Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/common/common.h
Line
Count
Source
1
// Various helper functions and utilities
2
3
#pragma once
4
5
#include "ggml-opt.h"
6
#include "llama-cpp.h"
7
8
#include <set>
9
#include <sstream>
10
#include <string>
11
#include <string_view>
12
#include <vector>
13
#include <map>
14
15
#ifdef _WIN32
16
#define DIRECTORY_SEPARATOR '\\'
17
#else
18
0
#define DIRECTORY_SEPARATOR '/'
19
#endif // _WIN32
20
21
#define die(msg)          do { fputs("error: " msg "\n", stderr);                exit(1); } while (0)
22
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
23
24
#define print_build_info() do {                                                                     \
25
    fprintf(stderr, "%s: build = %d (%s)\n",      __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);      \
26
    fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);    \
27
} while(0)
28
29
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
30
31
struct common_time_meas {
32
    common_time_meas(int64_t & t_acc, bool disable = false);
33
    ~common_time_meas();
34
35
    const int64_t t_start_us;
36
37
    int64_t & t_acc;
38
};
39
40
struct common_adapter_lora_info {
41
    std::string path;
42
    float scale;
43
44
    std::string task_name;
45
    std::string prompt_prefix;
46
47
    struct llama_adapter_lora * ptr;
48
};
49
50
using llama_tokens = std::vector<llama_token>;
51
52
// build info
53
extern int LLAMA_BUILD_NUMBER;
54
extern const char * LLAMA_COMMIT;
55
extern const char * LLAMA_COMPILER;
56
extern const char * LLAMA_BUILD_TARGET;
57
58
struct common_control_vector_load_info;
59
60
//
61
// CPU utils
62
//
63
64
struct cpu_params {
65
    int      n_threads                   = -1;
66
    bool     cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
67
    bool     mask_valid                  = false;   // Default: any CPU
68
    enum ggml_sched_priority  priority   = GGML_SCHED_PRIO_NORMAL;  // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
69
    bool     strict_cpu                  = false;   // Use strict CPU placement
70
    uint32_t poll                        = 50;      // Polling (busywait) level (0 - no polling, 100 - mostly polling)
71
};
72
73
int32_t cpu_get_num_physical_cores();
74
int32_t cpu_get_num_math();
75
76
//
77
// Common params
78
//
79
80
enum llama_example {
81
    LLAMA_EXAMPLE_COMMON,
82
    LLAMA_EXAMPLE_SPECULATIVE,
83
    LLAMA_EXAMPLE_MAIN,
84
    LLAMA_EXAMPLE_EMBEDDING,
85
    LLAMA_EXAMPLE_PERPLEXITY,
86
    LLAMA_EXAMPLE_RETRIEVAL,
87
    LLAMA_EXAMPLE_PASSKEY,
88
    LLAMA_EXAMPLE_IMATRIX,
89
    LLAMA_EXAMPLE_BENCH,
90
    LLAMA_EXAMPLE_SERVER,
91
    LLAMA_EXAMPLE_CVECTOR_GENERATOR,
92
    LLAMA_EXAMPLE_EXPORT_LORA,
93
    LLAMA_EXAMPLE_MTMD,
94
    LLAMA_EXAMPLE_LOOKUP,
95
    LLAMA_EXAMPLE_PARALLEL,
96
    LLAMA_EXAMPLE_TTS,
97
    LLAMA_EXAMPLE_DIFFUSION,
98
    LLAMA_EXAMPLE_FINETUNE,
99
100
    LLAMA_EXAMPLE_COUNT,
101
};
102
103
enum common_sampler_type {
104
    COMMON_SAMPLER_TYPE_NONE        = 0,
105
    COMMON_SAMPLER_TYPE_DRY         = 1,
106
    COMMON_SAMPLER_TYPE_TOP_K       = 2,
107
    COMMON_SAMPLER_TYPE_TOP_P       = 3,
108
    COMMON_SAMPLER_TYPE_MIN_P       = 4,
109
  //COMMON_SAMPLER_TYPE_TFS_Z       = 5,
110
    COMMON_SAMPLER_TYPE_TYPICAL_P   = 6,
111
    COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
112
    COMMON_SAMPLER_TYPE_XTC         = 8,
113
    COMMON_SAMPLER_TYPE_INFILL      = 9,
114
    COMMON_SAMPLER_TYPE_PENALTIES   = 10,
115
    COMMON_SAMPLER_TYPE_TOP_N_SIGMA = 11,
116
};
117
118
// dimensionality reduction methods, used by cvector-generator
119
enum dimre_method {
