Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/llama-graph.h
Line
Count
Source
1
#pragma once
2
3
#include "llama-arch.h"
4
#include "llama-batch.h"
5
#include "llama-hparams.h"
6
#include "llama-adapter.h"
7
8
#include <cstdint>
9
#include <vector>
10
#include <memory>
11
#include <set>
12
#include <functional>
13
14
struct ggml_cgraph;
15
struct ggml_context;
16
struct ggml_tensor;
17
18
struct llama_cparams;
19
20
struct llama_memory_context_i;
21
22
class llama_kv_cache_context;
23
class llama_kv_cache_iswa_context;
24
class llama_memory_recurrent_context;
25
class llama_memory_hybrid_context;
26
27
// certain models (typically multi-modal) can produce different types of graphs
28
enum llm_graph_type {
29
    LLM_GRAPH_TYPE_DEFAULT,
30
    LLM_GRAPH_TYPE_ENCODER,
31
    LLM_GRAPH_TYPE_DECODER,
32
};
33
34
enum llm_ffn_op_type {
35
    LLM_FFN_SILU,
36
    LLM_FFN_GELU,
37
    LLM_FFN_RELU,
38
    LLM_FFN_RELU_SQR,
39
    LLM_FFN_SWIGLU,
40
    LLM_FFN_GEGLU,
41
    LLM_FFN_REGLU,
42
    LLM_FFN_SWIGLU_OAI_MOE,
43
};
44
45
enum llm_ffn_gate_type {
46
    LLM_FFN_SEQ,
47
    LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
48
};
49
50
enum llm_norm_type {
51
    LLM_NORM,
52
    LLM_NORM_RMS,
53
    LLM_NORM_GROUP,
54
};
55
56
// TODO: tmp - need something better to pass the data from the encoder to the decoder
57
struct llama_cross {
58
    // the output embeddings from the encoder as a ggml tensor
59
    // TODO: this needs more work to be correct, for now copy the embeddings data to host memory
60
    //       ref: https://github.com/ggml-org/llama.cpp/pull/11213#discussion_r1969892524
61
    //ggml_tensor * t_embd = nullptr;
62
63
    int64_t n_embd = 0;
64
    int64_t n_enc  = 0;
65
66
    // embeddings data copied to host memory (tmp)
67
    std::vector<float> v_embd;
68
69
    // needed to construct the cross-attention mask in the decoder
70
    std::vector<std::set<llama_seq_id>> seq_ids_enc;
71
};
72
73
struct llm_graph_params;
74
75
//
76
// llm_graph_input
77
//
78
79
class llm_graph_input_i {
80
public:
81
0
    llm_graph_input_i() {
82
0
        const char * LLAMA_GRAPH_INPUT_DEBUG = getenv("LLAMA_GRAPH_INPUT_DEBUG");
83
0
        debug = LLAMA_GRAPH_INPUT_DEBUG ? atoi(LLAMA_GRAPH_INPUT_DEBUG) : 0;
84
0
    }
85
86
0
    virtual ~llm_graph_input_i() = default;
87
88
    virtual void set_input(const llama_ubatch * ubatch) = 0;
89
90
    // return true if the resulting input tensors using the provided graph parameters would be
91
    //   the same as the previous input tensors that we have currently stored in the object
92
0
    virtual bool can_reuse(const llm_graph_params & params) {
93
        // returning false here by default will prevent from reusing the graph if the check
94
        //   for the input type has not been implemented yet
95
0
        GGML_UNUSED(params);
96
0
        return false;
97
0
    }
98
protected:
99
    // env: LLAMA_GRAPH_INPUT_DEBUG
100
    int debug = 0;
101
};
102
103
using llm_graph_input_ptr = std::unique_ptr<llm_graph_input_i>;
104
105
class llm_graph_input_embd : public llm_graph_input_i {
106
public:
107
0
    llm_graph_input_embd()          = default;
108
    virtual ~llm_graph_input_embd() = default;
109
110
    void set_input(const llama_ubatch * ubatch) override;
111
112
    bool can_reuse(const llm_graph_params & params) override;
113
114
    ggml_tensor * tokens = nullptr; // I32 [n_batch]
115
    ggml_tensor * embd   = nullptr; // F32 [n_embd, n_batch]
116
};
117
118
class llm_graph_input_pos : public llm_graph_input_i {
119
public:
120
0
    llm_graph_input_pos(uint32_t n_pos_per_embd) : n_pos_per_embd(n_pos_per_embd) {}
