Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/phi2.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
0
llm_build_phi2::llm_build_phi2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
6
0
    const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
7
8
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
9
10
0
    ggml_tensor * cur;
11
0
    ggml_tensor * attn_norm_output;
12
0
    ggml_tensor * ffn_output;
13
0
    ggml_tensor * inpL;
14
15
0
    inpL = build_inp_embd(model.tok_embd);
16
17
    // inp_pos - contains the positions
18
0
    ggml_tensor * inp_pos = build_inp_pos();
19
20
0
    auto * inp_attn = build_attn_inp_kv();
21
22
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
23
24
0
    for (int il = 0; il < n_layer; ++il) {
25
0
        attn_norm_output = build_norm(inpL,
26
0
                model.layers[il].attn_norm,
27
0
                model.layers[il].attn_norm_b,
28
0
                LLM_NORM, il);
29
0
        cb(attn_norm_output, "attn_norm", il);
30
31
        // self-attention
32
0
        {
33
0
            ggml_tensor * Qcur = nullptr;
34
0
            ggml_tensor * Kcur = nullptr;
35
0
            ggml_tensor * Vcur = nullptr;
36
37
0
            if (model.layers[il].wqkv) {
38
0
                cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
39
0
                cb(cur, "wqkv", il);
40
41
0
                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
42
0
                cb(cur, "bqkv", il);
43
44
0
                Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head,    n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
45
0
                Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
46
0
                Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
47
0
            } else {
48
0
                Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
49
0
                Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
50
0
                Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
51
52
0
                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
53
0
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
54
0
                Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
55
0
            }
56
0
            Qcur = ggml_rope_ext(
57
0
                    ctx0, Qcur, inp_pos, nullptr,
58
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
59
0
                    ext_factor, attn_factor, beta_fast, beta_slow
60
0
                    );
61
62
0
            Kcur = ggml_rope_ext(
63
0
                    ctx0, Kcur, inp_pos, nullptr,
64
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
65
0
                    ext_factor, attn_factor, beta_fast, beta_slow
66
0
                    );
67
68
0
            cb(Qcur, "Qcur", il);
69
0
            cb(Kcur, "Kcur", il);
70
0
            cb(Vcur, "Vcur", il);
71
72
            // with phi2, we scale the Q to avoid precision issues
73
            // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
74
0
            Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
75
76
0
            cur = build_attn(inp_attn,
77
0
                    model.layers[il].wo, model.layers[il].bo,
78
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
79
0
        }
80
0
        if (il == n_layer - 1 && inp_out_ids) {
81
0
            cur              = ggml_get_rows(ctx0,              cur, inp_out_ids);
82
0
            inpL             = ggml_get_rows(ctx0,             inpL, inp_out_ids);
83
0
            attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
84
0
        }
85
        // FF
86
0
        {
87
0
            ffn_output = build_ffn(attn_norm_output,
88
0
                    model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
89
0
                    NULL,                      NULL,                        NULL,
90
0
                    model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
91
0
                    NULL,
92
0
                    LLM_FFN_GELU, LLM_FFN_SEQ, il);
93
0
            cb(ffn_output, "ffn_out", il);
94
0
        }
95
0
        cur = ggml_add(ctx0, cur, ffn_output);
96
0
        cur = ggml_add(ctx0, cur, inpL);
97
98
0
        cur = build_cvec(cur, il);
99
0
        cb(cur, "l_out", il);
100
101
        // input for next layer
102
0
        inpL = cur;
103
0
    }
104
0
    cur = build_norm(inpL,
105
0
            model.output_norm,
106
0
            model.output_norm_b,
107
0
            LLM_NORM, -1);
108
109
0
    cb(cur, "result_norm", -1);
110
0
    res->t_embd = cur;
111
112
0
    cur = build_lora_mm(model.output, cur);
113
0
    cb(cur, "result_output_no_bias", -1);
114
115
0
    cur = ggml_add(ctx0, cur, model.output_b);
116
117
0
    cb(cur, "result_output", -1);
118
0
    res->t_logits = cur;
119
120
0
    ggml_build_forward_expand(gf, cur);
121
0
}