120
    DIMRE_METHOD_PCA,
121
    DIMRE_METHOD_MEAN,
122
};
123
124
enum common_conversation_mode {
125
    COMMON_CONVERSATION_MODE_DISABLED = 0,
126
    COMMON_CONVERSATION_MODE_ENABLED  = 1,
127
    COMMON_CONVERSATION_MODE_AUTO     = 2,
128
};
129
130
enum common_grammar_trigger_type {
131
    COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN,
132
    COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
133
    COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
134
    COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
135
};
136
137
struct common_grammar_trigger {
138
    common_grammar_trigger_type type;
139
    std::string value;
140
    llama_token token = LLAMA_TOKEN_NULL;
141
};
142
143
// sampling parameters
144
struct common_params_sampling {
145
    uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
146
147
    int32_t n_prev             = 64;    // number of previous tokens to remember
148
    int32_t n_probs            = 0;     // if greater than 0, output the probabilities of top n_probs tokens.
149
    int32_t min_keep           = 0;     // 0 = disabled, otherwise samplers should return at least min_keep tokens
150
    int32_t top_k              = 40;    // <= 0 to use vocab size
151
    float   top_p              = 0.95f; // 1.0 = disabled
152
    float   min_p              = 0.05f; // 0.0 = disabled
153
    float   xtc_probability    = 0.00f; // 0.0 = disabled
154
    float   xtc_threshold      = 0.10f; // > 0.5 disables XTC
155
    float   typ_p              = 1.00f; // typical_p, 1.0 = disabled
156
    float   temp               = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
157
    float   dynatemp_range     = 0.00f; // 0.0 = disabled
158
    float   dynatemp_exponent  = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
159
    int32_t penalty_last_n     = 64;    // last n tokens to penalize (0 = disable penalty, -1 = context size)
160
    float   penalty_repeat     = 1.00f; // 1.0 = disabled
161
    float   penalty_freq       = 0.00f; // 0.0 = disabled
162
    float   penalty_present    = 0.00f; // 0.0 = disabled
163
    float   dry_multiplier     = 0.0f;  // 0.0 = disabled;      DRY repetition penalty for tokens extending repetition:
164
    float   dry_base           = 1.75f; // 0.0 = disabled;      multiplier * base ^ (length of sequence before token - allowed length)
165
    int32_t dry_allowed_length = 2;     // tokens extending repetitions beyond this receive penalty
166
    int32_t dry_penalty_last_n = -1;    // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
167
    int32_t mirostat           = 0;     // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
168
    float   top_n_sigma        = -1.00f;// -1.0 = disabled
169
    float   mirostat_tau       = 5.00f; // target entropy
170
    float   mirostat_eta       = 0.10f; // learning rate
171
    bool    ignore_eos         = false;
172
    bool    no_perf            = false; // disable performance metrics
173
    bool    timing_per_token   = false;
174
175
    std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"};     // default sequence breakers for DRY
176
177
178
    std::vector<enum common_sampler_type> samplers = {
179
        COMMON_SAMPLER_TYPE_PENALTIES,
180
        COMMON_SAMPLER_TYPE_DRY,
181
        COMMON_SAMPLER_TYPE_TOP_N_SIGMA,
182
        COMMON_SAMPLER_TYPE_TOP_K,
183
        COMMON_SAMPLER_TYPE_TYPICAL_P,
184
        COMMON_SAMPLER_TYPE_TOP_P,
185
        COMMON_SAMPLER_TYPE_MIN_P,
186
        COMMON_SAMPLER_TYPE_XTC,
187
        COMMON_SAMPLER_TYPE_TEMPERATURE,
188
    };
189
190
    std::string                         grammar; // optional BNF-like grammar to constrain sampling
