
    }
<regex_automata::meta::regex::Config>::new
Line
Count
Source
2456
1
    pub fn new() -> Config {
2457
1
        Config::default()
2458
1
    }
2459
2460
    /// Set the match semantics for a `Regex`.
2461
    ///
2462
    /// The default value is [`MatchKind::LeftmostFirst`].
2463
    ///
2464
    /// # Example
2465
    ///
2466
    /// ```
2467
    /// use regex_automata::{meta::Regex, Match, MatchKind};
2468
    ///
2469
    /// // By default, leftmost-first semantics are used, which
2470
    /// // disambiguates matches at the same position by selecting
2471
    /// // the one that corresponds earlier in the pattern.
2472
    /// let re = Regex::new("sam|samwise")?;
2473
    /// assert_eq!(Some(Match::must(0, 0..3)), re.find("samwise"));
2474
    ///
2475
    /// // But with 'all' semantics, match priority is ignored
2476
    /// // and all match states are included. When coupled with
2477
    /// // a leftmost search, the search will report the last
2478
    /// // possible match.
2479
    /// let re = Regex::builder()
2480
    ///     .configure(Regex::config().match_kind(MatchKind::All))
2481
    ///     .build("sam|samwise")?;
2482
    /// assert_eq!(Some(Match::must(0, 0..7)), re.find("samwise"));
2483
    /// // Beware that this can lead to skipping matches!
2484
    /// // Usually 'all' is used for anchored reverse searches
2485
    /// // only, or for overlapping searches.
2486
    /// assert_eq!(Some(Match::must(0, 4..11)), re.find("sam samwise"));
2487
    ///
2488
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2489
    /// ```
2490
7
    pub fn match_kind(self, kind: MatchKind) -> Config {
2491
7
        Config { match_kind: Some(kind), ..self }
2492
7
    }
<regex_automata::meta::regex::Config>::match_kind
Line
Count
Source
2490
6
    pub fn match_kind(self, kind: MatchKind) -> Config {
2491
6
        Config { match_kind: Some(kind), ..self }
2492
6
    }
<regex_automata::meta::regex::Config>::match_kind
Line
Count
Source
2490
1
    pub fn match_kind(self, kind: MatchKind) -> Config {
2491
1
        Config { match_kind: Some(kind), ..self }
2492
1
    }
2493
2494
    /// Toggles whether empty matches are permitted to occur between the code
2495
    /// units of a UTF-8 encoded codepoint.
2496
    ///
2497
    /// This should generally be enabled when search a `&str` or anything that
2498
    /// you otherwise know is valid UTF-8. It should be disabled in all other
2499
    /// cases. Namely, if the haystack is not valid UTF-8 and this is enabled,
2500
    /// then behavior is unspecified.
2501
    ///
2502
    /// By default, this is enabled.
2503
    ///
2504
    /// # Example
2505
    ///
2506
    /// ```
2507
    /// use regex_automata::{meta::Regex, Match};
2508
    ///
2509
    /// let re = Regex::new("")?;
2510
    /// let got: Vec<Match> = re.find_iter("☃").collect();
2511
    /// // Matches only occur at the beginning and end of the snowman.
2512
    /// assert_eq!(got, vec![
2513
    ///     Match::must(0, 0..0),
2514
    ///     Match::must(0, 3..3),
2515
    /// ]);
2516
    ///
2517
    /// let re = Regex::builder()
2518
    ///     .configure(Regex::config().utf8_empty(false))
2519
    ///     .build("")?;
2520
    /// let got: Vec<Match> = re.find_iter("☃").collect();
2521
    /// // Matches now occur at every position!
2522
    /// assert_eq!(got, vec![
2523
    ///     Match::must(0, 0..0),
2524
    ///     Match::must(0, 1..1),
2525
    ///     Match::must(0, 2..2),
2526
    ///     Match::must(0, 3..3),
2527
    /// ]);
2528
    ///
2529
    /// Ok::<(), Box<dyn std::error::Error>>(())
2530
    /// ```
2531
7
    pub fn utf8_empty(self, yes: bool) -> Config {
2532
7
        Config { utf8_empty: Some(yes), ..self }
2533
7
    }
<regex_automata::meta::regex::Config>::utf8_empty
Line
Count
Source
2531
6
    pub fn utf8_empty(self, yes: bool) -> Config {
2532
6
        Config { utf8_empty: Some(yes), ..self }
2533
6
    }
<regex_automata::meta::regex::Config>::utf8_empty
Line
Count
Source
2531
1
    pub fn utf8_empty(self, yes: bool) -> Config {
2532
1
        Config { utf8_empty: Some(yes), ..self }
2533
1
    }
2534
2535
    /// Toggles whether automatic prefilter support is enabled.
2536
    ///
2537
    /// If this is disabled and [`Config::prefilter`] is not set, then the
2538
    /// meta regex engine will not use any prefilters. This can sometimes
2539
    /// be beneficial in cases where you know (or have measured) that the
2540
    /// prefilter leads to overall worse search performance.
2541
    ///
2542
    /// By default, this is enabled.
2543
    ///
2544
    /// # Example
2545
    ///
2546
    /// ```
2547
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2548
    /// use regex_automata::{meta::Regex, Match};
2549
    ///
2550
    /// let re = Regex::builder()
2551
    ///     .configure(Regex::config().auto_prefilter(false))
2552
    ///     .build(r"Bruce \w+")?;
2553
    /// let hay = "Hello Bruce Springsteen!";
2554
    /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay));
2555
    ///
2556
    /// Ok::<(), Box<dyn std::error::Error>>(())
2557
    /// ```
2558
0
    pub fn auto_prefilter(self, yes: bool) -> Config {
2559
0
        Config { autopre: Some(yes), ..self }
2560
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::auto_prefilter
Unexecuted instantiation: <regex_automata::meta::regex::Config>::auto_prefilter
2561
2562
    /// Overrides and sets the prefilter to use inside a `Regex`.
2563
    ///
2564
    /// This permits one to forcefully set a prefilter in cases where the
2565
    /// caller knows better than whatever the automatic prefilter logic is
2566
    /// capable of.
2567
    ///
2568
    /// By default, this is set to `None` and an automatic prefilter will be
2569
    /// used if one could be built. (Assuming [`Config::auto_prefilter`] is
2570
    /// enabled, which it is by default.)
2571
    ///
2572
    /// # Example
2573
    ///
2574
    /// This example shows how to set your own prefilter. In the case of a
2575
    /// pattern like `Bruce \w+`, the automatic prefilter is likely to be
2576
    /// constructed in a way that it will look for occurrences of `Bruce `.
2577
    /// In most cases, this is the best choice. But in some cases, it may be
2578
    /// the case that running `memchr` on `B` is the best choice. One can
2579
    /// achieve that behavior by overriding the automatic prefilter logic
2580
    /// and providing a prefilter that just matches `B`.
2581
    ///
2582
    /// ```
2583
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2584
    /// use regex_automata::{
2585
    ///     meta::Regex,
2586
    ///     util::prefilter::Prefilter,
2587
    ///     Match, MatchKind,
2588
    /// };
2589
    ///
2590
    /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["B"])
2591
    ///     .expect("a prefilter");
2592
    /// let re = Regex::builder()
2593
    ///     .configure(Regex::config().prefilter(Some(pre)))
2594
    ///     .build(r"Bruce \w+")?;
2595
    /// let hay = "Hello Bruce Springsteen!";
2596
    /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay));
2597
    ///
2598
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2599
    /// ```
2600
    ///
2601
    /// # Example: incorrect prefilters can lead to incorrect results!
2602
    ///
2603
    /// Be warned that setting an incorrect prefilter can lead to missed
2604
    /// matches. So if you use this option, ensure your prefilter can _never_
2605
    /// report false negatives. (A false positive is, on the other hand, quite
2606
    /// okay and generally unavoidable.)
2607
    ///
2608
    /// ```
2609
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2610
    /// use regex_automata::{
2611
    ///     meta::Regex,
2612
    ///     util::prefilter::Prefilter,
2613
    ///     Match, MatchKind,
2614
    /// };
2615
    ///
2616
    /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["Z"])
2617
    ///     .expect("a prefilter");
2618
    /// let re = Regex::builder()
2619
    ///     .configure(Regex::config().prefilter(Some(pre)))
2620
    ///     .build(r"Bruce \w+")?;
2621
    /// let hay = "Hello Bruce Springsteen!";
2622
    /// // Oops! No match found, but there should be one!
2623
    /// assert_eq!(None, re.find(hay));
2624
    ///
2625
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2626
    /// ```
2627
0
    pub fn prefilter(self, pre: Option<Prefilter>) -> Config {
2628
0
        Config { pre: Some(pre), ..self }
2629
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::prefilter
Unexecuted instantiation: <regex_automata::meta::regex::Config>::prefilter
2630
2631
    /// Configures what kinds of groups are compiled as "capturing" in the
2632
    /// underlying regex engine.
2633
    ///
2634
    /// This is set to [`WhichCaptures::All`] by default. Callers may wish to
2635
    /// use [`WhichCaptures::Implicit`] in cases where one wants avoid the
2636
    /// overhead of capture states for explicit groups.
2637
    ///
2638
    /// Note that another approach to avoiding the overhead of capture groups
2639
    /// is by using non-capturing groups in the regex pattern. That is,
2640
    /// `(?:a)` instead of `(a)`. This option is useful when you can't control
2641
    /// the concrete syntax but know that you don't need the underlying capture
2642
    /// states. For example, using `WhichCaptures::Implicit` will behave as if
2643
    /// all explicit capturing groups in the pattern were non-capturing.
2644
    ///
2645
    /// Setting this to `WhichCaptures::None` is usually not the right thing to
2646
    /// do. When no capture states are compiled, some regex engines (such as
2647
    /// the `PikeVM`) won't be able to report match offsets. This will manifest
2648
    /// as no match being found.