121
    virtual ~llm_graph_input_pos() = default;
122
123
    void set_input(const llama_ubatch * ubatch) override;
124
125
    bool can_reuse(const llm_graph_params & params) override;
126
127
    ggml_tensor * pos = nullptr; // I32 [n_batch]
128
129
    const uint32_t n_pos_per_embd = 1;
130
};
131
132
// temperature tuning, used by llama4
133
class llm_graph_input_attn_temp : public llm_graph_input_i {
134
public:
135
    llm_graph_input_attn_temp(uint32_t n_attn_temp_floor_scale, float f_attn_temp_scale)
136
0
        : n_attn_temp_floor_scale(n_attn_temp_floor_scale), f_attn_temp_scale(f_attn_temp_scale) {}
137
    virtual ~llm_graph_input_attn_temp() = default;
138
139
    void set_input(const llama_ubatch * ubatch) override;
140
141
    ggml_tensor * attn_scale = nullptr; // F32 [n_batch]
142
143
    const uint32_t n_attn_temp_floor_scale;
144
    const float    f_attn_temp_scale;
145
};
146
147
class llm_graph_input_pos_bucket : public llm_graph_input_i {
148
public:
149
0
    llm_graph_input_pos_bucket(const llama_hparams & hparams) : hparams(hparams) {}
150
    virtual ~llm_graph_input_pos_bucket() = default;
151
152
    void set_input(const llama_ubatch * ubatch) override;
153
154
    ggml_tensor * pos_bucket = nullptr; // I32 [n_batch, n_batch]
155
156
    const llama_hparams hparams;
157
};
158
159
class llm_graph_input_pos_bucket_kv : public llm_graph_input_i {
160
public:
161
    llm_graph_input_pos_bucket_kv(
162
            const llama_hparams & hparams,
163
0
            const llama_kv_cache_context * mctx) : hparams(hparams), mctx(mctx) {}
164
    virtual ~llm_graph_input_pos_bucket_kv() = default;
165
166
    void set_input(const llama_ubatch * ubatch) override;
167
168
    ggml_tensor * pos_bucket = nullptr; // I32 [n_kv, n_batch]
169
170
    const llama_hparams hparams;
171
172
    const llama_kv_cache_context * mctx;
173
};
174
175
class llm_graph_input_out_ids : public llm_graph_input_i {
176
public:
177
    llm_graph_input_out_ids(
178
            const llama_hparams & hparams,
179
            const llama_cparams & cparams,
180
0
            uint32_t n_outputs) : hparams(hparams), cparams(cparams), n_outputs(n_outputs) {}
181
    virtual ~llm_graph_input_out_ids() = default;
182
183
    void set_input(const llama_ubatch * ubatch) override;
184
185
    bool can_reuse(const llm_graph_params & params) override;
186
187
    ggml_tensor * out_ids; // I32 [n_outputs]
188
189
    const llama_hparams hparams;
190
    const llama_cparams cparams;
191
192
    const uint32_t n_outputs;
193
};
194
195
class llm_graph_input_mean : public llm_graph_input_i {
196
public:
197
0
    llm_graph_input_mean(const llama_cparams & cparams) : cparams(cparams) {}
198
    virtual ~llm_graph_input_mean() = default;
199
200
    void set_input(const llama_ubatch * ubatch) override;
201
202
    ggml_tensor * mean; // F32 [n_batch, n_batch]
203
204
    const llama_cparams cparams;
205
};
206
207
class llm_graph_input_cls : public llm_graph_input_i {
208
public:
209
0
    llm_graph_input_cls(const llama_cparams & cparams, const llm_arch arch) : cparams(cparams), arch(arch) {}
210
    virtual ~llm_graph_input_cls() = default;
211
212
    void set_input(const llama_ubatch * ubatch) override;
213
214
    ggml_tensor * cls; // I32 [n_batch]
215
216
    const llama_cparams cparams;
217
    const llm_arch arch;
218
};
219
220
class llm_graph_input_rs : public llm_graph_input_i {
221
public:
222
0
    llm_graph_input_rs(const llama_memory_recurrent_context * mctx) : mctx(mctx) {}
223
    virtual ~llm_graph_input_rs() = default;
224
225
