/src/llama.cpp/src/models/granite.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | | |
4 | | llm_build_granite::llm_build_granite( |
5 | | const llama_model & model, |
6 | | const llm_graph_params & params) |
7 | 0 | : llm_graph_context(params) { |
8 | |
|
9 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
10 | |
|
11 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
12 | 0 | GGML_ASSERT(n_embd_head == hparams.n_rot); |
13 | |
|
14 | 0 | ggml_tensor * cur; |
15 | 0 | ggml_tensor * inpL; |
16 | |
|
17 | 0 | inpL = build_inp_embd(model.tok_embd); |
18 | | |
19 | | // inp_pos - built only if rope enabled |
20 | 0 | ggml_tensor * inp_pos = nullptr; |
21 | 0 | if (hparams.rope_finetuned) { |
22 | 0 | inp_pos = build_inp_pos(); |
23 | 0 | } |
24 | 0 | auto * inp_attn = build_attn_inp_kv(); |
25 | |
|
26 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
27 | |
|
28 | 0 | for (int il = 0; il < n_layer; ++il) { |
29 | 0 | ggml_tensor * inpSA = inpL; |
30 | | |
31 | | // norm |
32 | 0 | cur = build_norm(inpL, |
33 | 0 | model.layers[il].attn_norm, NULL, |
34 | 0 | LLM_NORM_RMS, il); |
35 | 0 | cb(cur, "attn_norm", il); |
36 | | |
37 | | // self-attention |
38 | 0 | cur = build_attention_layer( |
39 | 0 | cur, inp_pos, inp_attn, |
40 | 0 | model, n_embd_head, il); |
41 | |
|
42 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
43 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
44 | 0 | inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); |
45 | 0 | } |
46 | | // ffn |
47 | 0 | cur = build_layer_ffn(cur, inpSA, model, il); |
48 | | |
49 | | // input for next layer |
50 | 0 | inpL = cur; |
51 | 0 | } |
52 | 0 | cur = inpL; |
53 | |
|
54 | 0 | cur = build_norm(cur, |
55 | 0 | model.output_norm, NULL, |
56 | 0 | LLM_NORM_RMS, -1); |
57 | |
|
58 | 0 | cb(cur, "result_norm", -1); |
59 | 0 | res->t_embd = cur; |
60 | | |
61 | | // lm_head |
62 | 0 | cur = build_lora_mm(model.output, cur); |
63 | | |
64 | | // For Granite architectures - scale logits |
65 | 0 | cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale); |
66 | 0 | cb(cur, "result_output", -1); |
67 | 0 | res->t_logits = cur; |
68 | |
|
69 | 0 | ggml_build_forward_expand(gf, cur); |
70 | 0 | } |
71 | | |
72 | | ggml_tensor * llm_build_granite::build_attention_layer( |
73 | | ggml_tensor * cur, |
74 | | ggml_tensor * inp_pos, |
75 | | llm_graph_input_attn_kv * inp_attn, |
76 | | const llama_model & model, |
77 | | const int64_t n_embd_head, |
78 | 0 | const int il) { |
79 | | |
80 | | // compute Q and K and (optionally) RoPE them |
81 | 0 | ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); |
82 | 0 | cb(Qcur, "Qcur", il); |
83 | 0 | if (model.layers[il].bq) { |
84 | 0 | Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); |
85 | 0 | cb(Qcur, "Qcur", il); |
86 | 0 | } |
87 | |
|
88 | 0 | ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); |
89 | 0 | cb(Kcur, "Kcur", il); |
90 | 0 | if (model.layers[il].bk) { |
91 | 0 | Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); |
92 | 0 | cb(Kcur, "Kcur", il); |
93 | 0 | } |
94 | |
|
95 | 0 | ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); |
96 | 0 | cb(Vcur, "Vcur", il); |
97 | 0 | if (model.layers[il].bv) { |
98 | 0 | Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); |
99 | 0 | cb(Vcur, "Vcur", il); |
100 | 0 | } |
101 | |
|
102 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens); |
103 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens); |
104 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens); |
105 | |
|
106 | 0 | const bool use_rope = hparams.rope_finetuned; |
107 | 0 | if (use_rope) { |
108 | 0 | ggml_tensor * rope_factors = model.get_rope_factors(cparams, il); |