191
    bool                                grammar_lazy = false;
192
    std::vector<common_grammar_trigger> grammar_triggers; // optional triggers (for lazy grammars)
193
    std::set<llama_token>               preserved_tokens;
194
195
    std::vector<llama_logit_bias> logit_bias;     // logit biases to apply
196
    std::vector<llama_logit_bias> logit_bias_eog; // pre-calculated logit biases for EOG tokens
197
198
    // print the parameters into a string
199
    std::string print() const;
200
};
201
202
struct common_params_model {
203
    std::string path        = ""; // model local path                                       // NOLINT
204
    std::string url         = ""; // model url to download                                  // NOLINT
205
    std::string hf_repo     = ""; // HF repo                                                // NOLINT
206
    std::string hf_file     = ""; // HF file                                                // NOLINT
207
    std::string docker_repo = ""; // Docker repo                                            // NOLINT
208
};
209
210
struct common_params_speculative {
211
    std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
212
213
    int32_t n_ctx        =     0; // draft context size
214
    int32_t n_max        =    16; // maximum number of tokens to draft during speculative decoding
215
    int32_t n_min        =     0; // minimum number of draft tokens to use for speculative decoding
216
    int32_t n_gpu_layers =    -1; // number of layers to store in VRAM for the draft model (-1 - use default)
217
    float   p_split      =  0.1f; // speculative decoding split probability
218
    float   p_min        = 0.75f; // minimum speculative decoding probability (greedy)
219
    std::vector<std::pair<std::string, std::string>> replacements; // main to speculative model replacements
220
    std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
221
222
    ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
223
    ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
224
225
    struct cpu_params cpuparams;
226
    struct cpu_params cpuparams_batch;
227
228
    struct common_params_model model;
229
};
230
231
struct common_params_vocoder {
232
    struct common_params_model model;
233
234
    std::string speaker_file = ""; // speaker file path                                      // NOLINT
235
236
    bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy            // NOLINT
237
};
238
239
struct common_params_diffusion {
240
    int32_t steps         = 128;
241
    bool    visual_mode   = false;
242
243
    float   eps           = 0;        // epsilon for timesteps
244
    int32_t block_length  = 0;        // block length for generation
245
246
    int32_t algorithm     = 4;        // default algorithm: low-confidence
247
    float   alg_temp      = 0.0f;     // algorithm temperature
248
249
    float   cfg_scale     = 0;        // classifier-free guidance scale
250
    bool    add_gumbel_noise = false; // add gumbel noise to the logits if temp > 0.0
251
};
252
253
// reasoning API response format (not to be confused as chat template's reasoning format)
254
enum common_reasoning_format {
255
    COMMON_REASONING_FORMAT_NONE,
256
    COMMON_REASONING_FORMAT_AUTO,            // Same as deepseek, using `message.reasoning_content`
257
    COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY, // Extract thinking tag contents and return as `message.reasoning_content`, or leave inline in <think> tags in stream mode
258
    COMMON_REASONING_FORMAT_DEEPSEEK,        // Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas.