2649
    ///
2650
    /// # Example
2651
    ///
2652
    /// This example demonstrates how the results of capture groups can change
2653
    /// based on this option. First we show the default (all capture groups in
2654
    /// the pattern are capturing):
2655
    ///
2656
    /// ```
2657
    /// use regex_automata::{meta::Regex, Match, Span};
2658
    ///
2659
    /// let re = Regex::new(r"foo([0-9]+)bar")?;
2660
    /// let hay = "foo123bar";
2661
    ///
2662
    /// let mut caps = re.create_captures();
2663
    /// re.captures(hay, &mut caps);
2664
    /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0));
2665
    /// assert_eq!(Some(Span::from(3..6)), caps.get_group(1));
2666
    ///
2667
    /// Ok::<(), Box<dyn std::error::Error>>(())
2668
    /// ```
2669
    ///
2670
    /// And now we show the behavior when we only include implicit capture
2671
    /// groups. In this case, we can only find the overall match span, but the
2672
    /// spans of any other explicit group don't exist because they are treated
2673
    /// as non-capturing. (In effect, when `WhichCaptures::Implicit` is used,
2674
    /// there is no real point in using [`Regex::captures`] since it will never
2675
    /// be able to report more information than [`Regex::find`].)
2676
    ///
2677
    /// ```
2678
    /// use regex_automata::{
2679
    ///     meta::Regex,
2680
    ///     nfa::thompson::WhichCaptures,
2681
    ///     Match,
2682
    ///     Span,
2683
    /// };
2684
    ///
2685
    /// let re = Regex::builder()
2686
    ///     .configure(Regex::config().which_captures(WhichCaptures::Implicit))
2687
    ///     .build(r"foo([0-9]+)bar")?;
2688
    /// let hay = "foo123bar";
2689
    ///
2690
    /// let mut caps = re.create_captures();
2691
    /// re.captures(hay, &mut caps);
2692
    /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0));
2693
    /// assert_eq!(None, caps.get_group(1));
2694
    ///
2695
    /// Ok::<(), Box<dyn std::error::Error>>(())
2696
    /// ```
2697
0
    pub fn which_captures(mut self, which_captures: WhichCaptures) -> Config {
2698
0
        self.which_captures = Some(which_captures);
2699
0
        self
2700
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::which_captures
Unexecuted instantiation: <regex_automata::meta::regex::Config>::which_captures
2701
2702
    /// Sets the size limit, in bytes, to enforce on the construction of every
2703
    /// NFA build by the meta regex engine.
2704
    ///
2705
    /// Setting it to `None` disables the limit. This is not recommended if
2706
    /// you're compiling untrusted patterns.
2707
    ///
2708
    /// Note that this limit is applied to _each_ NFA built, and if any of
2709
    /// them exceed the limit, then construction will fail. This limit does
2710
    /// _not_ correspond to the total memory used by all NFAs in the meta regex
2711
    /// engine.
2712
    ///
2713
    /// This defaults to some reasonable number that permits most reasonable
2714
    /// patterns.
2715
    ///
2716
    /// # Example
2717
    ///
2718
    /// ```
2719
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2720
    /// use regex_automata::meta::Regex;
2721
    ///
2722
    /// let result = Regex::builder()
2723
    ///     .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
2724
    ///     // Not even 20KB is enough to build a single large Unicode class!
2725
    ///     .build(r"\pL");
2726
    /// assert!(result.is_err());
2727
    ///
2728
    /// // But notice that building such a regex with the exact same limit
2729
    /// // can succeed depending on other aspects of the configuration. For
2730
    /// // example, a single *forward* NFA will (at time of writing) fit into
2731
    /// // the 20KB limit, but a *reverse* NFA of the same pattern will not.
2732
    /// // So if one configures a meta regex such that a reverse NFA is never
2733
    /// // needed and thus never built, then the 20KB limit will be enough for
2734
    /// // a pattern like \pL!
2735
    /// let result = Regex::builder()
2736
    ///     .configure(Regex::config()
2737
    ///         .nfa_size_limit(Some(20 * (1<<10)))
2738
    ///         // The DFAs are the only thing that (currently) need a reverse
2739
    ///         // NFA. So if both are disabled, the meta regex engine will
2740
    ///         // skip building the reverse NFA. Note that this isn't an API
2741
    ///         // guarantee. A future semver compatible version may introduce
2742
    ///         // new use cases for a reverse NFA.
2743
    ///         .hybrid(false)
2744
    ///         .dfa(false)
2745
    ///     )
2746
    ///     // Not even 20KB is enough to build a single large Unicode class!
2747
    ///     .build(r"\pL");
2748
    /// assert!(result.is_ok());
2749
    ///
2750
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2751
    /// ```
2752
7
    pub fn nfa_size_limit(self, limit: Option<usize>) -> Config {
2753
7
        Config { nfa_size_limit: Some(limit), ..self }
2754
7
    }
<regex_automata::meta::regex::Config>::nfa_size_limit
Line
Count
Source
2752
6
    pub fn nfa_size_limit(self, limit: Option<usize>) -> Config {
2753
6
        Config { nfa_size_limit: Some(limit), ..self }
2754
6
    }
<regex_automata::meta::regex::Config>::nfa_size_limit
Line
Count
Source
2752
1
    pub fn nfa_size_limit(self, limit: Option<usize>) -> Config {
2753
1
        Config { nfa_size_limit: Some(limit), ..self }
2754
1
    }
2755
2756
    /// Sets the size limit, in bytes, for the one-pass DFA.
2757
    ///
2758
    /// Setting it to `None` disables the limit. Disabling the limit is
2759
    /// strongly discouraged when compiling untrusted patterns. Even if the
2760
    /// patterns are trusted, it still may not be a good idea, since a one-pass
2761
    /// DFA can use a lot of memory. With that said, as the size of a regex
2762
    /// increases, the likelihood of it being one-pass likely decreases.
2763
    ///
2764
    /// This defaults to some reasonable number that permits most reasonable
2765
    /// one-pass patterns.
2766
    ///
2767
    /// # Example
2768
    ///
2769
    /// This shows how to set the one-pass DFA size limit. Note that since
2770
    /// a one-pass DFA is an optional component of the meta regex engine,
2771
    /// this size limit only impacts what is built internally and will never
2772
    /// determine whether a `Regex` itself fails to build.
2773
    ///
2774
    /// ```
2775
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2776
    /// use regex_automata::meta::Regex;
2777
    ///
2778
    /// let result = Regex::builder()
2779
    ///     .configure(Regex::config().onepass_size_limit(Some(2 * (1<<20))))
2780
    ///     .build(r"\pL{5}");
2781
    /// assert!(result.is_ok());
2782
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2783
    /// ```
2784
0
    pub fn onepass_size_limit(self, limit: Option<usize>) -> Config {
2785
0
        Config { onepass_size_limit: Some(limit), ..self }
2786
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::onepass_size_limit
Unexecuted instantiation: <regex_automata::meta::regex::Config>::onepass_size_limit
2787
2788
    /// Set the cache capacity, in bytes, for the lazy DFA.
2789
    ///
2790
    /// The cache capacity of the lazy DFA determines approximately how much
2791
    /// heap memory it is allowed to use to store its state transitions. The
2792
    /// state transitions are computed at search time, and if the cache fills
2793
    /// up it, it is cleared. At this point, any previously generated state
2794
    /// transitions are lost and are re-generated if they're needed again.
2795
    ///
2796
    /// This sort of cache filling and clearing works quite well _so long as
2797
    /// cache clearing happens infrequently_. If it happens too often, then the
2798
    /// meta regex engine will stop using the lazy DFA and switch over to a
2799
    /// different regex engine.
2800
    ///
2801
    /// In cases where the cache is cleared too often, it may be possible to
2802
    /// give the cache more space and reduce (or eliminate) how often it is
2803
    /// cleared. Similarly, sometimes a regex is so big that the lazy DFA isn't
2804
    /// used at all if its cache capacity isn't big enough.
2805
    ///
2806
    /// The capacity set here is a _limit_ on how much memory is used. The
2807
    /// actual memory used is only allocated as it's needed.
2808
    ///
2809
    /// Determining the right value for this is a little tricky and will likely
2810
    /// required some profiling. Enabling the `logging` feature and setting the
2811
    /// log level to `trace` will also tell you how often the cache is being
2812
    /// cleared.
2813
    ///
2814
    /// # Example
2815
    ///
2816
    /// ```
2817
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2818
    /// use regex_automata::meta::Regex;
2819
    ///
2820
    /// let result = Regex::builder()
2821
    ///     .configure(Regex::config().hybrid_cache_capacity(20 * (1<<20)))
2822
    ///     .build(r"\pL{5}");
2823
    /// assert!(result.is_ok());
2824
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2825
    /// ```
2826
7
    pub fn hybrid_cache_capacity(self, limit: usize) -> Config {
2827
7
        Config { hybrid_cache_capacity: Some(limit), ..self }
2828
7
    }
<regex_automata::meta::regex::Config>::hybrid_cache_capacity
Line
Count
Source
2826
6
    pub fn hybrid_cache_capacity(self, limit: usize) -> Config {
2827
6
        Config { hybrid_cache_capacity: Some(limit), ..self }
2828
6
    }
<regex_automata::meta::regex::Config>::hybrid_cache_capacity
Line
Count
Source
2826
1
    pub fn hybrid_cache_capacity(self, limit: usize) -> Config {
2827
1
        Config { hybrid_cache_capacity: Some(limit), ..self }
2828
1
    }
2829
2830
    /// Sets the size limit, in bytes, for heap memory used for a fully
2831
    /// compiled DFA.
2832
    ///
2833
    /// **NOTE:** If you increase this, you'll likely also need to increase
2834
    /// [`Config::dfa_state_limit`].