109 | 0 | Qcur = ggml_rope_ext( |
110 | 0 | ctx0, Qcur, inp_pos, rope_factors, |
111 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
112 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
113 | 0 | ); |
114 | |
|
115 | 0 | Kcur = ggml_rope_ext( |
116 | 0 | ctx0, Kcur, inp_pos, rope_factors, |
117 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
118 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
119 | 0 | ); |
120 | 0 | } |
121 | |
|
122 | 0 | cb(Qcur, "Qcur", il); |
123 | 0 | cb(Kcur, "Kcur", il); |
124 | 0 | cb(Vcur, "Vcur", il); |
125 | |
|
126 | 0 | const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale; |
127 | 0 | cur = build_attn(inp_attn, |
128 | 0 | model.layers[il].wo, model.layers[il].bo, |
129 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il); |
130 | 0 | cb(cur, "attn_out", il); |
131 | 0 | return cur; |
132 | 0 | } |
133 | | |
134 | | ggml_tensor * llm_build_granite::build_layer_ffn( |
135 | | ggml_tensor * cur, |
136 | | ggml_tensor * inpSA, |
137 | | const llama_model & model, |
138 | 0 | const int il) { |
139 | | |
140 | | // For Granite architectures - scale residual |
141 | 0 | if (hparams.f_residual_scale) { |
142 | 0 | cur = ggml_scale(ctx0, cur, hparams.f_residual_scale); |
143 | 0 | } |
144 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); |
145 | 0 | cb(ffn_inp, "ffn_inp", il); |
146 | | |
147 | | // feed-forward network (non-MoE) |
148 | 0 | if (model.layers[il].ffn_gate_inp == nullptr) { |
149 | |
|
150 | 0 | cur = build_norm(ffn_inp, |
151 | 0 | model.layers[il].ffn_norm, NULL, |
152 | 0 | LLM_NORM_RMS, il); |
153 | 0 | cb(cur, "ffn_norm", il); |
154 | |
|
155 | 0 | cur = build_ffn(cur, |
156 | 0 | model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, |
157 | 0 | model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL, |
158 | 0 | model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, |
159 | 0 | NULL, |
160 | 0 | LLM_FFN_SILU, LLM_FFN_PAR, il); |
161 | 0 | cb(cur, "ffn_out", il); |
162 | |
|
163 | 0 | } else { |
164 | | // MoE branch |
165 | 0 | cur = build_norm(ffn_inp, |
166 | 0 | model.layers[il].ffn_norm, NULL, |
167 | 0 | LLM_NORM_RMS, il); |
168 | 0 | cb(cur, "ffn_norm", il); |
169 | |
|
170 | 0 | ggml_tensor * moe_out = build_moe_ffn(cur, |
171 | 0 | model.layers[il].ffn_gate_inp, |
172 | 0 | model.layers[il].ffn_up_exps, |
173 | 0 | model.layers[il].ffn_gate_exps, |
174 | 0 | model.layers[il].ffn_down_exps, |
175 | 0 | nullptr, |
176 | 0 | n_expert, n_expert_used, |
177 | 0 | LLM_FFN_SILU, true, |
178 | 0 | false, 0.0, |
179 | 0 | LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, |
180 | 0 | il); |
181 | 0 | cb(moe_out, "ffn_moe_out", il); |
182 | | |
183 | | // For Granite MoE Shared |
184 | 0 | if (hparams.n_ff_shexp > 0) { |
185 | 0 | ggml_tensor * ffn_shexp = build_ffn(cur, |
186 | 0 | model.layers[il].ffn_up_shexp, NULL, NULL, |
187 | 0 | model.layers[il].ffn_gate_shexp, NULL, NULL, |
188 | 0 | model.layers[il].ffn_down_shexp, NULL, NULL, |
189 | 0 | NULL, |
190 | 0 | LLM_FFN_SILU, LLM_FFN_PAR, il); |
191 | 0 | cb(ffn_shexp, "ffn_shexp", il); |
192 | |
|
193 | 0 | cur = ggml_add(ctx0, moe_out, ffn_shexp); |
194 | 0 | cb(cur, "ffn_out", il); |
195 | 0 | } else { |
196 | 0 | cur = moe_out; |
197 | 0 | } |
198 | 0 | } |
199 | | |
200 | | // For Granite architectures - scale residual |
201 | 0 | if (hparams.f_residual_scale) { |
202 | 0 | cur = ggml_scale(ctx0, cur, hparams.f_residual_scale); |
203 | 0 | } |
204 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
205 | 0 | cb(cur, "ffn_out", il); |
206 | |
|
207 | 0 | cur = build_cvec(cur, il); |
208 | 0 | cb(cur, "l_out", il); |
209 | |
|
210 | 0 | return cur; |
211 | 0 | } |