259
    // do not extend this enum unless you absolutely have to
260
    // in most cases, use COMMON_REASONING_FORMAT_AUTO
261
    // see: https://github.com/ggml-org/llama.cpp/pull/15408
262
};
263
264
265
struct lr_opt {
266
    float    lr0          = 1e-5; // learning rate at first epoch
267
    float    lr_min       = -1;
268
    float    decay_epochs = -1;   // if >0, the learning rate starts at lr0 and decays to lr_min after this many epochs
269
    float    scale_epoch  = 0;
270
    float    wd           = 0;
271
    unsigned epochs       = 2;
272
273
    unsigned epoch; // set by optimizer outer (epochs) loop
274
    // learning rate decay - constant LR per epoch only for now
275
    float get_lr(float e) const;
276
0
    float get_lr() const { return get_lr(epoch); }
277
    // must call after arg parse, before get_lr
278
    void init();
279
};
280
281
struct ggml_opt_optimizer_params common_opt_lr_pars(void * userdata);
282
283
struct common_params {
284
    int32_t n_predict             =    -1; // new tokens to predict
285
    int32_t n_ctx                 =  4096; // context size
286
    int32_t n_batch               =  2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
287
    int32_t n_ubatch              =   512; // physical batch size for prompt processing (must be >=32 to use BLAS)
288
    int32_t n_keep                =     0; // number of tokens to keep from initial prompt
289
    int32_t n_chunks              =    -1; // max number of chunks to process (-1 = unlimited)
290
    int32_t n_parallel            =     1; // number of parallel sequences to decode
291
    int32_t n_sequences           =     1; // number of sequences to decode
292
    int32_t grp_attn_n            =     1; // group-attention factor
293
    int32_t grp_attn_w            =   512; // group-attention width
294
    int32_t n_print               =    -1; // print token count every n tokens (-1 = disabled)
295
    float   rope_freq_base        =  0.0f; // RoPE base frequency
296
    float   rope_freq_scale       =  0.0f; // RoPE frequency scaling factor
297
    float   yarn_ext_factor       = -1.0f; // YaRN extrapolation mix factor
298
    float   yarn_attn_factor      = -1.0f; // YaRN magnitude scaling factor
299
    float   yarn_beta_fast        = -1.0f; // YaRN low correction dim
300
    float   yarn_beta_slow        = -1.0f; // YaRN high correction dim
301
    int32_t yarn_orig_ctx         =     0; // YaRN original context length
302
303
    // offload params
304
    std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
305
306
    int32_t n_gpu_layers      = -1;  // number of layers to store in VRAM (-1 - use default)
307
    int32_t main_gpu          = 0;   // the GPU that is used for scratch and small tensors
308
    float   tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
309
310
    enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
311
312
    struct cpu_params cpuparams;
313
    struct cpu_params cpuparams_batch;
314
315
    ggml_backend_sched_eval_callback cb_eval = nullptr;
316
    void * cb_eval_user_data                 = nullptr;
317
318
    ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
319
320
    enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
321
    enum llama_pooling_type      pooling_type      = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
322
    enum llama_attention_type    attention_type    = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
323
    enum llama_flash_attn_type   flash_attn_type   = LLAMA_FLASH_ATTN_TYPE_AUTO; // whether to use Flash Attention
324
325
    struct common_params_sampling    sampling;
326
    struct common_params_speculative speculative;
327
    struct common_params_vocoder     vocoder;
328
    struct common_params_diffusion   diffusion;
329
330
    struct common_params_model model;
331
332
    std::string model_alias          = ""; // model alias                                                   // NOLINT
333
    std::string hf_token             = ""; // HF token                                                      // NOLINT
334
    std::string prompt               = "";                                                                  // NOLINT
335
    std::string system_prompt        = "";                                                                  // NOLINT
336
    std::string prompt_file          = ""; // store the external prompt file name                           // NOLINT
337
    std::string path_prompt_cache    = ""; // path to file for saving/loading prompt eval state             // NOLINT
338
    std::string input_prefix         = ""; // string to prefix user inputs with                             // NOLINT
339
    std::string input_suffix         = ""; // string to suffix user inputs with                             // NOLINT
340
    std::string lookup_cache_static  = ""; // path of static ngram cache file for lookup decoding           // NOLINT
341
    std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding          // NOLINT
342
    std::string logits_file          = ""; // file for saving *all* logits                                  // NOLINT
343
344
    std::vector<std::string> in_files;   // all input files
345
    std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
346
    std::vector<llama_model_kv_override> kv_overrides;
347
    std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
348
349
    bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
350
    std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
351
352