2835
    ///
2836
    /// In contrast to the lazy DFA, building a full DFA requires computing
2837
    /// all of its state transitions up front. This can be a very expensive
2838
    /// process, and runs in worst case `2^n` time and space (where `n` is
2839
    /// proportional to the size of the regex). However, a full DFA unlocks
2840
    /// some additional optimization opportunities.
2841
    ///
2842
    /// Because full DFAs can be so expensive, the default limits for them are
2843
    /// incredibly small. Generally speaking, if your regex is moderately big
2844
    /// or if you're using Unicode features (`\w` is Unicode-aware by default
2845
    /// for example), then you can expect that the meta regex engine won't even
2846
    /// attempt to build a DFA for it.
2847
    ///
2848
    /// If this and [`Config::dfa_state_limit`] are set to `None`, then the
2849
    /// meta regex will not use any sort of limits when deciding whether to
2850
    /// build a DFA. This in turn makes construction of a `Regex` take
2851
    /// worst case exponential time and space. Even short patterns can result
2852
    /// in huge space blow ups. So it is strongly recommended to keep some kind
2853
    /// of limit set!
2854
    ///
2855
    /// The default is set to a small number that permits some simple regexes
2856
    /// to get compiled into DFAs in reasonable time.
2857
    ///
2858
    /// # Example
2859
    ///
2860
    /// ```
2861
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2862
    /// use regex_automata::meta::Regex;
2863
    ///
2864
    /// let result = Regex::builder()
2865
    ///     // 100MB is much bigger than the default.
2866
    ///     .configure(Regex::config()
2867
    ///         .dfa_size_limit(Some(100 * (1<<20)))
2868
    ///         // We don't care about size too much here, so just
2869
    ///         // remove the NFA state limit altogether.
2870
    ///         .dfa_state_limit(None))
2871
    ///     .build(r"\pL{5}");
2872
    /// assert!(result.is_ok());
2873
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2874
    /// ```
2875
0
    pub fn dfa_size_limit(self, limit: Option<usize>) -> Config {
2876
0
        Config { dfa_size_limit: Some(limit), ..self }
2877
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::dfa_size_limit
Unexecuted instantiation: <regex_automata::meta::regex::Config>::dfa_size_limit
2878
2879
    /// Sets a limit on the total number of NFA states, beyond which, a full
2880
    /// DFA is not attempted to be compiled.
2881
    ///
2882
    /// This limit works in concert with [`Config::dfa_size_limit`]. Namely,
2883
    /// where as `Config::dfa_size_limit` is applied by attempting to construct
2884
    /// a DFA, this limit is used to avoid the attempt in the first place. This
2885
    /// is useful to avoid hefty initialization costs associated with building
2886
    /// a DFA for cases where it is obvious the DFA will ultimately be too big.
2887
    ///
2888
    /// By default, this is set to a very small number.
2889
    ///
2890
    /// # Example
2891
    ///
2892
    /// ```
2893
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2894
    /// use regex_automata::meta::Regex;
2895
    ///
2896
    /// let result = Regex::builder()
2897
    ///     .configure(Regex::config()
2898
    ///         // Sometimes the default state limit rejects DFAs even
2899
    ///         // if they would fit in the size limit. Here, we disable
2900
    ///         // the check on the number of NFA states and just rely on
2901
    ///         // the size limit.
2902
    ///         .dfa_state_limit(None))
2903
    ///     .build(r"(?-u)\w{30}");
2904
    /// assert!(result.is_ok());
2905
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2906
    /// ```
2907
0
    pub fn dfa_state_limit(self, limit: Option<usize>) -> Config {
2908
0
        Config { dfa_state_limit: Some(limit), ..self }
2909
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::dfa_state_limit
Unexecuted instantiation: <regex_automata::meta::regex::Config>::dfa_state_limit
2910
2911
    /// Whether to attempt to shrink the size of the alphabet for the regex
2912
    /// pattern or not. When enabled, the alphabet is shrunk into a set of
2913
    /// equivalence classes, where every byte in the same equivalence class
2914
    /// cannot discriminate between a match or non-match.
2915
    ///
2916
    /// **WARNING:** This is only useful for debugging DFAs. Disabling this
2917
    /// does not yield any speed advantages. Indeed, disabling it can result
2918
    /// in much higher memory usage. Disabling byte classes is useful for
2919
    /// debugging the actual generated transitions because it lets one see the
2920
    /// transitions defined on actual bytes instead of the equivalence classes.
2921
    ///
2922
    /// This option is enabled by default and should never be disabled unless
2923
    /// one is debugging the meta regex engine's internals.
2924
    ///
2925
    /// # Example
2926
    ///
2927
    /// ```
2928
    /// use regex_automata::{meta::Regex, Match};
2929
    ///
2930
    /// let re = Regex::builder()
2931
    ///     .configure(Regex::config().byte_classes(false))
2932
    ///     .build(r"[a-z]+")?;
2933
    /// let hay = "!!quux!!";
2934
    /// assert_eq!(Some(Match::must(0, 2..6)), re.find(hay));
2935
    ///
2936
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2937
    /// ```
2938
0
    pub fn byte_classes(self, yes: bool) -> Config {
2939
0
        Config { byte_classes: Some(yes), ..self }
2940
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::byte_classes
Unexecuted instantiation: <regex_automata::meta::regex::Config>::byte_classes
2941
2942
    /// Set the line terminator to be used by the `^` and `$` anchors in
2943
    /// multi-line mode.
2944
    ///
2945
    /// This option has no effect when CRLF mode is enabled. That is,
2946
    /// regardless of this setting, `(?Rm:^)` and `(?Rm:$)` will always treat
2947
    /// `\r` and `\n` as line terminators (and will never match between a `\r`
2948
    /// and a `\n`).
2949
    ///
2950
    /// By default, `\n` is the line terminator.
2951
    ///
2952
    /// **Warning**: This does not change the behavior of `.`. To do that,
2953
    /// you'll need to configure the syntax option
2954
    /// [`syntax::Config::line_terminator`](crate::util::syntax::Config::line_terminator)
2955
    /// in addition to this. Otherwise, `.` will continue to match any
2956
    /// character other than `\n`.
2957
    ///
2958
    /// # Example
2959
    ///
2960
    /// ```
2961
    /// use regex_automata::{meta::Regex, util::syntax, Match};
2962
    ///
2963
    /// let re = Regex::builder()
2964
    ///     .syntax(syntax::Config::new().multi_line(true))
2965
    ///     .configure(Regex::config().line_terminator(b'\x00'))
2966
    ///     .build(r"^foo$")?;
2967
    /// let hay = "\x00foo\x00";
2968
    /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
2969
    ///
2970
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2971
    /// ```
2972
0
    pub fn line_terminator(self, byte: u8) -> Config {
2973
0
        Config { line_terminator: Some(byte), ..self }
2974
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::line_terminator
Unexecuted instantiation: <regex_automata::meta::regex::Config>::line_terminator
2975
2976
    /// Toggle whether the hybrid NFA/DFA (also known as the "lazy DFA") should
2977
    /// be available for use by the meta regex engine.
2978
    ///
2979
    /// Enabling this does not necessarily mean that the lazy DFA will
2980
    /// definitely be used. It just means that it will be _available_ for use
2981
    /// if the meta regex engine thinks it will be useful.
2982
    ///
2983
    /// When the `hybrid` crate feature is enabled, then this is enabled by
2984
    /// default. Otherwise, if the crate feature is disabled, then this is
2985
    /// always disabled, regardless of its setting by the caller.
2986
0
    pub fn hybrid(self, yes: bool) -> Config {
2987
0
        Config { hybrid: Some(yes), ..self }
2988
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::hybrid
Unexecuted instantiation: <regex_automata::meta::regex::Config>::hybrid
2989
2990
    /// Toggle whether a fully compiled DFA should be available for use by the
2991
    /// meta regex engine.
2992
    ///
2993
    /// Enabling this does not necessarily mean that a DFA will definitely be
2994
    /// used. It just means that it will be _available_ for use if the meta
2995
    /// regex engine thinks it will be useful.
2996
    ///
2997
    /// When the `dfa-build` crate feature is enabled, then this is enabled by
2998
    /// default. Otherwise, if the crate feature is disabled, then this is
2999
    /// always disabled, regardless of its setting by the caller.
3000
0
    pub fn dfa(self, yes: bool) -> Config {
3001
0
        Config { dfa: Some(yes), ..self }
3002
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::dfa
Unexecuted instantiation: <regex_automata::meta::regex::Config>::dfa
3003
3004
    /// Toggle whether a one-pass DFA should be available for use by the meta
3005
    /// regex engine.
3006
    ///
3007
    /// Enabling this does not necessarily mean that a one-pass DFA will
3008
    /// definitely be used. It just means that it will be _available_ for
3009
    /// use if the meta regex engine thinks it will be useful. (Indeed, a
3010
    /// one-pass DFA can only be used when the regex is one-pass. See the
3011
    /// [`dfa::onepass`](crate::dfa::onepass) module for more details.)
3012
    ///
3013
    /// When the `dfa-onepass` crate feature is enabled, then this is enabled
3014
    /// by default. Otherwise, if the crate feature is disabled, then this is
3015
    /// always disabled, regardless of its setting by the caller.
3016
0
    pub fn onepass(self, yes: bool) -> Config {
3017
0
        Config { onepass: Some(yes), ..self }
3018
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::onepass
Unexecuted instantiation: <regex_automata::meta::regex::Config>::onepass
3019
3020
    /// Toggle whether a bounded backtracking regex engine should be available
3021
    /// for use by the meta regex engine.
3022
    ///
3023
    /// Enabling this does not necessarily mean that a bounded backtracker will
3024
    /// definitely be used. It just means that it will be _available_ for use
3025
    /// if the meta regex engine thinks it will be useful.
3026
    ///
3027
    /// When the `nfa-backtrack` crate feature is enabled, then this is enabled
3028
    /// by default. Otherwise, if the crate feature is disabled, then this is
3029
    /// always disabled, regardless of its setting by the caller.
