/src/llama.cpp/src/models/openelm.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | 0 | llm_build_openelm::llm_build_openelm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
4 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
5 | |
|
6 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
7 | |
|
8 | 0 | ggml_tensor * cur; |
9 | 0 | ggml_tensor * inpL; |
10 | 0 | inpL = build_inp_embd(model.tok_embd); |
11 | | |
12 | | // inp_pos - contains the positions |
13 | 0 | ggml_tensor * inp_pos = build_inp_pos(); |
14 | |
|
15 | 0 | auto * inp_attn = build_attn_inp_kv(); |
16 | |
|
17 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
18 | |
|
19 | 0 | for (int il = 0; il < n_layer; ++il) { |
20 | 0 | const int64_t n_head = hparams.n_head(il); |
21 | 0 | const int64_t n_head_kv = hparams.n_head_kv(il); |
22 | 0 | const int64_t n_head_qkv = 2*n_head_kv + n_head; |
23 | |
|
24 | 0 | cur = inpL; |
25 | 0 | ggml_tensor * residual = cur; |
26 | | |
27 | | // norm |
28 | 0 | cur = build_norm(inpL, |
29 | 0 | model.layers[il].attn_norm, NULL, |
30 | 0 | LLM_NORM_RMS, il); |
31 | 0 | cb(cur, "attn_norm", il); |
32 | | |
33 | | // self-attention |
34 | 0 | { |
35 | 0 | cur = build_lora_mm(model.layers[il].wqkv, cur); |
36 | 0 | cb(cur, "wqkv", il); |
37 | |
|
38 | 0 | cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens); |
39 | |
|
40 | 0 | ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0); |
41 | 0 | cb(Qcur, "Qcur", il); |
42 | |
|
43 | 0 | ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head); |
44 | 0 | cb(Kcur, "Kcur", il); |
45 | |
|
46 | 0 | ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv))); |
47 | 0 | cb(Vcur, "Vcur", il); |
48 | |
|
49 | 0 | Qcur = build_norm(Qcur, |
50 | 0 | model.layers[il].attn_q_norm, NULL, |
51 | 0 | LLM_NORM_RMS, il); |
52 | 0 | cb(Qcur, "Qcur", il); |
53 | |
|
54 | 0 | Kcur = build_norm(Kcur, |
55 | 0 | model.layers[il].attn_k_norm, NULL, |
56 | 0 | LLM_NORM_RMS, il); |
57 | 0 | cb(Kcur, "Kcur", il); |
58 | |
|
59 | 0 | Qcur = ggml_rope_ext( |
60 | 0 | ctx0, Qcur, inp_pos, NULL, |
61 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
62 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
63 | 0 | ); |
64 | |
|
65 | 0 | Kcur = ggml_rope_ext( |
66 | 0 | ctx0, Kcur, inp_pos, NULL, |
67 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
68 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
69 | 0 | ); |
70 | |
|
71 | 0 | cb(Qcur, "Qcur", il); |
72 | 0 | cb(Kcur, "Kcur", il); |
73 | 0 | cb(Qcur, "Vcur", il); |
74 | |
|
75 | 0 | cur = build_attn(inp_attn, |
76 | 0 | model.layers[il].wo, NULL, |
77 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); |
78 | 0 | } |
79 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
80 | 0 | residual = ggml_get_rows(ctx0, residual, inp_out_ids); |
81 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
82 | 0 | } |
83 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur); |
84 | 0 | cb(ffn_inp, "ffn_inp", il); |
85 | | |
86 | | // feed-forward network |
87 | 0 | { |
88 | 0 | cur = build_norm(ffn_inp, |
89 | 0 | model.layers[il].ffn_norm, NULL, |
90 | 0 | LLM_NORM_RMS, il); |
91 | 0 | cb(cur, "ffn_norm", il); |
92 | |
|
93 | 0 | cur = build_ffn(cur, |
94 | 0 | model.layers[il].ffn_up, NULL, NULL, |
95 | 0 | model.layers[il].ffn_gate, NULL, NULL, |
96 | 0 | model.layers[il].ffn_down, NULL, NULL, |
97 | 0 | NULL, |
98 | 0 | LLM_FFN_SILU, LLM_FFN_PAR, il); |
99 | 0 | cb(cur, "ffn_out", il); |
100 | 0 | } |
101 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
102 | |
|
103 | 0 | cur = build_cvec(cur, il); |
104 | 0 | cb(cur, "l_out", il); |
105 | |
|
106 | 0 | inpL = cur; |
107 | 0 | } |
108 | 0 | cur = inpL; |
109 | | |
110 | | // norm |
111 | 0 | cur = build_norm(cur, |
112 | 0 | model.output_norm, NULL, |
113 | 0 | LLM_NORM_RMS, -1); |
114 | |
|
115 | 0 | cb(cur, "result_norm", -1); |
116 | 0 | res->t_embd = cur; |
117 | |
|
118 | 0 | cur = build_lora_mm(model.output, cur); |
119 | |
|
120 | 0 | cb(cur, "result_output", -1); |
121 | 0 | res->t_logits = cur; |
122 | |
|
123 | 0 | ggml_build_forward_expand(gf, cur); |
124 | 0 | } |