    std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
353
354
    int32_t verbosity                  = 0;
355
    int32_t control_vector_layer_start = -1; // layer range for control vector
356
    int32_t control_vector_layer_end   = -1; // layer range for control vector
357
    bool    offline                    = false;
358
359
    int32_t ppl_stride      = 0;     // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
360
    int32_t ppl_output_type = 0;     // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
361
                                     //                                       (which is more convenient to use for plotting)
362
                                     //
363
    bool   hellaswag        = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
364
    size_t hellaswag_tasks  = 400;   // number of tasks to use when computing the HellaSwag score
365
366
    bool   winogrande       = false; // compute Winogrande score over random tasks from datafile supplied in prompt
367
    size_t winogrande_tasks = 0;     // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
368
369
    bool   multiple_choice  = false;  // compute TruthfulQA score over random tasks from datafile supplied in prompt
370
    size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
371
372
    bool   kl_divergence    = false; // compute KL divergence
373
374
    bool usage             = false; // print usage
375
    bool completion        = false; // print source-able completion script
376
    bool use_color         = false; // use color to distinguish generations and inputs
377
    bool special           = false; // enable special token output
378
    bool interactive       = false; // interactive mode
379
    bool interactive_first = false; // wait for user input immediately
380
    bool prompt_cache_all  = false; // save user input and generations to prompt cache
381
    bool prompt_cache_ro   = false; // open the prompt cache read-only and do not update it
382
383
    bool escape            = true;  // escape "\n", "\r", "\t", "\'", "\"", and "\\"
384
    bool multiline_input   = false; // reverse the usage of `\`
385
    bool simple_io         = false; // improves compatibility with subprocesses and limited consoles
386
    bool cont_batching     = true;  // insert new sequences for decoding on-the-fly
387
    bool no_perf           = false; // disable performance metrics
388
    bool ctx_shift         = false; // context shift on infinite text generation
389
    bool swa_full          = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
390
    bool kv_unified        = false; // enable unified KV cache
391
392
    bool input_prefix_bos  = false; // prefix BOS to user inputs, preceding input_prefix
393
    bool use_mmap          = true;  // use mmap for faster loads
394
    bool use_mlock         = false; // use mlock to keep model in memory
395
    bool verbose_prompt    = false; // print prompt tokens before generation
396
    bool display_prompt    = true;  // print prompt before generation
397
    bool no_kv_offload     = false; // disable KV offloading
398
    bool warmup            = true;  // warmup run
399
    bool check_tensors     = false; // validate tensor data
400
    bool no_op_offload     = false; // globally disable offload host tensor operations to device
401
    bool no_extra_bufts    = false; // disable extra buffer types (used for weight repacking)
402
    bool no_host           = false; // bypass host buffer allowing extra buffers to be used
403
404
    bool single_turn       = false; // single turn chat conversation
405
406
    ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
407
    ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
408
409
    common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
410
411
    // multimodal models (see tools/mtmd)
412
    struct common_params_model mmproj;
413
    bool mmproj_use_gpu = true;     // use GPU for multimodal model
414
    bool no_mmproj = false;         // explicitly disable multimodal model
415
    std::vector<std::string> image; // path to image file(s)
416
    int image_min_tokens = -1;
417
    int image_max_tokens = -1;
418
419
    // finetune
420
    struct lr_opt lr;
421
    enum ggml_opt_optimizer_type optimizer = GGML_OPT_OPTIMIZER_TYPE_ADAMW;
422
    float val_split = 0.05f; // fraction of the data used for the validation set
423
424
    // embedding
425
    bool embedding         = false; // get only sentence embedding
426
    int32_t embd_normalize = 2;     // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
427
    std::string embd_out   = "";    // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
428
    std::string embd_sep   = "\n";  // separator of embeddings
429
    std::string cls_sep    = "\t";  // separator of classification sequences
430
431
    // server params
432
    int32_t port              = 8080;         // server listens on this network port
433
    int32_t timeout_read      = 600;          // http read timeout in seconds
434
    int32_t timeout_write     = timeout_read; // http write timeout in seconds
435
    int32_t n_threads_http    = -1;           // number of threads to process HTTP requests (TODO: support threadpool)
436
    int32_t n_cache_reuse     = 0;            // min chunk size to reuse from the cache via KV shifting
437
    int32_t n_ctx_checkpoints = 8;            // max number of context checkpoints per slot
438
    int32_t cache_ram_mib     = 8192;         // -1 = no limit, 0 - disable, 1 = 1 MiB, etc.
