Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/llama-iswa.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_llama_iswa::llm_build_llama_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
6
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
8
9
0
    ggml_tensor * cur;
10
0
    ggml_tensor * inpL;
11
12
0
    inpL = build_inp_embd(model.tok_embd);
13
14
    // inp_pos - contains the positions
15
0
    ggml_tensor * inp_pos = build_inp_pos();
16
17
    // temperature tuning
18
0
    ggml_tensor * inp_attn_scale = nullptr;
19
0
    inp_attn_scale = build_inp_attn_scale();
20
21
0
    auto * inp_attn = build_attn_inp_kv_iswa();
22
23
0
    const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
24
25
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
26
27
0
    for (int il = 0; il < n_layer; ++il) {
28
0
        ggml_tensor * inpSA = inpL;
29
30
0
        const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
31
0
                              (il + 1) % hparams.n_no_rope_layer_step != 0;
32
33
        // norm
34
0
        cur = build_norm(inpL,
35
0
                model.layers[il].attn_norm, NULL,
36
0
                LLM_NORM_RMS, il);
37
0
        cb(cur, "attn_norm", il);
38
39
        // self-attention
40
0
        {
41
            // rope freq factors for llama3; may return nullptr for llama2 and other models
42
0
            ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
43
44
            // compute Q and K and RoPE them
45
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
46
0
            cb(Qcur, "Qcur", il);
47
0
            if (model.layers[il].bq) {
48
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
49
0
                cb(Qcur, "Qcur", il);
50
0
            }
51
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
52
0
            cb(Kcur, "Kcur", il);
53
0
            if (model.layers[il].bk) {
54
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
55
0
                cb(Kcur, "Kcur", il);
56
0
            }
57
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
58
0
            cb(Vcur, "Vcur", il);
59
0
            if (model.layers[il].bv) {
60
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
61
0
                cb(Vcur, "Vcur", il);
62
0
            }
63
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
64
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
65
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
66
67
0
            if (use_rope) {
68
0
                Qcur = ggml_rope_ext(
69
0
                        ctx0, Qcur, inp_pos, rope_factors,
70
0
                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
71
0
                        ext_factor, attn_factor, beta_fast, beta_slow
72
0
                        );
73
74
0
                Kcur = ggml_rope_ext(
75
0
                        ctx0, Kcur, inp_pos, rope_factors,
76
0
                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
77
0
                        ext_factor, attn_factor, beta_fast, beta_slow
78
0
                        );
79
0
            } else if (inp_attn_scale) {
80
0
                Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
81
0
            }
82
0
            cb(Qcur, "Qcur", il);
83
0
            cb(Kcur, "Kcur", il);
84
0
            cb(Vcur, "Vcur", il);
85
86
0
            if (use_rope && hparams.use_kq_norm) {
87
                // Llama4TextL2Norm
88
0
                Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
89
0
                Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
90
0
                cb(Qcur, "Qcur_normed", il);
91
0
                cb(Kcur, "Kcur_normed", il);
92
0
            }
93
0
            cur = build_attn(inp_attn,
94
0
                    model.layers[il].wo, model.layers[il].bo,
95
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
96
0
            cb(cur, "attn_out", il);
97
0
        }
98
0
        if (il == n_layer - 1 && inp_out_ids) {
99
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
100
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
101
0
        }
102
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
103
0
        cb(ffn_inp, "ffn_inp", il);
104
105
        // feed-forward network (non-MoE)
106
0
        if (model.layers[il].ffn_gate_inp == nullptr) {
107
0
            cur = build_norm(ffn_inp,
108
0
                    model.layers[il].ffn_norm, NULL,
109
0
                    LLM_NORM_RMS, il);
110
0
            cb(cur, "ffn_norm", il);
111
112
0
            cur = build_ffn(cur,
113
0
                    model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
114
0
                    model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
115
0
                    model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
116
0
                    NULL,
117
0
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
118
0
            cb(cur, "ffn_out", il);
119
0
        } else {
120
0
            ggml_tensor * ffn_inp_normed = build_norm(ffn_inp,
121
0
                    model.layers[il].ffn_norm, NULL,
122
0
                    LLM_NORM_RMS, il);
123
0
            cb(cur, "ffn_norm", il);
124
125
0
            ggml_tensor * moe_out = build_moe_ffn(ffn_inp_normed,
126
0
                    model.layers[il].ffn_gate_inp,
127
0
                    model.layers[il].ffn_up_exps,
128
0
                    model.layers[il].ffn_gate_exps,
129
0
                    model.layers[il].ffn_down_exps,
130
0
                    nullptr,
131
0
                    n_expert, n_expert_used,
132
0
                    LLM_FFN_SILU, false,
133
0
                    false, 0.0,
134
0
                    LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
135
0
                    il);
136
137
            // Shared experts
138
0
            ggml_tensor * shexp_out = build_ffn(ffn_inp_normed,
139
0
                model.layers[il].ffn_up_shexp,   NULL, NULL,
140
0
                model.layers[il].ffn_gate_shexp, NULL, NULL,
141
0
                model.layers[il].ffn_down_shexp, NULL, NULL,
142
0
                NULL,
143
0
                LLM_FFN_SILU, LLM_FFN_PAR, il);
144
0
            cb(shexp_out, "ffn_moe_shexp", il);
145
146
0
            cur = ggml_add(ctx0, moe_out, shexp_out);
147
0
            cb(cur, "ffn_moe_out_merged", il);
148
0
        }
149
0
        cur = ggml_add(ctx0, cur, ffn_inp);
150
0
        cb(cur, "ffn_out", il);
151
152
0
        cur = build_cvec(cur, il);
153
0
        cb(cur, "l_out", il);
154
155
        // input for next layer
156
0
        inpL = cur;
157
0
    }
158
0
    cur = inpL;
159
160
0
    cur = build_norm(cur,
161
0
            model.output_norm, NULL,
162
0
            LLM_NORM_RMS, -1);
163
164
0
    cb(cur, "result_norm", -1);
165
0
    res->t_embd = cur;
166
167
    // lm_head
168
0
    cur = build_lora_mm(model.output, cur);
169
170
0
    cb(cur, "result_output", -1);
171
0
    res->t_logits = cur;
172
173
0
    ggml_build_forward_expand(gf, cur);
174
0
}