Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/granite.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
llm_build_granite::llm_build_granite(
5
    const llama_model & model,
6
    const llm_graph_params & params)
7
0
    : llm_graph_context(params) {
8
9
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
10
11
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
12
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
13
14
0
    ggml_tensor * cur;
15
0
    ggml_tensor * inpL;
16
17
0
    inpL = build_inp_embd(model.tok_embd);
18
19
    // inp_pos - built only if rope enabled
20
0
    ggml_tensor * inp_pos = nullptr;
21
0
    if (hparams.rope_finetuned) {
22
0
        inp_pos = build_inp_pos();
23
0
    }
24
0
    auto * inp_attn = build_attn_inp_kv();
25
26
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
27
28
0
    for (int il = 0; il < n_layer; ++il) {
29
0
        ggml_tensor * inpSA = inpL;
30
31
        // norm
32
0
        cur = build_norm(inpL,
33
0
                model.layers[il].attn_norm, NULL,
34
0
                LLM_NORM_RMS, il);
35
0
        cb(cur, "attn_norm", il);
36
37
        // self-attention
38
0
        cur = build_attention_layer(
39
0
            cur, inp_pos, inp_attn,
40
0
            model, n_embd_head, il);
41
42
0
        if (il == n_layer - 1 && inp_out_ids) {
43
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
44
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
45
0
        }
46
        // ffn
47
0
        cur = build_layer_ffn(cur, inpSA, model, il);
48
49
        // input for next layer
50
0
        inpL = cur;
51
0
    }
52
0
    cur = inpL;
53
54
0
    cur = build_norm(cur,
55
0
            model.output_norm, NULL,
56
0
            LLM_NORM_RMS, -1);
57
58
0
    cb(cur, "result_norm", -1);
59
0
    res->t_embd = cur;
60
61
    // lm_head
62
0
    cur = build_lora_mm(model.output, cur);
63
64
    // For Granite architectures - scale logits
65
0
    cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
66
0
    cb(cur, "result_output", -1);
67
0
    res->t_logits = cur;
68
69
0
    ggml_build_forward_expand(gf, cur);
70
0
}
71
72
ggml_tensor * llm_build_granite::build_attention_layer(
73
          ggml_tensor             * cur,
74
          ggml_tensor             * inp_pos,
75
          llm_graph_input_attn_kv * inp_attn,
76
    const llama_model             & model,
77
    const int64_t                 n_embd_head,
78
0
    const int                     il) {
79
80
    // compute Q and K and (optionally) RoPE them
81
0
    ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
82
0
    cb(Qcur, "Qcur", il);
83
0
    if (model.layers[il].bq) {
84
0
        Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
85
0
        cb(Qcur, "Qcur", il);
86
0
    }
87
88
0
    ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
89
0
    cb(Kcur, "Kcur", il);
90
0
    if (model.layers[il].bk) {
91
0
        Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
92
0
        cb(Kcur, "Kcur", il);
93
0
    }
94
95
0
    ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
96
0
    cb(Vcur, "Vcur", il);
97
0
    if (model.layers[il].bv) {
98
0
        Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
99
0
        cb(Vcur, "Vcur", il);
100
0
    }
101
102
0
    Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il),    n_tokens);
103
0
    Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
104
0
    Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
105
106
0
    const bool use_rope = hparams.rope_finetuned;
107
0
    if (use_rope) {
108
0
        ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
109
0
        Qcur = ggml_rope_ext(
110
0
                ctx0, Qcur, inp_pos, rope_factors,
111
0
                n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
112
0
                ext_factor, attn_factor, beta_fast, beta_slow
113
0
                );
114
115
0
        Kcur = ggml_rope_ext(
116
0
                ctx0, Kcur, inp_pos, rope_factors,
117
0
                n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
118
0
                ext_factor, attn_factor, beta_fast, beta_slow
119
0
                );
120
0
    }
121
122
0
    cb(Qcur, "Qcur", il);
123
0
    cb(Kcur, "Kcur", il);
124
0
    cb(Vcur, "Vcur", il);
125
126
0
    const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
127
0
    cur = build_attn(inp_attn,
128
0
            model.layers[il].wo, model.layers[il].bo,
129
0
            Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
130
0
            cb(cur, "attn_out", il);
131
0
    return cur;
132
0
}
133
134
ggml_tensor * llm_build_granite::build_layer_ffn(
135
          ggml_tensor       * cur,
136
          ggml_tensor       * inpSA,
137
    const llama_model       & model,
138
0
    const int                 il) {
139
140
    // For Granite architectures - scale residual
141
0
    if (hparams.f_residual_scale) {
142
0
        cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
143
0
    }
144
0
    ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
145
0
    cb(ffn_inp, "ffn_inp", il);
146
147
    // feed-forward network (non-MoE)
148
0
    if (model.layers[il].ffn_gate_inp == nullptr) {
149
150
0
        cur = build_norm(ffn_inp,
151
0
                model.layers[il].ffn_norm, NULL,
152
0
                LLM_NORM_RMS, il);
153
0
                cb(cur, "ffn_norm", il);
154
155
0
        cur = build_ffn(cur,
156
0
                model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
157
0
                model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
158
0
                model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
159
0
                NULL,
160
0
                LLM_FFN_SILU, LLM_FFN_PAR, il);
161
0
                cb(cur, "ffn_out", il);
162
163
0
    } else {
164
        // MoE branch
165
0
        cur = build_norm(ffn_inp,
166
0
                model.layers[il].ffn_norm, NULL,
167
0
                LLM_NORM_RMS, il);
168
0
                cb(cur, "ffn_norm", il);
169
170
0
        ggml_tensor * moe_out = build_moe_ffn(cur,
171
0
                model.layers[il].ffn_gate_inp,
172
0
                model.layers[il].ffn_up_exps,
173
0
                model.layers[il].ffn_gate_exps,
174
0
                model.layers[il].ffn_down_exps,
175
0
                nullptr,
176
0
                n_expert, n_expert_used,
177
0
                LLM_FFN_SILU, true,
178
0
                false, 0.0,
179
0
                LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
180
0
                il);
181
0
        cb(moe_out, "ffn_moe_out", il);
182
183
        // For Granite MoE Shared
184
0
        if (hparams.n_ff_shexp > 0) {
185
0
            ggml_tensor * ffn_shexp = build_ffn(cur,
186
0
                model.layers[il].ffn_up_shexp,   NULL, NULL,
187
0
                model.layers[il].ffn_gate_shexp, NULL, NULL,
188
0
                model.layers[il].ffn_down_shexp, NULL, NULL,
189
0
                NULL,
190
0
                LLM_FFN_SILU, LLM_FFN_PAR, il);
191
0
            cb(ffn_shexp, "ffn_shexp", il);
192
193
0
            cur = ggml_add(ctx0, moe_out, ffn_shexp);
194
0
            cb(cur, "ffn_out", il);
195
0
        } else {
196
0
            cur = moe_out;
197
0
        }
198
0
    }
199
200
    // For Granite architectures - scale residual
201
0
    if (hparams.f_residual_scale) {
202
0
        cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
203
0
    }
204
0
    cur = ggml_add(ctx0, cur, ffn_inp);
205
0
    cb(cur, "ffn_out", il);
206
207
0
    cur = build_cvec(cur, il);
208
0
    cb(cur, "l_out", il);
209
210
0
    return cur;
211
0
}