    void set_input(const llama_ubatch * ubatch) override;
226
227
    ggml_tensor * s_copy;  // I32 [n_rs]
228
229
    // views of s_copy, computed once per graph
230
    // and shared across layers which use build_rs
231
    ggml_tensor * s_copy_main;   // I32 [n_seqs]
232
    ggml_tensor * s_copy_extra;  // I32 [n_rs - n_seqs]
233
234
    const llama_memory_recurrent_context * mctx;
235
};
236
237
class llm_graph_input_cross_embd : public llm_graph_input_i {
238
public:
239
    llm_graph_input_cross_embd(
240
0
            const llama_cross * cross) : cross(cross) {}
241
    virtual ~llm_graph_input_cross_embd() = default;
242
243
    void set_input(const llama_ubatch * ubatch) override;
244
245
    ggml_tensor * cross_embd; // F32 [n_embd, n_outputs_enc]
246
247
    const llama_cross * cross;
248
};
249
250
class llm_graph_input_attn_no_cache : public llm_graph_input_i {
251
public:
252
    llm_graph_input_attn_no_cache(const llama_hparams & hparams, const llama_cparams & cparams) :
253
0
        hparams(hparams),
254
0
        cparams(cparams) {
255
0
    }
256
    ~llm_graph_input_attn_no_cache() = default;
257
258
    void set_input(const llama_ubatch * ubatch) override;
259
260
0
    ggml_tensor * get_kq_mask()     const { return self_kq_mask_cnv; }
261
0
    ggml_tensor * get_kq_mask_swa() const { return self_kq_mask_swa_cnv; }
262
263
    // n_tokens == n_batch
264
    ggml_tensor * self_kq_mask         = nullptr; // F32 [n_tokens, n_batch/n_stream, 1, n_stream]
265
    ggml_tensor * self_kq_mask_cnv     = nullptr; //     [n_tokens, n_batch/n_stream, 1, n_stream]
266
    ggml_tensor * self_kq_mask_swa     = nullptr; // F32 [n_tokens, n_batch/n_stream, 1, n_stream]
267
    ggml_tensor * self_kq_mask_swa_cnv = nullptr; //     [n_tokens, n_batch/n_stream, 1, n_stream]
268
269
    const llama_hparams hparams;
270
    const llama_cparams cparams;
271
};
272
273
class llm_graph_input_attn_kv : public llm_graph_input_i {
274
public:
275
    llm_graph_input_attn_kv(
276
            const llama_hparams & hparams,
277
            const llama_cparams & cparams,
278
            const llama_kv_cache_context * mctx) :
279
0
        hparams(hparams),
280
0
        cparams(cparams),
281
0
        mctx(mctx) {
282
0
    }
283
    ~llm_graph_input_attn_kv() = default;
284
285
    void set_input(const llama_ubatch * ubatch) override;
286
287
    bool can_reuse(const llm_graph_params & params) override;
288
289
0
    ggml_tensor * get_k_idxs() const { return self_k_idxs; }
290
0
    ggml_tensor * get_v_idxs() const { return self_v_idxs; }
291
292
0
    ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }
293
294
    ggml_tensor * self_k_idxs = nullptr; // I64 [n_batch]
295
    ggml_tensor * self_v_idxs = nullptr; // I64 [n_batch] or [n_batch*n_embd_v_gqa]
296
297
    ggml_tensor * self_kq_mask     = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
298
    ggml_tensor * self_kq_mask_cnv = nullptr; //     [n_kv, n_batch/n_stream, 1, n_stream]
299
300
    // note: these have to be copies because in order to be able to reuse a graph, its inputs
301
    //       need to carry these parameters with them. otherwise, they can point to freed
302
    //       llm_graph_params from a previous batch, causing stack-use-after-return
303
    const llama_hparams hparams;
304
    const llama_cparams cparams;
305
306
    const llama_kv_cache_context * mctx;
307
};
308
309
class llm_graph_input_attn_kv_iswa : public llm_graph_input_i {
310
public:
311
    llm_graph_input_attn_kv_iswa(
312
            const llama_hparams & hparams,
313
            const llama_cparams & cparams,
314