3030
0
    pub fn backtrack(self, yes: bool) -> Config {
3031
0
        Config { backtrack: Some(yes), ..self }
3032
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::backtrack
Unexecuted instantiation: <regex_automata::meta::regex::Config>::backtrack
3033
3034
    /// Returns the match kind on this configuration, as set by
3035
    /// [`Config::match_kind`].
3036
    ///
3037
    /// If it was not explicitly set, then a default value is returned.
3038
17
    pub fn get_match_kind(&self) -> MatchKind {
3039
17
        self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
3040
17
    }
<regex_automata::meta::regex::Config>::get_match_kind
Line
Count
Source
3038
12
    pub fn get_match_kind(&self) -> MatchKind {
3039
12
        self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
3040
12
    }
<regex_automata::meta::regex::Config>::get_match_kind
Line
Count
Source
3038
5
    pub fn get_match_kind(&self) -> MatchKind {
3039
5
        self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
3040
5
    }
3041
3042
    /// Returns whether empty matches must fall on valid UTF-8 boundaries, as
3043
    /// set by [`Config::utf8_empty`].
3044
    ///
3045
    /// If it was not explicitly set, then a default value is returned.
3046
7
    pub fn get_utf8_empty(&self) -> bool {
3047
7
        self.utf8_empty.unwrap_or(true)
3048
7
    }
<regex_automata::meta::regex::Config>::get_utf8_empty
Line
Count
Source
3046
6
    pub fn get_utf8_empty(&self) -> bool {
3047
6
        self.utf8_empty.unwrap_or(true)
3048
6
    }
<regex_automata::meta::regex::Config>::get_utf8_empty
Line
Count
Source
3046
1
    pub fn get_utf8_empty(&self) -> bool {
3047
1
        self.utf8_empty.unwrap_or(true)
3048
1
    }
3049
3050
    /// Returns whether automatic prefilters are enabled, as set by
3051
    /// [`Config::auto_prefilter`].
3052
    ///
3053
    /// If it was not explicitly set, then a default value is returned.
3054
14
    pub fn get_auto_prefilter(&self) -> bool {
3055
14
        self.autopre.unwrap_or(true)
3056
14
    }
<regex_automata::meta::regex::Config>::get_auto_prefilter
Line
Count
Source
3054
12
    pub fn get_auto_prefilter(&self) -> bool {
3055
12
        self.autopre.unwrap_or(true)
3056
12
    }
<regex_automata::meta::regex::Config>::get_auto_prefilter
Line
Count
Source
3054
2
    pub fn get_auto_prefilter(&self) -> bool {
3055
2
        self.autopre.unwrap_or(true)
3056
2
    }
3057
3058
    /// Returns a manually set prefilter, if one was set by
3059
    /// [`Config::prefilter`].
3060
    ///
3061
    /// If it was not explicitly set, then a default value is returned.
3062
0
    pub fn get_prefilter(&self) -> Option<&Prefilter> {
3063
0
        self.pre.as_ref().unwrap_or(&None).as_ref()
3064
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::get_prefilter
Unexecuted instantiation: <regex_automata::meta::regex::Config>::get_prefilter
3065
3066
    /// Returns the capture configuration, as set by
3067
    /// [`Config::which_captures`].
3068
    ///
3069
    /// If it was not explicitly set, then a default value is returned.
3070
7
    pub fn get_which_captures(&self) -> WhichCaptures {
3071
7
        self.which_captures.unwrap_or(WhichCaptures::All)
3072
7
    }
<regex_automata::meta::regex::Config>::get_which_captures
Line
Count
Source
3070
6
    pub fn get_which_captures(&self) -> WhichCaptures {
3071
6
        self.which_captures.unwrap_or(WhichCaptures::All)
3072
6
    }
<regex_automata::meta::regex::Config>::get_which_captures
Line
Count
Source
3070
1
    pub fn get_which_captures(&self) -> WhichCaptures {
3071
1
        self.which_captures.unwrap_or(WhichCaptures::All)
3072
1
    }
3073
3074
    /// Returns NFA size limit, as set by [`Config::nfa_size_limit`].
3075
    ///
3076
    /// If it was not explicitly set, then a default value is returned.
3077
7
    pub fn get_nfa_size_limit(&self) -> Option<usize> {
3078
7
        self.nfa_size_limit.unwrap_or(Some(10 * (1 << 20)))
3079
7
    }
<regex_automata::meta::regex::Config>::get_nfa_size_limit
Line
Count
Source
3077
6
    pub fn get_nfa_size_limit(&self) -> Option<usize> {
3078
6
        self.nfa_size_limit.unwrap_or(Some(10 * (1 << 20)))
3079
6
    }
<regex_automata::meta::regex::Config>::get_nfa_size_limit
Line
Count
Source
3077
1
    pub fn get_nfa_size_limit(&self) -> Option<usize> {
3078
1
        self.nfa_size_limit.unwrap_or(Some(10 * (1 << 20)))
3079
1
    }
3080
3081
    /// Returns one-pass DFA size limit, as set by
3082
    /// [`Config::onepass_size_limit`].
3083
    ///
3084
    /// If it was not explicitly set, then a default value is returned.
3085
1
    pub fn get_onepass_size_limit(&self) -> Option<usize> {
3086
1
        self.onepass_size_limit.unwrap_or(Some(1 * (1 << 20)))
3087
1
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::get_onepass_size_limit
<regex_automata::meta::regex::Config>::get_onepass_size_limit
Line
Count
Source
3085
1
    pub fn get_onepass_size_limit(&self) -> Option<usize> {
3086
1
        self.onepass_size_limit.unwrap_or(Some(1 * (1 << 20)))
3087
1
    }
3088
3089
    /// Returns hybrid NFA/DFA cache capacity, as set by
3090
    /// [`Config::hybrid_cache_capacity`].
3091
    ///
3092
    /// If it was not explicitly set, then a default value is returned.
3093
1
    pub fn get_hybrid_cache_capacity(&self) -> usize {
3094
1
        self.hybrid_cache_capacity.unwrap_or(2 * (1 << 20))
3095
1
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::get_hybrid_cache_capacity
<regex_automata::meta::regex::Config>::get_hybrid_cache_capacity
Line
Count
Source
3093
1
    pub fn get_hybrid_cache_capacity(&self) -> usize {
3094
1
        self.hybrid_cache_capacity.unwrap_or(2 * (1 << 20))
3095
1
    }
3096
3097
    /// Returns DFA size limit, as set by [`Config::dfa_size_limit`].
3098
    ///
3099
    /// If it was not explicitly set, then a default value is returned.
3100
0
    pub fn get_dfa_size_limit(&self) -> Option<usize> {
3101
0
        // The default for this is VERY small because building a full DFA is
3102
0
        // ridiculously costly. But for regexes that are very small, it can be
3103
0
        // beneficial to use a full DFA. In particular, a full DFA can enable
3104
0
        // additional optimizations via something called "accelerated" states.
3105
0
        // Namely, when there's a state with only a few outgoing transitions,
3106
0
        // we can temporary suspend walking the transition table and use memchr
3107
0
        // for just those outgoing transitions to skip ahead very quickly.
3108
0
        //
3109
0
        // Generally speaking, if Unicode is enabled in your regex and you're
3110
0
        // using some kind of Unicode feature, then it's going to blow this
3111
0
        // size limit. Moreover, Unicode tends to defeat the "accelerated"
3112
0
        // state optimization too, so it's a double whammy.
3113
0
        //
3114
0
        // We also use a limit on the number of NFA states to avoid even
3115
0
        // starting the DFA construction process. Namely, DFA construction
3116
0
        // itself could make lots of initial allocs proportional to the size
3117
0
        // of the NFA, and if the NFA is large, it doesn't make sense to pay
3118
0
        // that cost if we know it's likely to be blown by a large margin.
3119
0
        self.dfa_size_limit.unwrap_or(Some(40 * (1 << 10)))
3120
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::get_dfa_size_limit
Unexecuted instantiation: <regex_automata::meta::regex::Config>::get_dfa_size_limit
3121
3122
    /// Returns DFA size limit in terms of the number of states in the NFA, as
3123
    /// set by [`Config::dfa_state_limit`].
3124
    ///
3125
    /// If it was not explicitly set, then a default value is returned.
3126
0
    pub fn get_dfa_state_limit(&self) -> Option<usize> {
3127
0
        // Again, as with the size limit, we keep this very small.
3128
0
        self.dfa_state_limit.unwrap_or(Some(30))
3129
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::get_dfa_state_limit
Unexecuted instantiation: <regex_automata::meta::regex::Config>::get_dfa_state_limit
3130
3131
    /// Returns whether byte classes are enabled, as set by
3132
    /// [`Config::byte_classes`].
3133
    ///
3134
    /// If it was not explicitly set, then a default value is returned.
3135
2
    pub fn get_byte_classes(&self) -> bool {
3136
2
        self.byte_classes.unwrap_or(true)
3137
2
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::get_byte_classes
<regex_automata::meta::regex::Config>::get_byte_classes
Line
Count
Source
3135
2
    pub fn get_byte_classes(&self) -> bool {
3136
2
        self.byte_classes.unwrap_or(true)
3137
2
    }
3138
3139
    /// Returns the line terminator for this configuration, as set by
3140
    /// [`Config::line_terminator`].
3141
    ///
3142
    /// If it was not explicitly set, then a default value is returned.
