Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/dbrx.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
0
llm_build_dbrx::llm_build_dbrx(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
6
0
    const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
7
8
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
9
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
10
11
0
    ggml_tensor * cur;
12
0
    ggml_tensor * inpL;
13
14
0
    inpL = build_inp_embd(model.tok_embd);
15
16
    // inp_pos - contains the positions
17
0
    ggml_tensor * inp_pos = build_inp_pos();
18
19
0
    auto * inp_attn = build_attn_inp_kv();
20
21
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
22
23
0
    for (int il = 0; il < n_layer; ++il) {
24
0
        ggml_tensor * inpSA = inpL;
25
26
        // norm
27
0
        cur = build_norm(inpL,
28
0
                model.layers[il].attn_norm, NULL,
29
0
                LLM_NORM, il);
30
0
        cb(cur, "attn_norm", il);
31
32
        // self-attention
33
0
        {
34
0
            ggml_tensor * Qcur = nullptr;
35
0
            ggml_tensor * Kcur = nullptr;
36
0
            ggml_tensor * Vcur = nullptr;
37
38
0
            cur = build_lora_mm(model.layers[il].wqkv, cur);
39
0
            cb(cur, "wqkv", il);
40
41
0
            cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
42
0
            cb(cur, "wqkv_clamped", il);
43
44
0
            Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head,    n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
45
0
            Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
46
0
            Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
47
48
0
            Qcur = ggml_rope_ext(
49
0
                    ctx0, Qcur, inp_pos, nullptr,
50
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
51
0
                    ext_factor, attn_factor, beta_fast, beta_slow
52
0
                    );
53
54
0
            Kcur = ggml_rope_ext(
55
0
                    ctx0, Kcur, inp_pos, nullptr,
56
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
57
0
                    ext_factor, attn_factor, beta_fast, beta_slow
58
0
                    );
59
60
0
            cb(Qcur, "Qcur", il);
61
0
            cb(Kcur, "Kcur", il);
62
0
            cb(Vcur, "Vcur", il);
63
64
0
            cur = build_attn(inp_attn,
65
0
                    model.layers[il].wo, NULL,
66
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
67
0
        }
68
69
0
        if (il == n_layer - 1 && inp_out_ids) {
70
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
71
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
72
0
        }
73
74
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
75
0
        cb(ffn_inp, "ffn_inp", il);
76
77
        // feed-forward network
78
        // MoE branch
79
0
        cur = build_norm(ffn_inp,
80
0
                model.layers[il].attn_out_norm, NULL,
81
0
                LLM_NORM, il);
82
0
        cb(cur, "attn_out_norm", il);
83
84
0
        cur = build_moe_ffn(cur,
85
0
                model.layers[il].ffn_gate_inp,
86
0
                model.layers[il].ffn_up_exps,
87
0
                model.layers[il].ffn_gate_exps,
88
0
                model.layers[il].ffn_down_exps,
89
0
                nullptr,
90
0
                n_expert, n_expert_used,
91
0
                LLM_FFN_SILU, true,
92
0
                false, 0.0,
93
0
                LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
94
0
                il);
95
0
        cb(cur, "ffn_moe_out", il);
96
97
0
        cur = ggml_add(ctx0, cur, ffn_inp);
98
0
        cb(cur, "ffn_out", il);
99
100
0
        cur = build_cvec(cur, il);
101
0
        cb(cur, "l_out", il);
102
103
        // input for next layer
104
0
        inpL = cur;
105
0
    }
106
107
0
    cur = inpL;
108
109
0
    cur = build_norm(cur,
110
0
            model.output_norm, NULL,
111
0
            LLM_NORM, -1);
112
113
0
    cb(cur, "result_norm", -1);
114
0
    res->t_embd = cur;
115
116
    // lm_head
117
0
    cur = build_lora_mm(model.output, cur);
118
119
0
    cb(cur, "result_output", -1);
120
0
    res->t_logits = cur;
121
122
0
    ggml_build_forward_expand(gf, cur);
123
0
}