439
440
    std::string hostname      = "127.0.0.1";
441
    std::string public_path   = "";                                                                         // NOLINT
442
    std::string api_prefix    = "";                                                                         // NOLINT
443
    std::string chat_template = "";                                                                         // NOLINT
444
    bool use_jinja = false;                                                                                 // NOLINT
445
    bool enable_chat_template = true;
446
    common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
447
    int reasoning_budget = -1;
448
    bool prefill_assistant = true;                                                                          // if true, any trailing assistant message will be prefilled into the response
449
450
    std::vector<std::string> api_keys;
451
452
    std::string ssl_file_key  = "";                                                                         // NOLINT
453
    std::string ssl_file_cert = "";                                                                         // NOLINT
454
455
    std::map<std::string, std::string> default_template_kwargs;
456
457
    // "advanced" endpoints are disabled by default for better security
458
    bool webui            = true;
459
    bool endpoint_slots   = true;
460
    bool endpoint_props   = false; // only control POST requests, not GET
461
    bool endpoint_metrics = false;
462
463
    bool log_json = false;
464
465
    std::string slot_save_path;
466
467
    float slot_prompt_similarity = 0.1f;
468
469
    // batched-bench params
470
    bool is_pp_shared   = false;
471
    bool is_tg_separate = false;
472
473
    std::vector<int32_t> n_pp;
474
    std::vector<int32_t> n_tg;
475
    std::vector<int32_t> n_pl;
476
477
    // retrieval params
478
    std::vector<std::string> context_files; // context files to embed
479
480
    int32_t chunk_size = 64; // chunk size for context embedding
481
482
    std::string chunk_separator = "\n"; // chunk separator for context embedding
483
484
    // passkey params
485
    int32_t n_junk = 250; // number of times to repeat the junk text
486
    int32_t i_pos  = -1;  // position of the passkey in the junk text
487
488
    // imatrix params
489
    int32_t n_out_freq  = 10; // output the imatrix every n_out_freq iterations
490
    int32_t n_save_freq =  0; // save the imatrix every n_save_freq iterations
491
    int32_t i_chunk     =  0; // start processing from this chunk
492
    int8_t  imat_dat    =  0; // whether the legacy imatrix.dat format should be output (gguf <= 0 < dat)
493
494
    bool process_output  = false; // collect data for the output tensor
495
    bool compute_ppl     = true;  // whether to compute perplexity
496
    bool show_statistics = false; // show imatrix statistics per tensor
497
    bool parse_special   = false; // whether to parse special tokens during imatrix tokenization
498
499
    // cvector-generator params
500
    int n_pca_batch = 100;
501
    int n_pca_iterations = 1000;
502
    dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
503
    std::string cvector_positive_file = "tools/cvector-generator/positive.txt";
504
    std::string cvector_negative_file = "tools/cvector-generator/negative.txt";
505
506
    bool spm_infill = false; // suffix/prefix/middle pattern for infill
507
508
    // batched-bench params
509
    bool batched_bench_output_jsonl = false;
510
511
    // common params
512
    std::string out_file; // output filename for all example programs
513
    // optional callback for model loading progress and cancellation:
514
    // called with a progress value between 0.0 and 1.0.