3143
7
    pub fn get_line_terminator(&self) -> u8 {
3144
7
        self.line_terminator.unwrap_or(b'\n')
3145
7
    }
<regex_automata::meta::regex::Config>::get_line_terminator
Line
Count
Source
3143
6
    pub fn get_line_terminator(&self) -> u8 {
3144
6
        self.line_terminator.unwrap_or(b'\n')
3145
6
    }
<regex_automata::meta::regex::Config>::get_line_terminator
Line
Count
Source
3143
1
    pub fn get_line_terminator(&self) -> u8 {
3144
1
        self.line_terminator.unwrap_or(b'\n')
3145
1
    }
3146
3147
    /// Returns whether the hybrid NFA/DFA regex engine may be used, as set by
3148
    /// [`Config::hybrid`].
3149
    ///
3150
    /// If it was not explicitly set, then a default value is returned.
3151
9
    pub fn get_hybrid(&self) -> bool {
3152
9
        #[cfg(feature = "hybrid")]
3153
9
        {
3154
9
            self.hybrid.unwrap_or(true)
3155
9
        }
3156
9
        #[cfg(not(feature = "hybrid"))]
3157
9
        {
3158
9
            false
3159
9
        }
3160
9
    }
<regex_automata::meta::regex::Config>::get_hybrid
Line
Count
Source
3151
6
    pub fn get_hybrid(&self) -> bool {
3152
6
        #[cfg(feature = "hybrid")]
3153
6
        {
3154
6
            self.hybrid.unwrap_or(true)
3155
6
        }
3156
6
        #[cfg(not(feature = "hybrid"))]
3157
6
        {
3158
6
            false
3159
6
        }
3160
6
    }
<regex_automata::meta::regex::Config>::get_hybrid
Line
Count
Source
3151
3
    pub fn get_hybrid(&self) -> bool {
3152
3
        #[cfg(feature = "hybrid")]
3153
3
        {
3154
3
            self.hybrid.unwrap_or(true)
3155
3
        }
3156
3
        #[cfg(not(feature = "hybrid"))]
3157
3
        {
3158
3
            false
3159
3
        }
3160
3
    }
3161
3162
    /// Returns whether the DFA regex engine may be used, as set by
3163
    /// [`Config::dfa`].
3164
    ///
3165
    /// If it was not explicitly set, then a default value is returned.
3166
7
    pub fn get_dfa(&self) -> bool {
3167
7
        #[cfg(feature = "dfa-build")]
3168
7
        {
3169
7
            self.dfa.unwrap_or(true)
3170
7
        }
3171
7
        #[cfg(not(feature = "dfa-build"))]
3172
7
        {
3173
7
            false
3174
7
        }
3175
7
    }
<regex_automata::meta::regex::Config>::get_dfa
Line
Count
Source
3166
6
    pub fn get_dfa(&self) -> bool {
3167
6
        #[cfg(feature = "dfa-build")]
3168
6
        {
3169
6
            self.dfa.unwrap_or(true)
3170
6
        }
3171
6
        #[cfg(not(feature = "dfa-build"))]
3172
6
        {
3173
6
            false
3174
6
        }
3175
6
    }
<regex_automata::meta::regex::Config>::get_dfa
Line
Count
Source
3166
1
    pub fn get_dfa(&self) -> bool {
3167
1
        #[cfg(feature = "dfa-build")]
3168
1
        {
3169
1
            self.dfa.unwrap_or(true)
3170
1
        }
3171
1
        #[cfg(not(feature = "dfa-build"))]
3172
1
        {
3173
1
            false
3174
1
        }
3175
1
    }
3176
3177
    /// Returns whether the one-pass DFA regex engine may be used, as set by
3178
    /// [`Config::onepass`].
3179
    ///
3180
    /// If it was not explicitly set, then a default value is returned.
3181
1
    pub fn get_onepass(&self) -> bool {
3182
1
        #[cfg(feature = "dfa-onepass")]
3183
1
        {
3184
1
            self.onepass.unwrap_or(true)
3185
1
        }
3186
1
        #[cfg(not(feature = "dfa-onepass"))]
3187
1
        {
3188
1
            false
3189
1
        }
3190
1
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::get_onepass
<regex_automata::meta::regex::Config>::get_onepass
Line
Count
Source
3181
1
    pub fn get_onepass(&self) -> bool {
3182
1
        #[cfg(feature = "dfa-onepass")]
3183
1
        {
3184
1
            self.onepass.unwrap_or(true)
3185
1
        }
3186
1
        #[cfg(not(feature = "dfa-onepass"))]
3187
1
        {
3188
1
            false
3189
1
        }
3190
1
    }
3191
3192
    /// Returns whether the bounded backtracking regex engine may be used, as
3193
    /// set by [`Config::backtrack`].
3194
    ///
3195
    /// If it was not explicitly set, then a default value is returned.
3196
1
    pub fn get_backtrack(&self) -> bool {
3197
1
        #[cfg(feature = "nfa-backtrack")]
3198
1
        {
3199
1
            self.backtrack.unwrap_or(true)
3200
1
        }
3201
1
        #[cfg(not(feature = "nfa-backtrack"))]
3202
1
        {
3203
1
            false
3204
1
        }
3205
1
    }
Unexecuted instantiation: <regex_automata::meta::regex::Config>::get_backtrack
<regex_automata::meta::regex::Config>::get_backtrack
Line
Count
Source
3196
1
    pub fn get_backtrack(&self) -> bool {
3197
1
        #[cfg(feature = "nfa-backtrack")]
3198
1
        {
3199
1
            self.backtrack.unwrap_or(true)
3200
1
        }
3201
1
        #[cfg(not(feature = "nfa-backtrack"))]
3202
1
        {
3203
1
            false
3204
1
        }
3205
1
    }
3206
3207
    /// Overwrite the default configuration such that the options in `o` are
3208
    /// always used. If an option in `o` is not set, then the corresponding
3209
    /// option in `self` is used. If it's not set in `self` either, then it
3210
    /// remains not set.
3211
7
    pub(crate) fn overwrite(&self, o: Config) -> Config {
3212
7
        Config {
3213
7
            match_kind: o.match_kind.or(self.match_kind),
3214
7
            utf8_empty: o.utf8_empty.or(self.utf8_empty),
3215
7
            autopre: o.autopre.or(self.autopre),
3216
7
            pre: o.pre.or_else(|| self.pre.clone()),
<regex_automata::meta::regex::Config>::overwrite::{closure#0}
Line
Count
Source
3216
6
            pre: o.pre.or_else(|| self.pre.clone()),
<regex_automata::meta::regex::Config>::overwrite::{closure#0}
Line
Count
Source
3216
1
            pre: o.pre.or_else(|| self.pre.clone()),
3217
7
            which_captures: o.which_captures.or(self.which_captures),
3218
7
            nfa_size_limit: o.nfa_size_limit.or(self.nfa_size_limit),
3219
7
            onepass_size_limit: o
3220
7
                .onepass_size_limit
3221
7
                .or(self.onepass_size_limit),
3222
7
            hybrid_cache_capacity: o
3223
7
                .hybrid_cache_capacity
3224
7
                .or(self.hybrid_cache_capacity),
3225
7
            hybrid: o.hybrid.or(self.hybrid),
3226
7
            dfa: o.dfa.or(self.dfa),
3227
7
            dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit),
3228
7
            dfa_state_limit: o.dfa_state_limit.or(self.dfa_state_limit),
3229
7
            onepass: o.onepass.or(self.onepass),
3230
7
            backtrack: o.backtrack.or(self.backtrack),
3231
7
            byte_classes: o.byte_classes.or(self.byte_classes),
3232
7
            line_terminator: o.line_terminator.or(self.line_terminator),
3233
7
        }
3234
7
    }
<regex_automata::meta::regex::Config>::overwrite
Line
Count
Source
3211
6
    pub(crate) fn overwrite(&self, o: Config) -> Config {
3212
6
        Config {
3213
6
            match_kind: o.match_kind.or(self.match_kind),
3214
6
            utf8_empty: o.utf8_empty.or(self.utf8_empty),
3215
6
            autopre: o.autopre.or(self.autopre),
3216
6
            pre: o.pre.or_else(|| self.pre.clone()),
3217
6
            which_captures: o.which_captures.or(self.which_captures),
3218
6
            nfa_size_limit: o.nfa_size_limit.or(self.nfa_size_limit),
3219
6
            onepass_size_limit: o
3220
6
                .onepass_size_limit
3221
6
                .or(self.onepass_size_limit),
3222
6
            hybrid_cache_capacity: o
3223
6
                .hybrid_cache_capacity
3224
6
                .or(self.hybrid_cache_capacity),
3225
6
            hybrid: o.hybrid.or(self.hybrid),
3226
6
            dfa: o.dfa.or(self.dfa),
3227
6
            dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit),
3228
6
            dfa_state_limit: o.dfa_state_limit.or(self.dfa_state_limit),
3229
6
            onepass: o.onepass.or(self.onepass),
3230
6
            backtrack: o.backtrack.or(self.backtrack),
3231
6
            byte_classes: o.byte_classes.or(self.byte_classes),
3232
6
            line_terminator: o.line_terminator.or(self.line_terminator),
3233
6
        }
3234
6
    }
<regex_automata::meta::regex::Config>::overwrite
Line
Count
Source
3211
1
    pub(crate) fn overwrite(&self, o: Config) -> Config {
3212
1
        Config {
3213
1
            match_kind: o.match_kind.or(self.match_kind),
3214
1
            utf8_empty: o.utf8_empty.or(self.utf8_empty),
3215
1
            autopre: o.autopre.or(self.autopre),
3216
1
            pre: o.pre.or_else(|| self.pre.clone()),
3217
1
            which_captures: o.which_captures.or(self.which_captures),
3218
1
            nfa_size_limit: o.nfa_size_limit.or(self.nfa_size_limit),
3219
1
            onepass_size_limit: o
3220
1
                .onepass_size_limit
3221
1
                .or(self.onepass_size_limit),
3222
1
            hybrid_cache_capacity: o
3223
1
                .hybrid_cache_capacity
3224
1
                .or(self.hybrid_cache_capacity),
3225
1
            hybrid: o.hybrid.or(self.hybrid),
3226
1
            dfa: o.dfa.or(self.dfa),
3227
1
            dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit),
3228
1
            dfa_state_limit: o.dfa_state_limit.or(self.dfa_state_limit),
3229
1
            onepass: o.onepass.or(self.onepass),
3230
1
            backtrack: o.backtrack.or(self.backtrack),
3231
1
            byte_classes: o.byte_classes.or(self.byte_classes),
3232
1
            line_terminator: o.line_terminator.or(self.line_terminator),
3233
1
        }
3234
1
    }
3235
}
3236
3237
/// A builder for configuring and constructing a `Regex`.