            const llama_kv_cache_iswa_context * mctx) :
315
0
        hparams(hparams),
316
0
        cparams(cparams),
317
0
        mctx(mctx) {
318
0
    }
319
    ~llm_graph_input_attn_kv_iswa() = default;
320
321
    void set_input(const llama_ubatch * ubatch) override;
322
323
    bool can_reuse(const llm_graph_params & params) override;
324
325
0
    ggml_tensor * get_k_idxs()     const { return self_k_idxs; }
326
0
    ggml_tensor * get_v_idxs()     const { return self_v_idxs; }
327
0
    ggml_tensor * get_k_idxs_swa() const { return self_k_idxs_swa; }
328
0
    ggml_tensor * get_v_idxs_swa() const { return self_v_idxs_swa; }
329
330
0
    ggml_tensor * get_kq_mask()     const { return self_kq_mask_cnv; }
331
0
    ggml_tensor * get_kq_mask_swa() const { return self_kq_mask_swa_cnv; }
332
333
    ggml_tensor * self_k_idxs     = nullptr; // I64 [n_batch]
334
    ggml_tensor * self_v_idxs     = nullptr; // I64 [n_batch] or [n_batch*n_embd_v_gqa]
335
    ggml_tensor * self_k_idxs_swa = nullptr; // I64 [n_batch]
336
    ggml_tensor * self_v_idxs_swa = nullptr; // I64 [n_batch] or [n_batch*n_embd_v_gqa]
337
338
    ggml_tensor * self_kq_mask         = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
339
    ggml_tensor * self_kq_mask_cnv     = nullptr; //     [n_kv, n_batch/n_stream, 1, n_stream]
340
    ggml_tensor * self_kq_mask_swa     = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
341
    ggml_tensor * self_kq_mask_swa_cnv = nullptr; //     [n_kv, n_batch/n_stream, 1, n_stream]
342
343
    const llama_hparams hparams;
344
    const llama_cparams cparams;
345
346
    const llama_kv_cache_iswa_context * mctx;
347
};
348
349
class llm_graph_input_attn_cross : public llm_graph_input_i {
350
public:
351
0
    llm_graph_input_attn_cross(const llama_cross * cross) : cross(cross) {}
352
    ~llm_graph_input_attn_cross() = default;
353
354
    void set_input(const llama_ubatch * ubatch) override;
355
356
0
    ggml_tensor * get_kq_mask_cross() const { return cross_kq_mask_cnv; }
357
358
    ggml_tensor * cross_kq_mask     = nullptr; // F32 [n_outputs_enc, n_batch, 1, 1]
359
    ggml_tensor * cross_kq_mask_cnv = nullptr; // F32 [n_outputs_enc, n_batch, 1, 1]
360
361
    const llama_cross * cross = nullptr;
362
};
363
364
class llm_graph_input_mem_hybrid : public llm_graph_input_i {
365
public:
366
    llm_graph_input_mem_hybrid(
367
            std::unique_ptr<llm_graph_input_attn_kv> inp_attn,
368
            std::unique_ptr<llm_graph_input_rs>              inp_rs,
369
            const llama_memory_hybrid_context *              mctx) :
370
0
        inp_attn(std::move(inp_attn)),
371
0
        inp_rs(std::move(inp_rs)),
372
0
        mctx(mctx) { }
373
0
    virtual ~llm_graph_input_mem_hybrid() = default;
374
375
    void set_input(const llama_ubatch * ubatch) override;
376
377
    std::unique_ptr<llm_graph_input_attn_kv> inp_attn;
378
    std::unique_ptr<llm_graph_input_rs>      inp_rs;
379
380
0
    llm_graph_input_attn_kv * get_attn() const { return inp_attn.get(); }
381
0
    llm_graph_input_rs      * get_recr() const { return inp_rs.get(); }
382
383
    const llama_memory_hybrid_context * mctx;
384
};
385
386
//
387
// llm_graph_result
388
//
389
390
// these objects deliver the result from the graph build process back to the llama_context
391
// note that the input tensors created for the graph are referenced here - the goal is to be able to populate their
392
//   specific data, by calling the set_inputs() method
393
// along with the input tensors, the object also provides commonly used outputs tensors, such as logits, embeddings, etc.