515
    // return false from callback to abort model loading or true to continue
516
    llama_progress_callback load_progress_callback = NULL;
517
    void *                  load_progress_callback_user_data = NULL;
518
519
0
    bool has_speculative() const {
520
0
        return !speculative.model.path.empty() || !speculative.model.hf_repo.empty();
521
0
    }
522
};
523
524
// call once at the start of a program if it uses libcommon
525
// initializes the logging system and prints info about the build
526
void common_init();
527
528
std::string common_params_get_system_info(const common_params & params);
529
530
bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
531
bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
532
void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
533
bool set_process_priority(enum ggml_sched_priority prio);
534
535
//
536
// String utils
537
//
538
539
#ifdef __GNUC__
540
#    if defined(__MINGW32__) && !defined(__clang__)
541
#        define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
542
#    else
543
#        define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
544
#    endif
545
#else
546
#    define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
547
#endif
548
549
LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
550
std::string string_format(const char * fmt, ...);
551
552
std::string string_strip(const std::string & str);
553
std::string string_get_sortable_timestamp();
554
555
std::string string_join(const std::vector<std::string> & values, const std::string & separator);
556
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter);
557
std::string string_repeat(const std::string & str, size_t n);
558
559
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
560
561
std::string regex_escape(const std::string & s);
562
563
template<class T>
564
static std::vector<T> string_split(const std::string & str, char delim) {
565
    static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
566
    std::vector<T> values;
567
    std::istringstream str_stream(str);
568
    std::string token;
569
    while (std::getline(str_stream, token, delim)) {
570
        T value;
571
        std::istringstream token_stream(token);
572
        token_stream >> value;
573
        values.push_back(value);
574
    }
575
    return values;
576
}
577
578
template<>
579
std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
580
0
{
581
0
    std::vector<std::string> parts;
582
0
    size_t begin_pos = 0;
583
0
    size_t separator_pos = input.find(separator);
584
0
    while (separator_pos != std::string::npos) {
585
0
        std::string part = input.substr(begin_pos, separator_pos - begin_pos);
586
0
        parts.emplace_back(part);
587
0
        begin_pos = separator_pos + 1;
588
0
        separator_pos = input.find(separator, begin_pos);
589
0
    }
590
0
    parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
591
0
    return parts;
592
0
}
Unexecuted instantiation: fuzz_inference.cpp:std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > string_split<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char)
Unexecuted instantiation: common.cpp:std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > string_split<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char)
593
594
static bool string_starts_with(const std::string & str,
595
0
                               const std::string & prefix) {  // While we wait for C++20's std::string::starts_with...
596
0
    return str.rfind(prefix, 0) == 0;
597
0
}
Unexecuted instantiation: fuzz_inference.cpp:string_starts_with(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&)
Unexecuted instantiation: common.cpp:string_starts_with(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&)
598
599
// While we wait for C++20's std::string::ends_with...
600
bool string_ends_with(const std::string_view & str, const std::string_view & suffix);
601
bool string_remove_suffix(std::string & str, const std::string_view & suffix);
602
size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop);
603
604
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
605
void string_process_escapes(std::string & input);
606
607
std::string string_from(bool value);
608
std::string string_from(const std::vector<int> & values);
609
std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
610
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
611
612
//
613
// Filesystem utils
614
//
615
616
bool fs_validate_filename(const std::string & filename);
617
bool fs_create_directory_with_parents(const std::string & path);
618
619
std::string fs_get_cache_directory();
620
std::string fs_get_cache_file(const std::string & filename);
621
622
struct common_file_info {
623
    std::string path;
624
    std::string name;
625
    size_t      size = 0; // in bytes
626
};
627
std::vector<common_file_info> fs_list_files(const std::string & path);
628
629
//
630
// Model utils
631
//
632
633
