Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/openelm.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_openelm::llm_build_openelm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
6
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
8
0
    ggml_tensor * cur;
9
0
    ggml_tensor * inpL;
10
0
    inpL = build_inp_embd(model.tok_embd);
11
12
    // inp_pos - contains the positions
13
0
    ggml_tensor * inp_pos = build_inp_pos();
14
15
0
    auto * inp_attn = build_attn_inp_kv();
16
17
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
18
19
0
    for (int il = 0; il < n_layer; ++il) {
20
0
        const int64_t n_head    = hparams.n_head(il);
21
0
        const int64_t n_head_kv = hparams.n_head_kv(il);
22
0
        const int64_t n_head_qkv = 2*n_head_kv + n_head;
23
24
0
        cur = inpL;
25
0
        ggml_tensor * residual = cur;
26
27
        // norm
28
0
        cur = build_norm(inpL,
29
0
                model.layers[il].attn_norm, NULL,
30
0
                LLM_NORM_RMS, il);
31
0
        cb(cur, "attn_norm", il);
32
33
        // self-attention
34
0
        {
35
0
            cur = build_lora_mm(model.layers[il].wqkv, cur);
36
0
            cb(cur, "wqkv", il);
37
38
0
            cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
39
40
0
            ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head,    n_tokens, cur->nb[1], cur->nb[2], 0);
41
0
            cb(Qcur, "Qcur", il);
42
43
0
            ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head);
44
0
            cb(Kcur, "Kcur", il);
45
46
0
            ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
47
0
            cb(Vcur, "Vcur", il);
48
49
0
            Qcur = build_norm(Qcur,
50
0
                    model.layers[il].attn_q_norm, NULL,
51
0
                    LLM_NORM_RMS, il);
52
0
            cb(Qcur, "Qcur", il);
53
54
0
            Kcur = build_norm(Kcur,
55
0
                    model.layers[il].attn_k_norm, NULL,
56
0
                    LLM_NORM_RMS, il);
57
0
            cb(Kcur, "Kcur", il);
58
59
0
            Qcur = ggml_rope_ext(
60
0
                    ctx0, Qcur, inp_pos, NULL,
61
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
62
0
                    ext_factor, attn_factor, beta_fast, beta_slow
63
0
                    );
64
65
0
            Kcur = ggml_rope_ext(
66
0
                    ctx0, Kcur, inp_pos, NULL,
67
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
68
0
                    ext_factor, attn_factor, beta_fast, beta_slow
69
0
                    );
70
71
0
            cb(Qcur, "Qcur", il);
72
0
            cb(Kcur, "Kcur", il);
73
0
            cb(Qcur, "Vcur", il);
74
75
0
            cur = build_attn(inp_attn,
76
0
                    model.layers[il].wo, NULL,
77
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
78
0
        }
79
0
        if (il == n_layer - 1 && inp_out_ids) {
80
0
            residual = ggml_get_rows(ctx0, residual, inp_out_ids);
81
0
            cur      = ggml_get_rows(ctx0, cur,      inp_out_ids);
82
0
        }
83
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
84
0
        cb(ffn_inp, "ffn_inp", il);
85
86
        // feed-forward network
87
0
        {
88
0
            cur = build_norm(ffn_inp,
89
0
                    model.layers[il].ffn_norm, NULL,
90
0
                    LLM_NORM_RMS, il);
91
0
            cb(cur, "ffn_norm", il);
92
93
0
            cur = build_ffn(cur,
94
0
                    model.layers[il].ffn_up,   NULL, NULL,
95
0
                    model.layers[il].ffn_gate, NULL, NULL,
96
0
                    model.layers[il].ffn_down, NULL, NULL,
97
0
                    NULL,
98
0
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
99
0
            cb(cur, "ffn_out", il);
100
0
        }
101
0
        cur = ggml_add(ctx0, cur, ffn_inp);
102
103
0
        cur = build_cvec(cur, il);
104
0
        cb(cur, "l_out", il);
105
106
0
        inpL = cur;
107
0
    }
108
0
    cur = inpL;
109
110
    // norm
111
0
    cur = build_norm(cur,
112
0
            model.output_norm, NULL,
113
0
            LLM_NORM_RMS, -1);
114
115
0
    cb(cur, "result_norm", -1);
116
0
    res->t_embd = cur;
117
118
0
    cur = build_lora_mm(model.output, cur);
119
120
0
    cb(cur, "result_output", -1);
121
0
    res->t_logits = cur;
122
123
0
    ggml_build_forward_expand(gf, cur);
124
0
}