/src/llama.cpp/src/models/phi2.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | | |
4 | 0 | llm_build_phi2::llm_build_phi2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
5 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
6 | 0 | const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); |
7 | |
|
8 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
9 | |
|
10 | 0 | ggml_tensor * cur; |
11 | 0 | ggml_tensor * attn_norm_output; |
12 | 0 | ggml_tensor * ffn_output; |
13 | 0 | ggml_tensor * inpL; |
14 | |
|
15 | 0 | inpL = build_inp_embd(model.tok_embd); |
16 | | |
17 | | // inp_pos - contains the positions |
18 | 0 | ggml_tensor * inp_pos = build_inp_pos(); |
19 | |
|
20 | 0 | auto * inp_attn = build_attn_inp_kv(); |
21 | |
|
22 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
23 | |
|
24 | 0 | for (int il = 0; il < n_layer; ++il) { |
25 | 0 | attn_norm_output = build_norm(inpL, |
26 | 0 | model.layers[il].attn_norm, |
27 | 0 | model.layers[il].attn_norm_b, |
28 | 0 | LLM_NORM, il); |
29 | 0 | cb(attn_norm_output, "attn_norm", il); |
30 | | |
31 | | // self-attention |
32 | 0 | { |
33 | 0 | ggml_tensor * Qcur = nullptr; |
34 | 0 | ggml_tensor * Kcur = nullptr; |
35 | 0 | ggml_tensor * Vcur = nullptr; |
36 | |
|
37 | 0 | if (model.layers[il].wqkv) { |
38 | 0 | cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output); |
39 | 0 | cb(cur, "wqkv", il); |
40 | |
|
41 | 0 | cur = ggml_add(ctx0, cur, model.layers[il].bqkv); |
42 | 0 | cb(cur, "bqkv", il); |
43 | |
|
44 | 0 | Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd)); |
45 | 0 | Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd)); |
46 | 0 | Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)); |
47 | 0 | } else { |
48 | 0 | Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq); |
49 | 0 | Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk); |
50 | 0 | Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv); |
51 | |
|
52 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
53 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); |
54 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); |
55 | 0 | } |
56 | 0 | Qcur = ggml_rope_ext( |
57 | 0 | ctx0, Qcur, inp_pos, nullptr, |
58 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
59 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
60 | 0 | ); |
61 | |
|
62 | 0 | Kcur = ggml_rope_ext( |
63 | 0 | ctx0, Kcur, inp_pos, nullptr, |
64 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
65 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
66 | 0 | ); |
67 | |
|
68 | 0 | cb(Qcur, "Qcur", il); |
69 | 0 | cb(Kcur, "Kcur", il); |
70 | 0 | cb(Vcur, "Vcur", il); |
71 | | |
72 | | // with phi2, we scale the Q to avoid precision issues |
73 | | // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66 |
74 | 0 | Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head))); |
75 | |
|
76 | 0 | cur = build_attn(inp_attn, |
77 | 0 | model.layers[il].wo, model.layers[il].bo, |
78 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il); |
79 | 0 | } |
80 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
81 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
82 | 0 | inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); |
83 | 0 | attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids); |
84 | 0 | } |
85 | | // FF |
86 | 0 | { |
87 | 0 | ffn_output = build_ffn(attn_norm_output, |
88 | 0 | model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, |
89 | 0 | NULL, NULL, NULL, |
90 | 0 | model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, |
91 | 0 | NULL, |
92 | 0 | LLM_FFN_GELU, LLM_FFN_SEQ, il); |
93 | 0 | cb(ffn_output, "ffn_out", il); |
94 | 0 | } |
95 | 0 | cur = ggml_add(ctx0, cur, ffn_output); |
96 | 0 | cur = ggml_add(ctx0, cur, inpL); |
97 | |
|
98 | 0 | cur = build_cvec(cur, il); |
99 | 0 | cb(cur, "l_out", il); |
100 | | |
101 | | // input for next layer |
102 | 0 | inpL = cur; |
103 | 0 | } |
104 | 0 | cur = build_norm(inpL, |
105 | 0 | model.output_norm, |
106 | 0 | model.output_norm_b, |
107 | 0 | LLM_NORM, -1); |
108 | |
|
109 | 0 | cb(cur, "result_norm", -1); |
110 | 0 | res->t_embd = cur; |
111 | |
|
112 | 0 | cur = build_lora_mm(model.output, cur); |
113 | 0 | cb(cur, "result_output_no_bias", -1); |
114 | |
|
115 | 0 | cur = ggml_add(ctx0, cur, model.output_b); |
116 | |
|
117 | 0 | cb(cur, "result_output", -1); |
118 | 0 | res->t_logits = cur; |
119 | |
|
120 | 0 | ggml_build_forward_expand(gf, cur); |
121 | 0 | } |