394
//   these are used by the llama_context to extact the relevant data, based on the compute parameters
395
396
// callback that allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
397
using llm_graph_cb = std::function<void(const llama_ubatch & ubatch, ggml_tensor * cur, const char * name, int il)>;
398
399
class llm_graph_result;
400
401
struct llm_graph_params {
402
    llm_arch arch = LLM_ARCH_UNKNOWN;
403
404
    llama_hparams hparams;
405
    llama_cparams cparams;
406
407
    llama_ubatch ubatch; // note: intentionally make a copy
408
409
    llm_graph_type gtype;
410
411
    ggml_backend_sched_t sched;
412
    ggml_backend_t backend_cpu;
413
414
    const llama_adapter_cvec     * cvec;
415
    const llama_adapter_loras    * loras;
416
    const llama_memory_context_i * mctx;
417
    const llama_cross            * cross;
418
419
    uint32_t n_outputs;
420
421
    llm_graph_cb cb;
422
423
    llm_graph_result * res;
424
425
    // return true if the "other" params would result in a graph with the same topology as with the current params
426
    //   having the same topology allows us to reuse the graph in some cases
427
0
    bool allow_reuse(const llm_graph_params & other) const {
428
        // first check the ubatch
429
0
        bool can_reuse_ubatch =
430
0
            ubatch.equal_seqs() == other.ubatch.equal_seqs() &&
431
0
            ubatch.n_tokens     == other.ubatch.n_tokens &&
432
0
            ubatch.n_seq_tokens == other.ubatch.n_seq_tokens &&
433
0
            ubatch.n_seqs       == other.ubatch.n_seqs &&
434
0
            ubatch.n_seqs_unq   == other.ubatch.n_seqs_unq &&
435
0
            (
436
0
                (!ubatch.token && !other.ubatch.token) ||
437
0
                (!ubatch.embd  && !other.ubatch.embd)
438
0
            );
439
440
        // when we split the batch using "equal_seqs" we have to verify that the participating sequences are the same
441
        //   the reason is because the set of attention streams would be different for different sequences
442
0
        if (can_reuse_ubatch && ubatch.equal_seqs()) {
443
0
            if (!ubatch.data) {
444
                // if the old ubatch does not own it's data, then we cannot guarantee that it is still alive, and
445
                //   therefore we cannot perform the sequence id check. normally should never happen
446
0
                can_reuse_ubatch = false;
447
0
            } else {
448
0
                for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) {
449
0
                    can_reuse_ubatch &= ubatch.seq_id_unq[s] == other.ubatch.seq_id_unq[s];
450
0
                }
451
0
            }
452
0
        }
453
454
0
        if (!can_reuse_ubatch) {
455
0
            return false;
456
0
        }
457
458
0
        return
459
0
            cparams.embeddings  == other.cparams.embeddings  &&
460
0
            cparams.causal_attn == other.cparams.causal_attn &&
461
0
            arch      == other.arch  &&
462
0
            gtype     == other.gtype &&
463
0
            cvec      == other.cvec  &&
464
0
            loras     == other.loras &&
465
0
            cross     == other.cross &&
466
0
            n_outputs == other.n_outputs;
467
0
    }
468
};
469
470
class llm_graph_result {
471
public:
472
    llm_graph_result(int64_t max_nodes);
473
474
0
    virtual ~llm_graph_result() = default;
475
476
0
    ggml_tensor * get_tokens()      const { return t_tokens; }
477
0
    ggml_tensor * get_logits()      const { return t_logits; }
478
0
    ggml_tensor * get_embd()        const { return t_embd; }
479
0
    ggml_tensor * get_embd_pooled() const { return t_embd_pooled; }
480
481
0
    ggml_cgraph  * get_gf()  const { return gf; }
482
0
    ggml_context * get_ctx() const { return ctx_compute.get(); }
483
484
    int64_t get_max_nodes() const;
485
486
    void reset();
487
488
    void set_inputs(const llama_ubatch * ubatch);
489
490
    // try to update the existing graph result using the new graph parameters in order to reuse it
491
    // this can only be done if we determine that the resulting graph using the new graph parameters
492
    //   would be identical to the existing graph. in that case, we simply have to update the memory