3238
///
3239
/// The builder permits configuring two different aspects of a `Regex`:
3240
///
3241
/// * [`Builder::configure`] will set high-level configuration options as
3242
/// described by a [`Config`].
3243
/// * [`Builder::syntax`] will set the syntax level configuration options
3244
/// as described by a [`util::syntax::Config`](crate::util::syntax::Config).
3245
/// This only applies when building a `Regex` from pattern strings.
3246
///
3247
/// Once configured, the builder can then be used to construct a `Regex` from
3248
/// one of 4 different inputs:
3249
///
3250
/// * [`Builder::build`] creates a regex from a single pattern string.
3251
/// * [`Builder::build_many`] creates a regex from many pattern strings.
3252
/// * [`Builder::build_from_hir`] creates a regex from a
3253
/// [`regex-syntax::Hir`](Hir) expression.
3254
/// * [`Builder::build_many_from_hir`] creates a regex from many
3255
/// [`regex-syntax::Hir`](Hir) expressions.
3256
///
3257
/// The latter two methods in particular provide a way to construct a fully
3258
/// feature regular expression matcher directly from an `Hir` expression
3259
/// without having to first convert it to a string. (This is in contrast to the
3260
/// top-level `regex` crate which intentionally provides no such API in order
3261
/// to avoid making `regex-syntax` a public dependency.)
3262
///
3263
/// As a convenience, this builder may be created via [`Regex::builder`], which
3264
/// may help avoid an extra import.
3265
///
3266
/// # Example: change the line terminator
3267
///
3268
/// This example shows how to enable multi-line mode by default and change the
3269
/// line terminator to the NUL byte:
3270
///
3271
/// ```
3272
/// use regex_automata::{meta::Regex, util::syntax, Match};
3273
///
3274
/// let re = Regex::builder()
3275
///     .syntax(syntax::Config::new().multi_line(true))
3276
///     .configure(Regex::config().line_terminator(b'\x00'))
3277
///     .build(r"^foo$")?;
3278
/// let hay = "\x00foo\x00";
3279
/// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
3280
///
3281
/// # Ok::<(), Box<dyn std::error::Error>>(())
3282
/// ```
3283
///
3284
/// # Example: disable UTF-8 requirement
3285
///
3286
/// By default, regex patterns are required to match UTF-8. This includes
3287
/// regex patterns that can produce matches of length zero. In the case of an
3288
/// empty match, by default, matches will not appear between the code units of
3289
/// a UTF-8 encoded codepoint.
3290
///
3291
/// However, it can be useful to disable this requirement, particularly if
3292
/// you're searching things like `&[u8]` that are not known to be valid UTF-8.
3293
///
3294
/// ```
3295
/// use regex_automata::{meta::Regex, util::syntax, Match};
3296
///
3297
/// let mut builder = Regex::builder();
3298
/// // Disables the requirement that non-empty matches match UTF-8.
3299
/// builder.syntax(syntax::Config::new().utf8(false));
3300
/// // Disables the requirement that empty matches match UTF-8 boundaries.
3301
/// builder.configure(Regex::config().utf8_empty(false));
3302
///
3303
/// // We can match raw bytes via \xZZ syntax, but we need to disable
3304
/// // Unicode mode to do that. We could disable it everywhere, or just
3305
/// // selectively, as shown here.
3306
/// let re = builder.build(r"(?-u:\xFF)foo(?-u:\xFF)")?;
3307
/// let hay = b"\xFFfoo\xFF";
3308
/// assert_eq!(Some(Match::must(0, 0..5)), re.find(hay));
3309
///
3310
/// // We can also match between code units.
3311
/// let re = builder.build(r"")?;
3312
/// let hay = "☃";
3313
/// assert_eq!(re.find_iter(hay).collect::<Vec<Match>>(), vec![
3314
///     Match::must(0, 0..0),
3315
///     Match::must(0, 1..1),
3316
///     Match::must(0, 2..2),
3317
///     Match::must(0, 3..3),
3318
/// ]);
3319
///
3320
/// # Ok::<(), Box<dyn std::error::Error>>(())
3321
/// ```
3322
#[derive(Clone, Debug)]
3323
pub struct Builder {
3324
    config: Config,
3325
    ast: ast::parse::ParserBuilder,
3326
    hir: hir::translate::TranslatorBuilder,
3327
}
3328
3329
impl Builder {
3330
    /// Creates a new builder for configuring and constructing a [`Regex`].
3331
7
    pub fn new() -> Builder {
3332
7
        Builder {
3333
7
            config: Config::default(),
3334
7
            ast: ast::parse::ParserBuilder::new(),
3335
7
            hir: hir::translate::TranslatorBuilder::new(),
3336
7
        }
3337
7
    }
<regex_automata::meta::regex::Builder>::new
Line
Count
Source
3331
6
    pub fn new() -> Builder {
3332
6
        Builder {
3333
6
            config: Config::default(),
3334
6
            ast: ast::parse::ParserBuilder::new(),
3335
6
            hir: hir::translate::TranslatorBuilder::new(),
3336
6
        }
3337
6
    }
<regex_automata::meta::regex::Builder>::new
Line
Count
Source
3331
1
    pub fn new() -> Builder {
3332
1
        Builder {
3333
1
            config: Config::default(),
3334
1
            ast: ast::parse::ParserBuilder::new(),
3335
1
            hir: hir::translate::TranslatorBuilder::new(),
3336
1
        }
3337
1
    }
3338
3339
    /// Builds a `Regex` from a single pattern string.
3340
    ///
3341
    /// If there was a problem parsing the pattern or a problem turning it into
3342
    /// a regex matcher, then an error is returned.
3343
    ///
3344
    /// # Example
3345
    ///
3346
    /// This example shows how to configure syntax options.
3347
    ///
3348
    /// ```
3349
    /// use regex_automata::{meta::Regex, util::syntax, Match};
3350
    ///
3351
    /// let re = Regex::builder()
3352
    ///     .syntax(syntax::Config::new().crlf(true).multi_line(true))
3353
    ///     .build(r"^foo$")?;
3354
    /// let hay = "\r\nfoo\r\n";
3355
    /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
3356
    ///
3357
    /// # Ok::<(), Box<dyn std::error::Error>>(())
3358
    /// ```
3359
7
    pub fn build(&self, pattern: &str) -> Result<Regex, BuildError> {
3360
7
        self.build_many(&[pattern])
3361
7
    }
<regex_automata::meta::regex::Builder>::build
Line
Count
Source
3359
6
    pub fn build(&self, pattern: &str) -> Result<Regex, BuildError> {
3360
6
        self.build_many(&[pattern])
3361
6
    }
<regex_automata::meta::regex::Builder>::build
Line
Count
Source
3359
1
    pub fn build(&self, pattern: &str) -> Result<Regex, BuildError> {
3360
1
        self.build_many(&[pattern])
3361
1
    }
3362
3363
    /// Builds a `Regex` from many pattern strings.
3364
    ///
3365
    /// If there was a problem parsing any of the patterns or a problem turning
3366
    /// them into a regex matcher, then an error is returned.
3367
    ///
3368
    /// # Example: finding the pattern that caused an error
3369
    ///
3370
    /// When a syntax error occurs, it is possible to ask which pattern
3371
    /// caused the syntax error.
3372
    ///
3373
    /// ```
3374
    /// use regex_automata::{meta::Regex, PatternID};
3375
    ///
3376
    /// let err = Regex::builder()
3377
    ///     .build_many(&["a", "b", r"\p{Foo}", "c"])
3378
    ///     .unwrap_err();
3379
    /// assert_eq!(Some(PatternID::must(2)), err.pattern());
3380
    /// ```
3381
    ///
3382
    /// # Example: zero patterns is valid
3383
    ///
3384
    /// Building a regex with zero patterns results in a regex that never
3385
    /// matches anything. Because this routine is generic, passing an empty
3386
    /// slice usually requires a turbo-fish (or something else to help type
3387
    /// inference).
3388
    ///
3389
    /// ```
3390
    /// use regex_automata::{meta::Regex, util::syntax, Match};
3391
    ///
3392
    /// let re = Regex::builder()
3393
    ///     .build_many::<&str>(&[])?;
3394
    /// assert_eq!(None, re.find(""));
3395
    ///
3396
    /// # Ok::<(), Box<dyn std::error::Error>>(())
3397
    /// ```
3398
7
    pub fn build_many<P: AsRef<str>>(
3399
7
        &self,
3400
7
        patterns: &[P],
3401
7
    ) -> Result<Regex, BuildError> {
3402
        use crate::util::primitives::IteratorIndexExt;
3403
        log! {
3404
            debug!("building meta regex with {} patterns:", patterns.len());
3405
            for (pid, p) in patterns.iter().with_pattern_ids() {
3406
                let p = p.as_ref();
3407
                // We might split a grapheme with this truncation logic, but
3408
                // that's fine. We at least avoid splitting a codepoint.