// note: defines object's lifetime
634
struct common_init_result {
635
    llama_model_ptr   model;
636
    llama_context_ptr context;
637
638
    std::vector<llama_adapter_lora_ptr> lora;
639
};
640
641
struct common_init_result     common_init_from_params(common_params & params);
642
643
struct llama_model_params     common_model_params_to_llama  (      common_params & params);
644
struct llama_context_params   common_context_params_to_llama(const common_params & params);
645
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
646
647
// clear LoRA adapters from context, then apply new list of adapters
648
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
649
650
std::string                   get_model_endpoint();
651
652
//
653
// Batch utils
654
//
655
656
void common_batch_clear(struct llama_batch & batch);
657
658
void common_batch_add(
659
                 struct llama_batch & batch,
660
                        llama_token   id,
661
                          llama_pos   pos,
662
    const std::vector<llama_seq_id> & seq_ids,
663
                               bool   logits);
664
665
//
666
// Token utils
667
//
668
669
// longest common prefix
670
size_t common_lcp(const llama_tokens & a, const llama_tokens & b);
671
672
// longet common subsequence
673
size_t common_lcs(const llama_tokens & a, const llama_tokens & b);
674
675
//
676
// Vocab utils
677
//
678
679
// tokenizes a string into a vector of tokens
680
// should work similar to Python's `tokenizer.encode`
681
std::vector<llama_token> common_tokenize(
682
  const struct llama_context * ctx,
683
           const std::string & text,
684
                        bool   add_special,
685
                        bool   parse_special = false);
686
687
std::vector<llama_token> common_tokenize(
688
    const struct llama_vocab * vocab,
689
           const std::string & text,
690
                        bool   add_special,
691
                        bool   parse_special = false);
692
693
// tokenizes a token into a piece, optionally renders special/control tokens
694
// should work similar to Python's `tokenizer.id_to_piece`
695
std::string common_token_to_piece(
696
        const struct llama_context * ctx,
697
                       llama_token   token,
698
                       bool          special = true);
699
700
std::string common_token_to_piece(
701
          const struct llama_vocab * vocab,
702
                       llama_token   token,
703
                       bool          special = true);
704
705
// detokenizes a vector of tokens into a string
706
// should work similar to Python's `tokenizer.decode`
707
// optionally renders special/control tokens
708
std::string common_detokenize(
709
            const struct llama_context * ctx,
710
        const std::vector<llama_token> & tokens,
711
                                  bool   special = true);
712
713
std::string common_detokenize(
714
              const struct llama_vocab * vocab,
715
        const std::vector<llama_token> & tokens,
716
                                  bool   special = true);
717
718
//
719
// Embedding utils
720
//
721
722
// TODO: repace embd_norm with an enum
723
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm);
724
725
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
726
727
//
728
// Control vector utils
729
//
730
731
struct common_control_vector_data {
732
    int n_embd;
733
734
    // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
735
    std::vector<float> data;
736
};
737
738
struct common_control_vector_load_info {
739
    float strength;
740
741
    std::string fname;
742
};
743
744
// Load control vectors, scale each by strength, and add them together.
745
// On error, returns {-1, empty}
746
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
747
748
//
749
// Split utils
750
//
751
752
namespace {
753
754
const char * const LLM_KV_SPLIT_NO            = "split.no";
755
const char * const LLM_KV_SPLIT_COUNT         = "split.count";
756
const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
757
758
}
759
760
//
761
// MoE utils
762
//
763
764
const char * const LLM_FFN_EXPS_REGEX = "\\.ffn_(up|down|gate)_(ch|)exps";
765
766
0
static std::string llm_ffn_exps_block_regex(int idx) {
767
0
    return string_format("blk\\.%d%s", idx, LLM_FFN_EXPS_REGEX);
768
0
}
Unexecuted instantiation: fuzz_inference.cpp:llm_ffn_exps_block_regex(int)
Unexecuted instantiation: common.cpp:llm_ffn_exps_block_regex(int)
769
770
0
static llama_model_tensor_buft_override llm_ffn_exps_cpu_override() {
771
0
    return { LLM_FFN_EXPS_REGEX, ggml_backend_cpu_buffer_type() };
772
0
}
Unexecuted instantiation: fuzz_inference.cpp:llm_ffn_exps_cpu_override()
Unexecuted instantiation: common.cpp:llm_ffn_exps_cpu_override()
773
774
//
775
// training utils
776
//
777
778
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride);
779
780
// "adamw" or "sgd" (case insensitive)
781
enum ggml_opt_optimizer_type common_opt_get_optimizer(const char *);