493
    //   contexts of the input tensors of the graph and we can reuse it for another computation
494
    // return true if the graph was updated and can be reused
495
    bool can_reuse(const llm_graph_params & params);
496
497
    llm_graph_input_i * add_input(llm_graph_input_ptr input);
498
499
    void set_params(const llm_graph_params & params);
500
501
    // important graph nodes
502
    ggml_tensor * t_tokens      = nullptr;
503
    ggml_tensor * t_logits      = nullptr;
504
    ggml_tensor * t_embd        = nullptr;
505
    ggml_tensor * t_embd_pooled = nullptr;
506
507
    std::vector<llm_graph_input_ptr> inputs;
508
509
    ggml_context_ptr ctx_compute;
510
511
    // memory buffers used to evaluate the model
512
    std::vector<uint8_t> buf_compute_meta;
513
514
    ggml_cgraph * gf;
515
516
    int64_t max_nodes;
517
518
private:
519
    // keep a copy of the previous graph parameters
520
    // we will use this to determine whether the graph can be reused by comparing them with the new parameters
521
    // note: these are updated after constructing the new graph
522
    llm_graph_params params;
523
524
    // env: LLAMA_GRAPH_RESULT_DEBUG
525
    int debug = 0;
526
};
527
528
using llm_graph_result_ptr = std::unique_ptr<llm_graph_result>;
529
530
//
531
// llm_graph_context
532
//
533
534
// used in build_rs to properly order writes and avoid unnecessary copies
535
using llm_graph_get_rows_fn = std::function<ggml_tensor * (ggml_context *, ggml_tensor * states, ggml_tensor * ids)>;
536
537
struct llm_graph_context {
538
    const llm_arch arch;
539
540
    const llama_hparams & hparams;
541
    const llama_cparams & cparams;
542
    const llama_ubatch  & ubatch;
543
544
    const int64_t n_embd;
545
    const int64_t n_layer;
546
    const int64_t n_rot;
547
    const int64_t n_ctx;       // user-specified context size (can be different from n_ctx_train)
548
    const int64_t n_head;
549
    const int64_t n_head_kv;
550
    const int64_t n_embd_head_k;
551
    const int64_t n_embd_k_gqa;
552
    const int64_t n_embd_head_v;
553
    const int64_t n_embd_v_gqa;
554
    const int64_t n_expert;
555
    const int64_t n_expert_used;
556
557
    const float freq_base;
558
    const float freq_scale;
559
    const float ext_factor;
560
    const float attn_factor;
561
    const float beta_fast;
562
    const float beta_slow;
563
    const float norm_eps;
564
    const float norm_rms_eps;
565
566
    const int64_t n_tokens;
567
    const int64_t n_outputs;
568
    const int32_t n_ctx_orig; // yarn
569
570
    const enum llama_pooling_type pooling_type;
571
    const enum llama_rope_type    rope_type;
572
573
    ggml_backend_sched_t sched;
574
575
    ggml_backend_t backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
576
577
    const llama_adapter_cvec     * cvec;
578
    const llama_adapter_loras    * loras;
579
    const llama_memory_context_i * mctx;
580
    const llama_cross            * cross;
581
582
    const llm_graph_cb & cb_func;
583
584
    llm_graph_result * res;
585
586
    ggml_context * ctx0 = nullptr;
587
    ggml_cgraph  * gf   = nullptr;
588
589
    llm_graph_context(const llm_graph_params & params);
590
0
    virtual ~llm_graph_context() = default;
591
592
    void cb(ggml_tensor * cur, const char * name, int il) const;
593
594
    //
595
    // common
596
    //
597
598
    ggml_tensor * build_cvec(
599
             ggml_tensor * cur,
600
                     int   il) const;
601
602
    // do mat_mul, while optionally apply lora
603
    ggml_tensor * build_lora_mm(
604
              ggml_tensor * w,
605
              ggml_tensor * cur) const;
606
607
    // do mat_mul_id, while optionally apply lora
608
    ggml_tensor * build_lora_mm_id(
609
              ggml_tensor * w,   // ggml_tensor * as
610
              ggml_tensor * cur, // ggml_tensor * b
611
              ggml_tensor * ids) const;
612
613
    ggml_tensor * build_norm(
614
             ggml_tensor * cur,
615
             ggml_tensor * mw,
616
             ggml_tensor * mb,
617
           llm_norm_type   type,
618
                     int   il) const;
619
620
    ggml_tensor * build_ffn(
621
             ggml_tensor * cur,
622