3409
                let maxoff = p
3410
                    .char_indices()
3411
                    .map(|(i, ch)| i + ch.len_utf8())
3412
                    .take(1000)
3413
                    .last()
3414
                    .unwrap_or(0);
3415
                if maxoff < p.len() {
3416
                    debug!("{:?}: {}[... snip ...]", pid, &p[..maxoff]);
3417
                } else {
3418
                    debug!("{:?}: {}", pid, p);
3419
                }
3420
            }
3421
        }
3422
7
        let (mut asts, mut hirs) = (vec![], vec![]);
3423
7
        for (pid, p) in patterns.iter().with_pattern_ids() {
3424
7
            let ast = self
3425
7
                .ast
3426
7
                .build()
3427
7
                .parse(p.as_ref())
3428
7
                .map_err(|err| BuildError::ast(pid, err))?;
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many::<alloc::string::String>::{closure#0}
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many::<&str>::{closure#0}
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many::<alloc::string::String>::{closure#0}
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many::<&str>::{closure#0}
3429
7
            asts.push(ast);
3430
        }
3431
7
        for ((pid, p), ast) in
3432
7
            patterns.iter().with_pattern_ids().zip(asts.iter())
3433
        {
3434
7
            let hir = self
3435
7
                .hir
3436
7
                .build()
3437
7
                .translate(p.as_ref(), ast)
3438
7
                .map_err(|err| BuildError::hir(pid, err))?;
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many::<alloc::string::String>::{closure#1}
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many::<&str>::{closure#1}
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many::<alloc::string::String>::{closure#1}
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many::<&str>::{closure#1}
3439
7
            hirs.push(hir);
3440
        }
3441
7
        self.build_many_from_hir(&hirs)
3442
7
    }
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many::<alloc::string::String>
<regex_automata::meta::regex::Builder>::build_many::<&str>
Line
Count
Source
3398
6
    pub fn build_many<P: AsRef<str>>(
3399
6
        &self,
3400
6
        patterns: &[P],
3401
6
    ) -> Result<Regex, BuildError> {
3402
        use crate::util::primitives::IteratorIndexExt;
3403
        log! {
3404
            debug!("building meta regex with {} patterns:", patterns.len());
3405
            for (pid, p) in patterns.iter().with_pattern_ids() {
3406
                let p = p.as_ref();
3407
                // We might split a grapheme with this truncation logic, but
3408
                // that's fine. We at least avoid splitting a codepoint.
3409
                let maxoff = p
3410
                    .char_indices()
3411
                    .map(|(i, ch)| i + ch.len_utf8())
3412
                    .take(1000)
3413
                    .last()
3414
                    .unwrap_or(0);
3415
                if maxoff < p.len() {
3416
                    debug!("{:?}: {}[... snip ...]", pid, &p[..maxoff]);
3417
                } else {
3418
                    debug!("{:?}: {}", pid, p);
3419
                }
3420
            }
3421
        }
3422
6
        let (mut asts, mut hirs) = (vec![], vec![]);
3423
6
        for (pid, p) in patterns.iter().with_pattern_ids() {
3424
6
            let ast = self
3425
6
                .ast
3426
6
                .build()
3427
6
                .parse(p.as_ref())
3428
6
                .map_err(|err| BuildError::ast(pid, err))?;
3429
6
            asts.push(ast);
3430
        }
3431
6
        for ((pid, p), ast) in
3432
6
            patterns.iter().with_pattern_ids().zip(asts.iter())
3433
        {
3434
6
            let hir = self
3435
6
                .hir
3436
6
                .build()
3437
6
                .translate(p.as_ref(), ast)
3438
6
                .map_err(|err| BuildError::hir(pid, err))?;
3439
6
            hirs.push(hir);
3440
        }
3441
6
        self.build_many_from_hir(&hirs)
3442
6
    }
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many::<alloc::string::String>
<regex_automata::meta::regex::Builder>::build_many::<&str>
Line
Count
Source
3398
1
    pub fn build_many<P: AsRef<str>>(
3399
1
        &self,
3400
1
        patterns: &[P],
3401
1
    ) -> Result<Regex, BuildError> {
3402
        use crate::util::primitives::IteratorIndexExt;
3403
        log! {
3404
            debug!("building meta regex with {} patterns:", patterns.len());
3405
            for (pid, p) in patterns.iter().with_pattern_ids() {
3406
                let p = p.as_ref();
3407
                // We might split a grapheme with this truncation logic, but
3408
                // that's fine. We at least avoid splitting a codepoint.
3409
                let maxoff = p
3410
                    .char_indices()
3411
                    .map(|(i, ch)| i + ch.len_utf8())
3412
                    .take(1000)
3413
                    .last()
3414
                    .unwrap_or(0);
3415
                if maxoff < p.len() {
3416
                    debug!("{:?}: {}[... snip ...]", pid, &p[..maxoff]);
3417
                } else {
3418
                    debug!("{:?}: {}", pid, p);
3419
                }
3420
            }
3421
        }
3422
1
        let (mut asts, mut hirs) = (vec![], vec![]);
3423
1
        for (pid, p) in patterns.iter().with_pattern_ids() {
3424
1
            let ast = self
3425
1
                .ast
3426
1
                .build()
3427
1
                .parse(p.as_ref())
3428
1
                .map_err(|err| BuildError::ast(pid, err))?;
3429
1
            asts.push(ast);
3430
        }
3431
1
        for ((pid, p), ast) in
3432
1
            patterns.iter().with_pattern_ids().zip(asts.iter())
3433
        {
3434
1
            let hir = self
3435
1
                .hir
3436
1
                .build()
3437
1
                .translate(p.as_ref(), ast)
3438
1
                .map_err(|err| BuildError::hir(pid, err))?;
3439
1
            hirs.push(hir);
3440
        }
3441
1
        self.build_many_from_hir(&hirs)
3442
1
    }
3443
3444
    /// Builds a `Regex` directly from an `Hir` expression.
3445
    ///
3446
    /// This is useful if you needed to parse a pattern string into an `Hir`
3447
    /// for other reasons (such as analysis or transformations). This routine
3448
    /// permits building a `Regex` directly from the `Hir` expression instead
3449
    /// of first converting the `Hir` back to a pattern string.
3450
    ///
3451
    /// When using this method, any options set via [`Builder::syntax`] are
3452
    /// ignored. Namely, the syntax options only apply when parsing a pattern
3453
    /// string, which isn't relevant here.
3454
    ///
3455
    /// If there was a problem building the underlying regex matcher for the
3456
    /// given `Hir`, then an error is returned.
3457
    ///
3458
    /// # Example
3459
    ///
3460
    /// This example shows how one can hand-construct an `Hir` expression and
3461
    /// build a regex from it without doing any parsing at all.
3462
    ///
3463
    /// ```
3464
    /// use {
3465
    ///     regex_automata::{meta::Regex, Match},
3466
    ///     regex_syntax::hir::{Hir, Look},
3467
    /// };
3468
    ///
3469
    /// // (?Rm)^foo$
3470
    /// let hir = Hir::concat(vec![
3471
    ///     Hir::look(Look::StartCRLF),
3472
    ///     Hir::literal("foo".as_bytes()),
3473
    ///     Hir::look(Look::EndCRLF),
3474
    /// ]);
3475
    /// let re = Regex::builder()
3476
    ///     .build_from_hir(&hir)?;
3477
    /// let hay = "\r\nfoo\r\n";
3478
    /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
3479
    ///
3480
    /// Ok::<(), Box<dyn std::error::Error>>(())
3481
    /// ```
3482
0
    pub fn build_from_hir(&self, hir: &Hir) -> Result<Regex, BuildError> {
3483
0
        self.build_many_from_hir(&[hir])
3484
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_from_hir
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_from_hir
3485
3486
    /// Builds a `Regex` directly from many `Hir` expressions.
3487
    ///
3488
    /// This is useful if you needed to parse pattern strings into `Hir`
3489
    /// expressions for other reasons (such as analysis or transformations).
3490
    /// This routine permits building a `Regex` directly from the `Hir`
3491
    /// expressions instead of first converting the `Hir` expressions back to
3492
    /// pattern strings.
3493
    ///
3494
    /// When using this method, any options set via [`Builder::syntax`] are
3495
    /// ignored. Namely, the syntax options only apply when parsing a pattern
3496
    /// string, which isn't relevant here.
3497
    ///
3498
    /// If there was a problem building the underlying regex matcher for the
3499
    /// given `Hir` expressions, then an error is returned.
3500
    ///
3501
    /// Note that unlike [`Builder::build_many`], this can only fail as a
3502
    /// result of building the underlying matcher. In that case, there is
3503
    /// no single `Hir` expression that can be isolated as a reason for the
3504
    /// failure. So if this routine fails, it's not possible to determine which
3505
    /// `Hir` expression caused the failure.
3506
    ///
3507
    /// # Example
3508
    ///
3509
    /// This example shows how one can hand-construct multiple `Hir`
3510
    /// expressions and build a single regex from them without doing any
3511
    /// parsing at all.
3512
    ///
3513
    /// ```
3514
    /// use {
3515
    ///     regex_automata::{meta::Regex, Match},
3516
    ///     regex_syntax::hir::{Hir, Look},
3517
    /// };
3518
    ///
3519
    /// // (?Rm)^foo$
3520
    /// let hir1 = Hir::concat(vec![
3521
    ///     Hir::look(Look::StartCRLF),
3522
    ///     Hir::literal("foo".as_bytes()),
3523
    ///     Hir::look(Look::EndCRLF),
3524
    /// ]);
3525
    /// // (?Rm)^bar$
3526
    /// let hir2 = Hir::concat(vec![
3527
    ///     Hir::look(Look::StartCRLF),
3528
    ///     Hir::literal("bar".as_bytes()),
3529
    ///     Hir::look(Look::EndCRLF),
3530
    /// ]);
3531
    /// let re = Regex::builder()
3532
    ///     .build_many_from_hir(&[&hir1, &hir2])?;
3533
    /// let hay = "\r\nfoo\r\nbar";
3534
    /// let got: Vec<Match> = re.find_iter(hay).collect();
3535
    /// let expected = vec![
3536
    ///     Match::must(0, 2..5),
3537
    ///     Match::must(1, 7..10),
3538
    /// ];
3539
    /// assert_eq!(expected, got);
3540
    ///
3541
    /// Ok::<(), Box<dyn std::error::Error>>(())
3542
    /// ```
3543
7
    pub fn build_many_from_hir<H: Borrow<Hir>>(
3544
7
        &self,
3545
7
        hirs: &[H],
3546
7
    ) -> Result<Regex, BuildError> {
3547
7
        let config = self.config.clone();
3548
7
        // We collect the HIRs into a vec so we can write internal routines
3549
7
        // with '&[&Hir]'. i.e., Don't use generics everywhere to keep code
3550
7
        // bloat down..
