/src/llama.cpp/src/models/pangu-embedded.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | | |
4 | 0 | llm_build_pangu_embedded::llm_build_pangu_embedded(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
5 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
6 | |
|
7 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
8 | 0 | GGML_ASSERT(n_embd_head == hparams.n_rot); |
9 | |
|
10 | 0 | ggml_tensor * cur; |
11 | 0 | ggml_tensor * inpL; |
12 | |
|
13 | 0 | inpL = build_inp_embd(model.tok_embd); |
14 | | |
15 | | // inp_pos - contains the positions |
16 | 0 | ggml_tensor * inp_pos = build_inp_pos(); |
17 | |
|
18 | 0 | auto * inp_attn = build_attn_inp_kv(); |
19 | |
|
20 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
21 | |
|
22 | 0 | for (int il = 0; il < n_layer; ++il) { |
23 | 0 | ggml_tensor * inpSA = inpL; |
24 | | |
25 | | // norm |
26 | 0 | cur = build_norm(inpL, |
27 | 0 | model.layers[il].attn_norm, NULL, |
28 | 0 | LLM_NORM_RMS, il); |
29 | 0 | cb(cur, "attn_norm", il); |
30 | | |
31 | | // self attention |
32 | 0 | { |
33 | | // compute Q and K and RoPE them |
34 | 0 | ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); |
35 | 0 | Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); |
36 | 0 | cb(Qcur, "Qcur", il); |
37 | |
|
38 | 0 | ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); |
39 | 0 | Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); |
40 | 0 | cb(Kcur, "Kcur", il); |
41 | |
|
42 | 0 | ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); |
43 | 0 | Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); |
44 | 0 | cb(Vcur, "Vcur", il); |
45 | |
|
46 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
47 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); |
48 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); |
49 | |
|
50 | 0 | Qcur = ggml_rope_ext( |
51 | 0 | ctx0, Qcur, inp_pos, nullptr, |
52 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
53 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
54 | 0 | ); |
55 | |
|
56 | 0 | Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, |
57 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
58 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
59 | 0 | ); |
60 | |
|
61 | 0 | cb(Qcur, "Qcur", il); |
62 | 0 | cb(Kcur, "Kcur", il); |
63 | 0 | cb(Vcur, "Vcur", il); |
64 | |
|
65 | 0 | cur = build_attn(inp_attn, |
66 | 0 | model.layers[il].wo, model.layers[il].bo, |
67 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); |
68 | 0 | } |
69 | |
|
70 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
71 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
72 | 0 | inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); |
73 | 0 | } |
74 | |
|
75 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); |
76 | 0 | cb(ffn_inp, "ffn_inp", il); |
77 | | |
78 | | // feed-forward network |
79 | 0 | cur = build_norm(ffn_inp, |
80 | 0 | model.layers[il].ffn_norm, NULL, |
81 | 0 | LLM_NORM_RMS, il); |
82 | 0 | cb(cur, "ffn_norm", il); |
83 | |
|
84 | 0 | cur = build_ffn(cur, |
85 | 0 | model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, |
86 | 0 | model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL, |
87 | 0 | model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, |
88 | 0 | NULL, |
89 | 0 | LLM_FFN_SILU, LLM_FFN_PAR, il); |
90 | |
|
91 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
92 | 0 | cb(cur, "ffn_out", il); |
93 | |
|
94 | 0 | cur = build_cvec(cur, il); |
95 | 0 | cb(cur, "l_out", il); |
96 | | |
97 | | // input for next layer |
98 | 0 | inpL = cur; |
99 | 0 | } |
100 | |
|
101 | 0 | cur = inpL; |
102 | |
|
103 | 0 | cur = build_norm(cur, |
104 | 0 | model.output_norm, NULL, |
105 | 0 | LLM_NORM_RMS, -1); |
106 | |
|
107 | 0 | cb(cur, "result_norm", -1); |
108 | 0 | res->t_embd = cur; |
109 | | |
110 | | // lm_head |
111 | 0 | cur = build_lora_mm(model.output, cur); |
112 | |
|
113 | 0 | if (model.output_b != nullptr) { |
114 | 0 | cur = ggml_add(ctx0, cur, model.output_b); |
115 | 0 | } |
116 | |
|
117 | 0 | cb(cur, "result_output", -1); |
118 | 0 | res->t_logits = cur; |
119 | |
|
120 | 0 | ggml_build_forward_expand(gf, cur); |
121 | 0 | } |