             ggml_tensor * up,
623
             ggml_tensor * up_b,
624
             ggml_tensor * up_s,
625
             ggml_tensor * gate,
626
             ggml_tensor * gate_b,
627
             ggml_tensor * gate_s,
628
             ggml_tensor * down,
629
             ggml_tensor * down_b,
630
             ggml_tensor * down_s,
631
             ggml_tensor * act_scales,
632
         llm_ffn_op_type   type_op,
633
       llm_ffn_gate_type   type_gate,
634
                     int   il) const;
635
636
    // build MoE FFN without bias tensors
637
    ggml_tensor * build_moe_ffn(
638
             ggml_tensor * cur,
639
             ggml_tensor * gate_inp,
640
             ggml_tensor * up_exps,
641
             ggml_tensor * gate_exps,
642
             ggml_tensor * down_exps,
643
             ggml_tensor * exp_probs_b,
644
                 int64_t   n_expert,
645
                 int64_t   n_expert_used,
646
         llm_ffn_op_type   type_op,
647
                    bool   norm_w,
648
                    bool   scale_w,
649
                   float   w_scale,
650
            llama_expert_gating_func_type gating_op,
651
                     int   il,
652
             ggml_tensor * probs_in = nullptr) const;
653
654
    ggml_tensor * build_moe_ffn(
655
             ggml_tensor * cur,
656
             ggml_tensor * gate_inp,
657
             ggml_tensor * gate_inp_b,
658
             ggml_tensor * up_exps,
659
             ggml_tensor * up_exps_b,
660
             ggml_tensor * gate_exps,
661
             ggml_tensor * gate_exps_b,
662
             ggml_tensor * down_exps,
663
             ggml_tensor * down_exps_b,
664
             ggml_tensor * exp_probs_b,
665
                 int64_t   n_expert,
666
                 int64_t   n_expert_used,
667
         llm_ffn_op_type   type_op,
668
                    bool   norm_w,
669
                    bool   scale_w,
670
                   float   w_scale,
671
            llama_expert_gating_func_type gating_op,
672
                     int   il,
673
             ggml_tensor * probs_in = nullptr) const;
674
675
    //
676
    // inputs
677
    //
678
679
    ggml_tensor * build_inp_embd(ggml_tensor * tok_embd) const;
680
    ggml_tensor * build_inp_pos() const;
681
    ggml_tensor * build_inp_attn_scale() const;
682
    ggml_tensor * build_inp_out_ids() const;
683
    ggml_tensor * build_inp_mean() const;
684
    ggml_tensor * build_inp_cls() const;
685
686
    ggml_tensor * build_inp_cross_embd() const;
687
    ggml_tensor * build_inp_pos_bucket_enc() const;
688
    ggml_tensor * build_inp_pos_bucket_dec() const;
689
    ggml_tensor * build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const;
690
691
    //
692
    // attention
693
    //
694
695
    ggml_tensor * build_attn_mha(
696
            ggml_tensor * q,       // [n_embd_head_q, n_head_q, n_tokens]
697
            ggml_tensor * k,       // [n_embd_head_k, n_head_k, n_tokens]
698
            ggml_tensor * v,       // [n_embd_head_v, n_head_v, n_tokens] (v_trans == false)
699
            ggml_tensor * kq_b,
700
            ggml_tensor * kq_mask,
701
            ggml_tensor * sinks,   // [n_head_q]
702
            ggml_tensor * v_mla,   // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
703
                  float   kq_scale,
704
                    int   il) const;
705
706
    llm_graph_input_attn_no_cache * build_attn_inp_no_cache() const;
707
708
    ggml_tensor * build_attn(
709
            llm_graph_input_attn_no_cache * inp,
710
            ggml_tensor * wo,
711
            ggml_tensor * wo_b,
712
            ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
713
            ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
714
            ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
715
            ggml_tensor * kq_b,
716
            ggml_tensor * sinks, // [n_head_q]
717
            ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
718
                  float   kq_scale,
719
                    int   il) const;
720
721
    llm_graph_input_attn_kv * build_attn_inp_kv() const;
722
723
    ggml_tensor * build_attn(
724
            llm_graph_input_attn_kv * inp,
725
            ggml_tensor * wo,
726