3551
7
        let hirs: Vec<&Hir> = hirs.iter().map(|hir| hir.borrow()).collect();
<regex_automata::meta::regex::Builder>::build_many_from_hir::<regex_syntax::hir::Hir>::{closure#0}
Line
Count
Source
3551
6
        let hirs: Vec<&Hir> = hirs.iter().map(|hir| hir.borrow()).collect();
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many_from_hir::<&regex_syntax::hir::Hir>::{closure#0}
<regex_automata::meta::regex::Builder>::build_many_from_hir::<regex_syntax::hir::Hir>::{closure#0}
Line
Count
Source
3551
1
        let hirs: Vec<&Hir> = hirs.iter().map(|hir| hir.borrow()).collect();
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many_from_hir::<&regex_syntax::hir::Hir>::{closure#0}
3552
7
        let info = RegexInfo::new(config, &hirs);
3553
7
        let strat = strategy::new(&info, &hirs)?;
3554
7
        let pool = {
3555
7
            let strat = Arc::clone(&strat);
3556
7
            let create: CachePoolFn = Box::new(move || strat.create_cache());
<regex_automata::meta::regex::Builder>::build_many_from_hir::<regex_syntax::hir::Hir>::{closure#1}
Line
Count
Source
3556
6
            let create: CachePoolFn = Box::new(move || strat.create_cache());
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many_from_hir::<&regex_syntax::hir::Hir>::{closure#1}
<regex_automata::meta::regex::Builder>::build_many_from_hir::<regex_syntax::hir::Hir>::{closure#1}
Line
Count
Source
3556
1
            let create: CachePoolFn = Box::new(move || strat.create_cache());
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many_from_hir::<&regex_syntax::hir::Hir>::{closure#1}
3557
7
            Pool::new(create)
3558
7
        };
3559
7
        Ok(Regex { imp: Arc::new(RegexI { strat, info }), pool })
3560
7
    }
<regex_automata::meta::regex::Builder>::build_many_from_hir::<regex_syntax::hir::Hir>
Line
Count
Source
3543
6
    pub fn build_many_from_hir<H: Borrow<Hir>>(
3544
6
        &self,
3545
6
        hirs: &[H],
3546
6
    ) -> Result<Regex, BuildError> {
3547
6
        let config = self.config.clone();
3548
6
        // We collect the HIRs into a vec so we can write internal routines
3549
6
        // with '&[&Hir]'. i.e., Don't use generics everywhere to keep code
3550
6
        // bloat down..
3551
6
        let hirs: Vec<&Hir> = hirs.iter().map(|hir| hir.borrow()).collect();
3552
6
        let info = RegexInfo::new(config, &hirs);
3553
6
        let strat = strategy::new(&info, &hirs)?;
3554
6
        let pool = {
3555
6
            let strat = Arc::clone(&strat);
3556
6
            let create: CachePoolFn = Box::new(move || strat.create_cache());
3557
6
            Pool::new(create)
3558
6
        };
3559
6
        Ok(Regex { imp: Arc::new(RegexI { strat, info }), pool })
3560
6
    }
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many_from_hir::<&regex_syntax::hir::Hir>
<regex_automata::meta::regex::Builder>::build_many_from_hir::<regex_syntax::hir::Hir>
Line
Count
Source
3543
1
    pub fn build_many_from_hir<H: Borrow<Hir>>(
3544
1
        &self,
3545
1
        hirs: &[H],
3546
1
    ) -> Result<Regex, BuildError> {
3547
1
        let config = self.config.clone();
3548
1
        // We collect the HIRs into a vec so we can write internal routines
3549
1
        // with '&[&Hir]'. i.e., Don't use generics everywhere to keep code
3550
1
        // bloat down..
3551
1
        let hirs: Vec<&Hir> = hirs.iter().map(|hir| hir.borrow()).collect();
3552
1
        let info = RegexInfo::new(config, &hirs);
3553
1
        let strat = strategy::new(&info, &hirs)?;
3554
1
        let pool = {
3555
1
            let strat = Arc::clone(&strat);
3556
1
            let create: CachePoolFn = Box::new(move || strat.create_cache());
3557
1
            Pool::new(create)
3558
1
        };
3559
1
        Ok(Regex { imp: Arc::new(RegexI { strat, info }), pool })
3560
1
    }
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many_from_hir::<&regex_syntax::hir::Hir>
3561
3562
    /// Configure the behavior of a `Regex`.
3563
    ///
3564
    /// This configuration controls non-syntax options related to the behavior
3565
    /// of a `Regex`. This includes things like whether empty matches can split
3566
    /// a codepoint, prefilters, line terminators and a long list of options
3567
    /// for configuring which regex engines the meta regex engine will be able
3568
    /// to use internally.
3569
    ///
3570
    /// # Example
3571
    ///
3572
    /// This example shows how to disable UTF-8 empty mode. This will permit
3573
    /// empty matches to occur between the UTF-8 encoding of a codepoint.
3574
    ///
3575
    /// ```
3576
    /// use regex_automata::{meta::Regex, Match};
3577
    ///
3578
    /// let re = Regex::new("")?;
3579
    /// let got: Vec<Match> = re.find_iter("☃").collect();
3580
    /// // Matches only occur at the beginning and end of the snowman.
3581
    /// assert_eq!(got, vec![
3582
    ///     Match::must(0, 0..0),
3583
    ///     Match::must(0, 3..3),
3584
    /// ]);
3585
    ///
3586
    /// let re = Regex::builder()
3587
    ///     .configure(Regex::config().utf8_empty(false))
3588
    ///     .build("")?;
3589
    /// let got: Vec<Match> = re.find_iter("☃").collect();
3590
    /// // Matches now occur at every position!
3591
    /// assert_eq!(got, vec![
3592
    ///     Match::must(0, 0..0),
3593
    ///     Match::must(0, 1..1),
3594
    ///     Match::must(0, 2..2),
3595
    ///     Match::must(0, 3..3),
3596
    /// ]);
3597
    ///
3598
    /// Ok::<(), Box<dyn std::error::Error>>(())
3599
    /// ```
3600
7
    pub fn configure(&mut self, config: Config) -> &mut Builder {
3601
7
        self.config = self.config.overwrite(config);
3602
7
        self
3603
7
    }
<regex_automata::meta::regex::Builder>::configure
Line
Count
Source
3600
6
    pub fn configure(&mut self, config: Config) -> &mut Builder {
3601
6
        self.config = self.config.overwrite(config);
3602
6
        self
3603
6
    }
<regex_automata::meta::regex::Builder>::configure
Line
Count
Source
3600
1
    pub fn configure(&mut self, config: Config) -> &mut Builder {
3601
1
        self.config = self.config.overwrite(config);
3602
1
        self
3603
1
    }
3604
3605
    /// Configure the syntax options when parsing a pattern string while
3606
    /// building a `Regex`.
3607
    ///
3608
    /// These options _only_ apply when [`Builder::build`] or [`Builder::build_many`]
3609
    /// are used. The other build methods accept `Hir` values, which have
3610
    /// already been parsed.
3611
    ///
3612
    /// # Example
3613
    ///
3614
    /// This example shows how to enable case insensitive mode.
3615
    ///
3616
    /// ```
3617
    /// use regex_automata::{meta::Regex, util::syntax, Match};
3618
    ///
3619
    /// let re = Regex::builder()
3620
    ///     .syntax(syntax::Config::new().case_insensitive(true))
3621
    ///     .build(r"δ")?;
3622
    /// assert_eq!(Some(Match::must(0, 0..2)), re.find(r"Δ"));
3623
    ///
3624
    /// Ok::<(), Box<dyn std::error::Error>>(())
3625
    /// ```
3626
7
    pub fn syntax(
3627
7
        &mut self,
3628
7
        config: crate::util::syntax::Config,
3629
7
    ) -> &mut Builder {
3630
7
        config.apply_ast(&mut self.ast);
3631
7
        config.apply_hir(&mut self.hir);
3632
7
        self
3633
7
    }
<regex_automata::meta::regex::Builder>::syntax
Line
Count
Source
3626
6
    pub fn syntax(
3627
6
        &mut self,
3628
6
        config: crate::util::syntax::Config,
3629
6
    ) -> &mut Builder {
3630
6
        config.apply_ast(&mut self.ast);
3631
6
        config.apply_hir(&mut self.hir);
3632
6
        self
3633
6
    }
<regex_automata::meta::regex::Builder>::syntax
Line
Count
Source
3626
1
    pub fn syntax(
3627
1
        &mut self,
3628
1
        config: crate::util::syntax::Config,
3629
1
    ) -> &mut Builder {
3630
1
        config.apply_ast(&mut self.ast);
3631
1
        config.apply_hir(&mut self.hir);
3632
1
        self
3633
1
    }
3634
}
3635
3636
#[cfg(test)]
3637
mod tests {
3638
    use super::*;
3639
3640
    // I found this in the course of building out the benchmark suite for
3641
    // rebar.
3642
    #[test]
3643
    fn regression_suffix_literal_count() {
3644
        let _ = env_logger::try_init();
3645
3646
        let re = Regex::new(r"[a-zA-Z]+ing").unwrap();
3647
        assert_eq!(1, re.find_iter("tingling").count());
3648
    }
3649
}