Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/pangu-embedded.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
0
llm_build_pangu_embedded::llm_build_pangu_embedded(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
6
7
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
9
10
0
    ggml_tensor * cur;
11
0
    ggml_tensor * inpL;
12
13
0
    inpL = build_inp_embd(model.tok_embd);
14
15
    // inp_pos - contains the positions
16
0
    ggml_tensor * inp_pos = build_inp_pos();
17
18
0
    auto * inp_attn = build_attn_inp_kv();
19
20
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
21
22
0
    for (int il = 0; il < n_layer; ++il) {
23
0
        ggml_tensor * inpSA = inpL;
24
25
        // norm
26
0
        cur = build_norm(inpL,
27
0
                model.layers[il].attn_norm, NULL,
28
0
                LLM_NORM_RMS, il);
29
0
        cb(cur, "attn_norm", il);
30
31
        // self attention
32
0
        {
33
            // compute Q and K and RoPE them
34
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
35
0
            Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
36
0
            cb(Qcur, "Qcur", il);
37
38
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
39
0
            Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
40
0
            cb(Kcur, "Kcur", il);
41
42
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
43
0
            Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
44
0
            cb(Vcur, "Vcur", il);
45
46
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
47
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
48
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
49
50
0
            Qcur = ggml_rope_ext(
51
0
                    ctx0, Qcur, inp_pos, nullptr,
52
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
53
0
                    ext_factor, attn_factor, beta_fast, beta_slow
54
0
                    );
55
56
0
            Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr,
57
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
58
0
                    ext_factor, attn_factor, beta_fast, beta_slow
59
0
                    );
60
61
0
            cb(Qcur, "Qcur", il);
62
0
            cb(Kcur, "Kcur", il);
63
0
            cb(Vcur, "Vcur", il);
64
65
0
            cur = build_attn(inp_attn,
66
0
                    model.layers[il].wo, model.layers[il].bo,
67
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
68
0
        }
69
70
0
        if (il == n_layer - 1 && inp_out_ids) {
71
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
72
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
73
0
        }
74
75
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
76
0
        cb(ffn_inp, "ffn_inp", il);
77
78
        // feed-forward network
79
0
        cur = build_norm(ffn_inp,
80
0
                model.layers[il].ffn_norm, NULL,
81
0
                LLM_NORM_RMS, il);
82
0
        cb(cur, "ffn_norm", il);
83
84
0
        cur = build_ffn(cur,
85
0
                model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
86
0
                model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
87
0
                model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
88
0
                NULL,
89
0
                LLM_FFN_SILU, LLM_FFN_PAR, il);
90
91
0
        cur = ggml_add(ctx0, cur, ffn_inp);
92
0
        cb(cur, "ffn_out", il);
93
94
0
        cur = build_cvec(cur, il);
95
0
        cb(cur, "l_out", il);
96
97
        // input for next layer
98
0
        inpL = cur;
99
0
    }
100
101
0
    cur = inpL;
102
103
0
    cur = build_norm(cur,
104
0
            model.output_norm, NULL,
105
0
            LLM_NORM_RMS, -1);
106
107
0
    cb(cur, "result_norm", -1);
108
0
    res->t_embd = cur;
109
110
    // lm_head
111
0
    cur = build_lora_mm(model.output, cur);
112
113
0
    if (model.output_b != nullptr) {
114
0
        cur = ggml_add(ctx0, cur, model.output_b);
115
0
    }
116
117
0
    cb(cur, "result_output", -1);
118
0
    res->t_logits = cur;
119
120
0
    ggml_build_forward_expand(gf, cur);
121
0
}