            ggml_tensor * wo_b,
727
            ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
728
            ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
729
            ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
730
            ggml_tensor * kq_b,
731
            ggml_tensor * sinks, // [n_head_q]
732
            ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
733
                  float   kq_scale,
734
                    int   il) const;
735
736
    llm_graph_input_attn_kv_iswa * build_attn_inp_kv_iswa() const;
737
738
    // note: if k_cur or v_cur are not provided, they will not be stored in the memory
739
    ggml_tensor * build_attn(
740
            llm_graph_input_attn_kv_iswa * inp,
741
            ggml_tensor * wo,
742
            ggml_tensor * wo_b,
743
            ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
744
            ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens] optional
745
            ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens] optional
746
            ggml_tensor * kq_b,
747
            ggml_tensor * sinks, // [n_head_q]
748
            ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
749
                  float   kq_scale,
750
                    int   il) const;
751
752
    llm_graph_input_attn_cross * build_attn_inp_cross() const;
753
754
    ggml_tensor * build_attn(
755
            llm_graph_input_attn_cross * inp,
756
            ggml_tensor * wo,
757
            ggml_tensor * wo_b,
758
            ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
759
            ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
760
            ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
761
            ggml_tensor * kq_b,
762
            ggml_tensor * sinks, // [n_head_q]
763
            ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
764
                  float   kq_scale,
765
                    int   il) const;
766
767
    //
768
    // recurrent
769
    //
770
771
    // TODO: move this implementation to llama_memory_recurrent.
772
    //       this is analogous to llama_kv_cache::cpy_k / cpy_v
773
    //       when moving, avoid passing `ggml_cgraph` - only pass `ggml_context`. would likely need to split the
774
    //         implementation in 2 separate methods. the goal is to avoid calling `ggml_build_forward_expand` in
775
    //         `llama_memory_recurrent`
776
    ggml_tensor * build_rs(
777
            ggml_tensor * s,
778
            ggml_tensor * state_copy_main,
779
            ggml_tensor * state_copy_extra,
780
                int32_t   state_size,
781
                int32_t   n_seqs,
782
               uint32_t   n_rs,
783
               uint32_t   rs_head,
784
               uint32_t   rs_size,
785
                int32_t   rs_zero,
786
            const llm_graph_get_rows_fn & get_state_rows = ggml_get_rows) const;
787
788
    llm_graph_input_rs * build_rs_inp() const;
789
790
    ggml_tensor * build_rs(
791
            llm_graph_input_rs * inp,
792
            ggml_tensor * s,
793
                int32_t   state_size,
794
                int32_t   n_seqs,
795
            const llm_graph_get_rows_fn & get_state_rows = ggml_get_rows) const;
796
797
    ggml_tensor * build_rwkv_token_shift_load(
798
        llm_graph_input_rs * inp,
799
        const llama_ubatch & ubatch,
800
                       int   il) const;
801
802
    ggml_tensor * build_rwkv_token_shift_store(
803
             ggml_tensor * token_shift,
804
      const llama_ubatch & ubatch,
805
                     int   il) const;
806
    //
807
    // hybrid
808
    //
809
810
    llm_graph_input_mem_hybrid * build_inp_mem_hybrid() const;
811
812
    //
813
    // pooling
814
    //
815
816
    void build_pooling(
817
            ggml_tensor * cls,
818
            ggml_tensor * cls_b,
819
            ggml_tensor * cls_out,
820
            ggml_tensor * cls_out_b) const;
821
822
    //
823
    // dense (out)
824
    //
825
826
    void build_dense_out(
827
            ggml_tensor * dense_2,
828
            ggml_tensor * dense_3) const;
829
};
830
831
// TODO: better name
832
int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional);