/src/llama.cpp/src/llama-graph.cpp
Line | Count | Source |
1 | | #include "llama-graph.h" |
2 | | |
3 | | #include "llama-impl.h" |
4 | | #include "llama-batch.h" |
5 | | #include "llama-cparams.h" |
6 | | |
7 | | #include "llama-kv-cache.h" |
8 | | #include "llama-kv-cache-iswa.h" |
9 | | #include "llama-memory-hybrid.h" |
10 | | #include "llama-memory-recurrent.h" |
11 | | |
12 | | #include <cassert> |
13 | | #include <cmath> |
14 | | #include <cstring> |
15 | | |
16 | 0 | void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) { |
17 | 0 | if (ubatch->token) { |
18 | 0 | const int64_t n_tokens = ubatch->n_tokens; |
19 | |
|
20 | 0 | ggml_backend_tensor_set(tokens, ubatch->token, 0, n_tokens*ggml_element_size(tokens)); |
21 | 0 | } |
22 | |
|
23 | 0 | if (ubatch->embd) { |
24 | 0 | const int64_t n_embd = embd->ne[0]; |
25 | 0 | const int64_t n_tokens = ubatch->n_tokens; |
26 | |
|
27 | 0 | ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*ggml_element_size(embd)); |
28 | 0 | } |
29 | 0 | } |
30 | | |
31 | 0 | bool llm_graph_input_embd::can_reuse(const llm_graph_params & params) { |
32 | 0 | bool res = true; |
33 | |
|
34 | 0 | res &= (!tokens && !params.ubatch.token) || (tokens && tokens->ne[0] == params.ubatch.n_tokens); |
35 | 0 | res &= (!embd && !params.ubatch.embd) || (embd && embd->ne[0] == params.ubatch.n_tokens); |
36 | |
|
37 | 0 | return res; |
38 | 0 | } |
39 | | |
40 | 0 | void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) { |
41 | 0 | if (ubatch->pos && pos) { |
42 | 0 | const int64_t n_tokens = ubatch->n_tokens; |
43 | |
|
44 | 0 | if (ubatch->token && n_pos_per_embd == 4) { |
45 | | // in case we're using M-RoPE with text tokens, convert the 1D positions to 4D |
46 | | // the 3 first dims are the same, and 4th dim is all 0 |
47 | 0 | std::vector<llama_pos> pos_data(n_tokens*n_pos_per_embd); |
48 | | // copy the first dimension |
49 | 0 | for (int i = 0; i < n_tokens; ++i) { |
50 | 0 | pos_data[ i] = ubatch->pos[i]; |
51 | 0 | pos_data[ n_tokens + i] = ubatch->pos[i]; |
52 | 0 | pos_data[2 * n_tokens + i] = ubatch->pos[i]; |
53 | 0 | pos_data[3 * n_tokens + i] = 0; // 4th dim is 0 |
54 | 0 | } |
55 | 0 | ggml_backend_tensor_set(pos, pos_data.data(), 0, pos_data.size()*ggml_element_size(pos)); |
56 | 0 | } else { |
57 | 0 | ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_embd*ggml_element_size(pos)); |
58 | 0 | } |
59 | 0 | } |
60 | 0 | } |
61 | | |
62 | 0 | bool llm_graph_input_pos::can_reuse(const llm_graph_params & params) { |
63 | 0 | bool res = true; |
64 | |
|
65 | 0 | res &= pos->ne[0] == params.ubatch.n_tokens; |
66 | |
|
67 | 0 | return res; |
68 | 0 | } |
69 | | |
70 | 0 | void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) { |
71 | 0 | if (ubatch->pos && attn_scale) { |
72 | 0 | const int64_t n_tokens = ubatch->n_tokens; |
73 | |
|
74 | 0 | std::vector<float> attn_scale_data(n_tokens, 0.0f); |
75 | 0 | for (int i = 0; i < n_tokens; ++i) { |
76 | 0 | const float pos = ubatch->pos[i]; |
77 | 0 | attn_scale_data[i] = std::log( |
78 | 0 | std::floor((pos + 1.0f) / n_attn_temp_floor_scale) + 1.0 |
79 | 0 | ) * f_attn_temp_scale + 1.0; |
80 | 0 | } |
81 | |
|
82 | 0 | ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*ggml_element_size(attn_scale)); |
83 | 0 | } |
84 | 0 | } |
85 | | |
86 | 0 | void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) { |
87 | 0 | if (pos_bucket) { |
88 | 0 | const int64_t n_tokens = ubatch->n_tokens; |
89 | |
|
90 | 0 | GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer)); |
91 | 0 | GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing |
92 | |
|
93 | 0 | int32_t * data = (int32_t *) pos_bucket->data; |
94 | |
|
95 | 0 | for (int h = 0; h < 1; ++h) { |
96 | 0 | for (int j = 0; j < n_tokens; ++j) { |
97 | 0 | for (int i = 0; i < n_tokens; ++i) { |
98 | 0 | data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true); |
99 | 0 | } |
100 | 0 | } |
101 | 0 | } |
102 | 0 | } |
103 | 0 | } |
104 | | |
105 | 0 | void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) { |
106 | 0 | if (pos_bucket) { |
107 | 0 | mctx->set_input_pos_bucket(pos_bucket, ubatch); |
108 | 0 | } |
109 | 0 | } |
110 | | |
111 | 0 | void llm_graph_input_out_ids::set_input(const llama_ubatch * ubatch) { |
112 | 0 | GGML_ASSERT(out_ids); |
113 | |
|
114 | 0 | const int64_t n_tokens = ubatch->n_tokens; |
115 | |
|
116 | 0 | GGML_ASSERT(ggml_backend_buffer_is_host(out_ids->buffer)); |
117 | 0 | int32_t * data = (int32_t *) out_ids->data; |
118 | |
|
119 | 0 | if (n_outputs == n_tokens) { |
120 | 0 | for (int i = 0; i < n_tokens; ++i) { |
121 | 0 | data[i] = i; |
122 | 0 | } |
123 | |
|
124 | 0 | return; |
125 | 0 | } |
126 | | |
127 | 0 | GGML_ASSERT(ubatch->output); |
128 | |
|
129 | 0 | int n_outputs = 0; |
130 | |
|
131 | 0 | for (int i = 0; i < n_tokens; ++i) { |
132 | 0 | if (ubatch->output[i]) { |
133 | 0 | data[n_outputs++] = i; |
134 | 0 | } |
135 | 0 | } |
136 | 0 | } |
137 | | |
138 | 0 | bool llm_graph_input_out_ids::can_reuse(const llm_graph_params & params) { |
139 | 0 | bool res = true; |
140 | |
|
141 | 0 | res &= n_outputs == params.n_outputs; |
142 | |
|
143 | 0 | return res; |
144 | 0 | } |
145 | | |
146 | 0 | void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) { |
147 | 0 | if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) { |
148 | 0 | const int64_t n_tokens = ubatch->n_tokens; |
149 | 0 | const int64_t n_seq_tokens = ubatch->n_seq_tokens; |
150 | 0 | const int64_t n_seqs_unq = ubatch->n_seqs_unq; |
151 | |
|
152 | 0 | GGML_ASSERT(mean); |
153 | 0 | GGML_ASSERT(ggml_backend_buffer_is_host(mean->buffer)); |
154 | |
|
155 | 0 | float * data = (float *) mean->data; |
156 | 0 | memset(mean->data, 0, n_tokens*n_seqs_unq*ggml_element_size(mean)); |
157 | |
|
158 | 0 | std::vector<uint64_t> sums(n_seqs_unq, 0); |
159 | 0 | for (int i = 0; i < n_tokens; i += n_seq_tokens) { |
160 | 0 | for (int s = 0; s < ubatch->n_seq_id[i]; ++s) { |
161 | 0 | const llama_seq_id seq_id = ubatch->seq_id[i][s]; |
162 | 0 | const int32_t seq_idx = ubatch->seq_idx[seq_id]; |
163 | |
|
164 | 0 | sums[seq_idx] += ubatch->n_seq_tokens; |
165 | 0 | } |
166 | 0 | } |
167 | |
|
168 | 0 | std::vector<float> div(n_seqs_unq, 0.0f); |
169 | 0 | for (int s = 0; s < n_seqs_unq; ++s) { |
170 | 0 | const uint64_t sum = sums[s]; |
171 | 0 | if (sum > 0) { |
172 | 0 | div[s] = 1.0f/float(sum); |
173 | 0 | } |
174 | 0 | } |
175 | |
|
176 | 0 | for (int i = 0; i < n_tokens; i += n_seq_tokens) { |
177 | 0 | for (int s = 0; s < ubatch->n_seq_id[i]; ++s) { |
178 | 0 | const llama_seq_id seq_id = ubatch->seq_id[i][s]; |
179 | 0 | const int32_t seq_idx = ubatch->seq_idx[seq_id]; |
180 | |
|
181 | 0 | for (int j = 0; j < n_seq_tokens; ++j) { |
182 | 0 | data[seq_idx*n_tokens + i + j] = div[seq_idx]; |
183 | 0 | } |
184 | 0 | } |
185 | 0 | } |
186 | 0 | } |
187 | 0 | } |
188 | | |
189 | 0 | void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) { |
190 | 0 | const int64_t n_tokens = ubatch->n_tokens; |
191 | 0 | const int64_t n_seqs_unq = ubatch->n_seqs_unq; |
192 | |
|
193 | 0 | if (cparams.embeddings && ( |
194 | 0 | cparams.pooling_type == LLAMA_POOLING_TYPE_CLS || |
195 | 0 | cparams.pooling_type == LLAMA_POOLING_TYPE_RANK || |
196 | 0 | cparams.pooling_type == LLAMA_POOLING_TYPE_LAST |
197 | 0 | )) { |
198 | 0 | GGML_ASSERT(cls); |
199 | 0 | GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer)); |
200 | |
|
201 | 0 | uint32_t * data = (uint32_t *) cls->data; |
202 | 0 | memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls)); |
203 | |
|
204 | 0 | std::vector<int> target_pos(n_seqs_unq, -1); |
205 | 0 | std::vector<int> target_row(n_seqs_unq, -1); |
206 | |
|
207 | 0 | const bool last = ( |
208 | 0 | cparams.pooling_type == LLAMA_POOLING_TYPE_LAST || |
209 | 0 | (cparams.pooling_type == LLAMA_POOLING_TYPE_RANK && arch == LLM_ARCH_QWEN3) // qwen3 reranking & embedding models use last token |
210 | 0 | ); |
211 | |
|
212 | 0 | for (int i = 0; i < n_tokens; ++i) { |
213 | 0 | const llama_pos pos = ubatch->pos[i]; |
214 | |
|
215 | 0 | for (int s = 0; s < ubatch->n_seq_id[i]; ++s) { |
216 | 0 | const llama_seq_id seq_id = ubatch->seq_id[i][s]; |
217 | 0 | const int32_t seq_idx = ubatch->seq_idx[seq_id]; |
218 | |
|
219 | 0 | if ( |
220 | 0 | (target_pos[seq_idx] == -1) || |
221 | 0 | ( last && pos >= target_pos[seq_idx]) || |
222 | 0 | (!last && pos < target_pos[seq_idx]) |
223 | 0 | ) { |
224 | 0 | target_pos[seq_idx] = pos; |
225 | 0 | target_row[seq_idx] = i; |
226 | 0 | } |
227 | 0 | } |
228 | 0 | } |
229 | |
|
230 | 0 | for (int s = 0; s < n_seqs_unq; ++s) { |
231 | 0 | if (target_row[s] >= 0) { |
232 | 0 | data[s] = target_row[s]; |
233 | 0 | } |
234 | 0 | } |
235 | 0 | } |
236 | 0 | } |
237 | | |
238 | 0 | void llm_graph_input_rs::set_input(const llama_ubatch * ubatch) { |
239 | 0 | GGML_UNUSED(ubatch); |
240 | |
|
241 | 0 | const int64_t n_rs = mctx->get_n_rs(); |
242 | |
|
243 | 0 | if (s_copy) { |
244 | 0 | GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer)); |
245 | 0 | int32_t * data = (int32_t *) s_copy->data; |
246 | | |
247 | | // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n |
248 | 0 | for (uint32_t i = 0; i < n_rs; ++i) { |
249 | 0 | data[i] = mctx->s_copy(i); |
250 | 0 | } |
251 | 0 | } |
252 | 0 | } |
253 | | |
254 | 0 | void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) { |
255 | 0 | GGML_UNUSED(ubatch); |
256 | |
|
257 | 0 | if (cross_embd && !cross->v_embd.empty()) { |
258 | 0 | assert(cross_embd->type == GGML_TYPE_F32); |
259 | |
|
260 | 0 | ggml_backend_tensor_set(cross_embd, cross->v_embd.data(), 0, ggml_nbytes(cross_embd)); |
261 | 0 | } |
262 | 0 | } |
263 | | |
264 | 0 | static void print_mask(const float * data, int64_t n_tokens, int64_t n_kv, int64_t n_swa, llama_swa_type swa_type) { |
265 | 0 | LLAMA_LOG_DEBUG("%s: === Attention mask ===\n", __func__); |
266 | 0 | const char * swa_type_str = "unknown"; |
267 | |
|
268 | 0 | switch (swa_type) { |
269 | 0 | case LLAMA_SWA_TYPE_NONE: swa_type_str = "LLAMA_SWA_TYPE_NONE"; break; |
270 | 0 | case LLAMA_SWA_TYPE_STANDARD: swa_type_str = "LLAMA_SWA_TYPE_STANDARD"; break; |
271 | 0 | case LLAMA_SWA_TYPE_CHUNKED: swa_type_str = "LLAMA_SWA_TYPE_CHUNKED"; break; |
272 | 0 | case LLAMA_SWA_TYPE_SYMMETRIC: swa_type_str = "LLAMA_SWA_TYPE_SYMMETRIC"; break; |
273 | 0 | }; |
274 | |
|
275 | 0 | LLAMA_LOG_DEBUG("%s: n_swa : %d, n_kv: %d, swq_type: %s\n", __func__, (int)n_swa, (int)n_kv, swa_type_str); |
276 | 0 | LLAMA_LOG_DEBUG("%s: '0' = can attend, '∞' = masked\n", __func__); |
277 | 0 | LLAMA_LOG_DEBUG("%s: Rows = query tokens, Columns = key/value tokens\n\n", __func__); |
278 | |
|
279 | 0 | LLAMA_LOG_DEBUG(" "); |
280 | 0 | for (int j = 0; j < std::min((int64_t)20, n_kv); ++j) { |
281 | 0 | LLAMA_LOG_DEBUG("%2d", j); |
282 | 0 | } |
283 | 0 | LLAMA_LOG_DEBUG("\n"); |
284 | |
|
285 | 0 | for (int i = 0; i < std::min((int64_t)20, n_tokens); ++i) { |
286 | 0 | LLAMA_LOG_DEBUG(" %2d ", i); |
287 | 0 | for (int j = 0; j < std::min((int64_t)20, n_kv); ++j) { |
288 | 0 | float val = data[i * n_kv + j]; |
289 | 0 | if (val == -INFINITY) { |
290 | 0 | LLAMA_LOG_DEBUG(" ∞"); |
291 | 0 | } else { |
292 | 0 | LLAMA_LOG_DEBUG(" 0"); |
293 | 0 | } |
294 | 0 | } |
295 | 0 | LLAMA_LOG_DEBUG("\n"); |
296 | 0 | } |
297 | 0 | } |
298 | | |
299 | 0 | void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) { |
300 | 0 | const int64_t n_kv = ubatch->n_tokens; |
301 | 0 | const int64_t n_tokens = ubatch->n_tokens; |
302 | |
|
303 | 0 | const auto fill_mask = [&](float * data, int n_swa, llama_swa_type swa_type) { |
304 | 0 | for (int h = 0; h < 1; ++h) { |
305 | 0 | for (int i1 = 0; i1 < n_tokens; ++i1) { |
306 | 0 | const llama_seq_id s1 = ubatch->seq_id[i1][0]; |
307 | 0 | const llama_pos p1 = ubatch->pos[i1]; |
308 | |
|
309 | 0 | const uint64_t idst = h*(n_kv*n_tokens) + i1*n_kv; |
310 | |
|
311 | 0 | for (int i0 = 0; i0 < n_tokens; ++i0) { |
312 | 0 | const llama_seq_id s0 = ubatch->seq_id[i0][0]; |
313 | 0 | const llama_pos p0 = ubatch->pos[i0]; |
314 | | |
315 | | // mask different sequences |
316 | 0 | if (s0 != s1) { |
317 | 0 | continue; |
318 | 0 | } |
319 | | |
320 | | // mask future tokens |
321 | 0 | if (cparams.causal_attn && p0 > p1) { |
322 | 0 | continue; |
323 | 0 | } |
324 | | |
325 | | // apply SWA if any |
326 | 0 | if (llama_hparams::is_masked_swa(n_swa, swa_type, p0, p1)) { |
327 | 0 | continue; |
328 | 0 | } |
329 | | |
330 | 0 | data[idst + i0] = hparams.use_alibi ? -std::abs(p0 - p1) : 0.0f; |
331 | 0 | } |
332 | 0 | } |
333 | 0 | } |
334 | 0 | }; |
335 | |
|
336 | 0 | { |
337 | 0 | GGML_ASSERT(self_kq_mask); |
338 | 0 | GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask->buffer)); |
339 | |
|
340 | 0 | float * data = (float *) self_kq_mask->data; |
341 | |
|
342 | 0 | std::fill(data, data + ggml_nelements(self_kq_mask), -INFINITY); |
343 | |
|
344 | 0 | fill_mask(data, 0, LLAMA_SWA_TYPE_NONE); |
345 | |
|
346 | 0 | if (debug) { |
347 | 0 | print_mask(data, n_tokens, n_kv, 0, LLAMA_SWA_TYPE_NONE); |
348 | 0 | } |
349 | 0 | } |
350 | |
|
351 | 0 | if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) { |
352 | 0 | GGML_ASSERT(self_kq_mask_swa); |
353 | 0 | GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask_swa->buffer)); |
354 | |
|
355 | 0 | float * data = (float *) self_kq_mask_swa->data; |
356 | |
|
357 | 0 | std::fill(data, data + ggml_nelements(self_kq_mask_swa), -INFINITY); |
358 | |
|
359 | 0 | fill_mask(data, hparams.n_swa, hparams.swa_type); |
360 | |
|
361 | 0 | if (debug) { |
362 | 0 | print_mask(data, n_tokens, n_kv, hparams.n_swa, hparams.swa_type); |
363 | 0 | } |
364 | 0 | } |
365 | 0 | } |
366 | | |
367 | 0 | void llm_graph_input_attn_kv::set_input(const llama_ubatch * ubatch) { |
368 | 0 | mctx->set_input_k_idxs(self_k_idxs, ubatch); |
369 | 0 | mctx->set_input_v_idxs(self_v_idxs, ubatch); |
370 | |
|
371 | 0 | mctx->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn); |
372 | 0 | } |
373 | | |
374 | 0 | bool llm_graph_input_attn_kv::can_reuse(const llm_graph_params & params) { |
375 | 0 | const auto * mctx = static_cast<const llama_kv_cache_context *>(params.mctx); |
376 | |
|
377 | 0 | this->mctx = mctx; |
378 | |
|
379 | 0 | bool res = true; |
380 | |
|
381 | 0 | res &= self_k_idxs->ne[0] == params.ubatch.n_tokens; |
382 | | //res &= self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there |
383 | |
|
384 | 0 | res &= self_kq_mask->ne[0] == mctx->get_n_kv(); |
385 | 0 | res &= self_kq_mask->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD); |
386 | |
|
387 | 0 | return res; |
388 | 0 | } |
389 | | |
390 | 0 | void llm_graph_input_attn_kv_iswa::set_input(const llama_ubatch * ubatch) { |
391 | 0 | mctx->get_base()->set_input_k_idxs(self_k_idxs, ubatch); |
392 | 0 | mctx->get_base()->set_input_v_idxs(self_v_idxs, ubatch); |
393 | |
|
394 | 0 | mctx->get_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn); |
395 | |
|
396 | 0 | mctx->get_swa()->set_input_k_idxs(self_k_idxs_swa, ubatch); |
397 | 0 | mctx->get_swa()->set_input_v_idxs(self_v_idxs_swa, ubatch); |
398 | |
|
399 | 0 | mctx->get_swa()->set_input_kq_mask(self_kq_mask_swa, ubatch, cparams.causal_attn); |
400 | 0 | } |
401 | | |
402 | 0 | bool llm_graph_input_attn_kv_iswa::can_reuse(const llm_graph_params & params) { |
403 | 0 | const auto * mctx = static_cast<const llama_kv_cache_iswa_context *>(params.mctx); |
404 | |
|
405 | 0 | this->mctx = mctx; |
406 | |
|
407 | 0 | bool res = true; |
408 | |
|
409 | 0 | res &= self_k_idxs->ne[0] == params.ubatch.n_tokens; |
410 | | //res &= self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there |
411 | |
|
412 | 0 | res &= self_k_idxs_swa->ne[0] == params.ubatch.n_tokens; |
413 | | //res &= self_v_idxs_swa->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there |
414 | |
|
415 | 0 | res &= self_kq_mask->ne[0] == mctx->get_base()->get_n_kv(); |
416 | 0 | res &= self_kq_mask->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD); |
417 | |
|
418 | 0 | res &= self_kq_mask_swa->ne[0] == mctx->get_swa()->get_n_kv(); |
419 | 0 | res &= self_kq_mask_swa->ne[1] == GGML_PAD(params.ubatch.n_tokens, GGML_KQ_MASK_PAD); |
420 | |
|
421 | 0 | return res; |
422 | 0 | } |
423 | | |
424 | 0 | void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) { |
425 | 0 | GGML_ASSERT(cross_kq_mask); |
426 | |
|
427 | 0 | const int64_t n_enc = cross_kq_mask->ne[0]; |
428 | 0 | const int64_t n_tokens = ubatch->n_tokens; |
429 | |
|
430 | 0 | GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer)); |
431 | 0 | GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing |
432 | |
|
433 | 0 | float * data = (float *) cross_kq_mask->data; |
434 | |
|
435 | 0 | for (int h = 0; h < 1; ++h) { |
436 | 0 | for (int i = 0; i < n_tokens; ++i) { |
437 | 0 | for (int j = 0; j < n_enc; ++j) { |
438 | 0 | float f = -INFINITY; |
439 | |
|
440 | 0 | for (int s = 0; s < ubatch->n_seq_id[i]; ++s) { |
441 | 0 | const llama_seq_id seq_id = ubatch->seq_id[i][s]; |
442 | |
|
443 | 0 | if (cross->seq_ids_enc[j].find(seq_id) != cross->seq_ids_enc[j].end()) { |
444 | 0 | f = 0.0f; |
445 | 0 | } |
446 | 0 | } |
447 | |
|
448 | 0 | data[h*(n_enc*n_tokens) + i*n_enc + j] = f; |
449 | 0 | } |
450 | 0 | } |
451 | |
|
452 | 0 | for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) { |
453 | 0 | for (int j = 0; j < n_enc; ++j) { |
454 | 0 | data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY; |
455 | 0 | } |
456 | 0 | } |
457 | 0 | } |
458 | 0 | } |
459 | | |
460 | 0 | void llm_graph_input_mem_hybrid::set_input(const llama_ubatch * ubatch) { |
461 | 0 | inp_attn->set_input(ubatch); |
462 | 0 | inp_rs->set_input(ubatch); |
463 | 0 | } |
464 | | |
465 | | // |
466 | | // llm_graph_result |
467 | | // |
468 | | |
469 | 0 | llm_graph_result::llm_graph_result(int64_t max_nodes) : max_nodes(max_nodes) { |
470 | 0 | reset(); |
471 | |
|
472 | 0 | const char * LLAMA_GRAPH_RESULT_DEBUG = getenv("LLAMA_GRAPH_RESULT_DEBUG"); |
473 | 0 | debug = LLAMA_GRAPH_RESULT_DEBUG ? atoi(LLAMA_GRAPH_RESULT_DEBUG) : 0; |
474 | 0 | } |
475 | | |
476 | 0 | int64_t llm_graph_result::get_max_nodes() const { |
477 | 0 | return max_nodes; |
478 | 0 | } |
479 | | |
480 | 0 | void llm_graph_result::reset() { |
481 | 0 | t_tokens = nullptr; |
482 | 0 | t_logits = nullptr; |
483 | 0 | t_embd = nullptr; |
484 | 0 | t_embd_pooled = nullptr; |
485 | |
|
486 | 0 | params = {}; |
487 | |
|
488 | 0 | inputs.clear(); |
489 | |
|
490 | 0 | buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false)); |
491 | |
|
492 | 0 | ggml_init_params params = { |
493 | 0 | /*.mem_size =*/ buf_compute_meta.size(), |
494 | 0 | /*.mem_buffer =*/ buf_compute_meta.data(), |
495 | 0 | /*.no_alloc =*/ true, |
496 | 0 | }; |
497 | |
|
498 | 0 | ctx_compute.reset(ggml_init(params)); |
499 | |
|
500 | 0 | gf = ggml_new_graph_custom(ctx_compute.get(), max_nodes, false); |
501 | 0 | } |
502 | | |
503 | 0 | void llm_graph_result::set_inputs(const llama_ubatch * ubatch) { |
504 | 0 | for (auto & input : inputs) { |
505 | 0 | input->set_input(ubatch); |
506 | 0 | } |
507 | 0 | } |
508 | | |
509 | 0 | bool llm_graph_result::can_reuse(const llm_graph_params & params) { |
510 | 0 | if (!this->params.allow_reuse(params)) { |
511 | 0 | if (debug > 1) { |
512 | 0 | LLAMA_LOG_DEBUG("%s: cannot reuse graph due to incompatible graph parameters\n", __func__); |
513 | 0 | } |
514 | |
|
515 | 0 | return false; |
516 | 0 | } |
517 | | |
518 | 0 | if (debug > 1) { |
519 | 0 | LLAMA_LOG_DEBUG("%s: checking compatibility of %d inputs:\n", __func__, (int) inputs.size()); |
520 | 0 | } |
521 | |
|
522 | 0 | bool res = true; |
523 | |
|
524 | 0 | for (auto & input : inputs) { |
525 | 0 | const bool cur = input->can_reuse(params); |
526 | |
|
527 | 0 | if (debug > 1) { |
528 | 0 | LLAMA_LOG_DEBUG("%s: can_reuse = %d\n", "placeholder", cur); |
529 | 0 | } |
530 | |
|
531 | 0 | res = res && cur; |
532 | 0 | } |
533 | |
|
534 | 0 | if (debug > 0) { |
535 | 0 | LLAMA_LOG_DEBUG("%s: can reuse graph = %d\n", __func__, res); |
536 | 0 | } |
537 | |
|
538 | 0 | return res; |
539 | 0 | } |
540 | | |
541 | 0 | llm_graph_input_i * llm_graph_result::add_input(llm_graph_input_ptr input) { |
542 | 0 | inputs.emplace_back(std::move(input)); |
543 | 0 | return inputs.back().get(); |
544 | 0 | } |
545 | | |
546 | 0 | void llm_graph_result::set_params(const llm_graph_params & params) { |
547 | 0 | this->params = params; |
548 | 0 | } |
549 | | |
550 | | // |
551 | | // llm_graph_context |
552 | | // |
553 | | |
554 | | llm_graph_context::llm_graph_context(const llm_graph_params & params) : |
555 | 0 | arch (params.arch), |
556 | 0 | hparams (params.hparams), |
557 | 0 | cparams (params.cparams), |
558 | 0 | ubatch (params.ubatch), |
559 | 0 | n_embd (hparams.n_embd), |
560 | 0 | n_layer (hparams.n_layer), |
561 | 0 | n_rot (hparams.n_rot), |
562 | 0 | n_ctx (cparams.n_ctx), |
563 | 0 | n_head (hparams.n_head()), |
564 | 0 | n_head_kv (hparams.n_head_kv()), |
565 | 0 | n_embd_head_k (hparams.n_embd_head_k), |
566 | 0 | n_embd_k_gqa (hparams.n_embd_k_gqa()), |
567 | 0 | n_embd_head_v (hparams.n_embd_head_v), |
568 | 0 | n_embd_v_gqa (hparams.n_embd_v_gqa()), |
569 | 0 | n_expert (hparams.n_expert), |
570 | 0 | n_expert_used (cparams.warmup ? hparams.n_expert : hparams.n_expert_used), |
571 | 0 | freq_base (cparams.rope_freq_base), |
572 | 0 | freq_scale (cparams.rope_freq_scale), |
573 | 0 | ext_factor (cparams.yarn_ext_factor), |
574 | 0 | attn_factor (cparams.yarn_attn_factor), |
575 | 0 | beta_fast (cparams.yarn_beta_fast), |
576 | 0 | beta_slow (cparams.yarn_beta_slow), |
577 | 0 | norm_eps (hparams.f_norm_eps), |
578 | 0 | norm_rms_eps (hparams.f_norm_rms_eps), |
579 | 0 | n_tokens (ubatch.n_tokens), |
580 | 0 | n_outputs (params.n_outputs), |
581 | 0 | n_ctx_orig (cparams.n_ctx_orig_yarn), |
582 | 0 | pooling_type (cparams.pooling_type), |
583 | 0 | rope_type (hparams.rope_type), |
584 | 0 | sched (params.sched), |
585 | 0 | backend_cpu (params.backend_cpu), |
586 | 0 | cvec (params.cvec), |
587 | 0 | loras (params.loras), |
588 | 0 | mctx (params.mctx), |
589 | 0 | cross (params.cross), |
590 | 0 | cb_func (params.cb), |
591 | 0 | res (params.res), |
592 | 0 | ctx0 (res->get_ctx()), |
593 | 0 | gf (res->get_gf()) { |
594 | 0 | res->set_params(params); |
595 | 0 | } |
596 | | |
597 | 0 | void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const { |
598 | 0 | if (cb_func) { |
599 | 0 | cb_func(ubatch, cur, name, il); |
600 | 0 | } |
601 | 0 | } |
602 | | |
603 | | ggml_tensor * llm_graph_context::build_cvec( |
604 | | ggml_tensor * cur, |
605 | 0 | int il) const { |
606 | 0 | return cvec->apply_to(ctx0, cur, il); |
607 | 0 | } |
608 | | |
609 | | ggml_tensor * llm_graph_context::build_lora_mm( |
610 | | ggml_tensor * w, |
611 | 0 | ggml_tensor * cur) const { |
612 | 0 | ggml_tensor * res = ggml_mul_mat(ctx0, w, cur); |
613 | |
|
614 | 0 | for (const auto & lora : *loras) { |
615 | 0 | llama_adapter_lora_weight * lw = lora.first->get_weight(w); |
616 | 0 | if (lw == nullptr) { |
617 | 0 | continue; |
618 | 0 | } |
619 | | |
620 | 0 | const float adapter_scale = lora.second; |
621 | 0 | const float scale = lw->get_scale(lora.first->alpha, adapter_scale); |
622 | |
|
623 | 0 | ggml_tensor * ab_cur = ggml_mul_mat( |
624 | 0 | ctx0, lw->b, |
625 | 0 | ggml_mul_mat(ctx0, lw->a, cur) |
626 | 0 | ); |
627 | |
|
628 | 0 | ab_cur = ggml_scale(ctx0, ab_cur, scale); |
629 | 0 | res = ggml_add(ctx0, res, ab_cur); |
630 | 0 | } |
631 | |
|
632 | 0 | return res; |
633 | 0 | } |
634 | | |
635 | | ggml_tensor * llm_graph_context::build_lora_mm_id( |
636 | | ggml_tensor * w, // ggml_tensor * as |
637 | | ggml_tensor * cur, // ggml_tensor * b |
638 | 0 | ggml_tensor * ids) const { |
639 | 0 | ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids); |
640 | 0 | for (const auto & lora : *loras) { |
641 | 0 | llama_adapter_lora_weight * lw = lora.first->get_weight(w); |
642 | 0 | if (lw == nullptr) { |
643 | 0 | continue; |
644 | 0 | } |
645 | | |
646 | 0 | const float alpha = lora.first->alpha; |
647 | 0 | const float rank = (float) lw->b->ne[0]; |
648 | 0 | const float scale = alpha ? lora.second * alpha / rank : lora.second; |
649 | |
|
650 | 0 | ggml_tensor * ab_cur = ggml_mul_mat_id( |
651 | 0 | ctx0, lw->b, |
652 | 0 | ggml_mul_mat_id(ctx0, lw->a, cur, ids), |
653 | 0 | ids |
654 | 0 | ); |
655 | |
|
656 | 0 | ab_cur = ggml_scale(ctx0, ab_cur, scale); |
657 | 0 | res = ggml_add(ctx0, res, ab_cur); |
658 | 0 | } |
659 | |
|
660 | 0 | return res; |
661 | 0 | } |
662 | | |
663 | | ggml_tensor * llm_graph_context::build_norm( |
664 | | ggml_tensor * cur, |
665 | | ggml_tensor * mw, |
666 | | ggml_tensor * mb, |
667 | | llm_norm_type type, |
668 | 0 | int il) const { |
669 | 0 | switch (type) { |
670 | 0 | case LLM_NORM: cur = ggml_norm (ctx0, cur, hparams.f_norm_eps); break; |
671 | 0 | case LLM_NORM_RMS: cur = ggml_rms_norm(ctx0, cur, hparams.f_norm_rms_eps); break; |
672 | 0 | case LLM_NORM_GROUP: |
673 | 0 | { |
674 | 0 | cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], 1, cur->ne[1]); |
675 | 0 | cur = ggml_group_norm(ctx0, cur, hparams.n_norm_groups, hparams.f_norm_group_eps); |
676 | 0 | cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[2]); |
677 | 0 | } break; |
678 | 0 | } |
679 | | |
680 | 0 | if (mw || mb) { |
681 | 0 | cb(cur, "norm", il); |
682 | 0 | } |
683 | |
|
684 | 0 | if (mw) { |
685 | 0 | cur = ggml_mul(ctx0, cur, mw); |
686 | 0 | if (mb) { |
687 | 0 | cb(cur, "norm_w", il); |
688 | 0 | } |
689 | 0 | } |
690 | |
|
691 | 0 | if (mb) { |
692 | 0 | cur = ggml_add(ctx0, cur, mb); |
693 | 0 | } |
694 | |
|
695 | 0 | return cur; |
696 | 0 | } |
697 | | |
698 | | ggml_tensor * llm_graph_context::build_ffn( |
699 | | ggml_tensor * cur, |
700 | | ggml_tensor * up, |
701 | | ggml_tensor * up_b, |
702 | | ggml_tensor * up_s, |
703 | | ggml_tensor * gate, |
704 | | ggml_tensor * gate_b, |
705 | | ggml_tensor * gate_s, |
706 | | ggml_tensor * down, |
707 | | ggml_tensor * down_b, |
708 | | ggml_tensor * down_s, |
709 | | ggml_tensor * act_scales, |
710 | | llm_ffn_op_type type_op, |
711 | | llm_ffn_gate_type type_gate, |
712 | 0 | int il) const { |
713 | 0 | ggml_tensor * tmp = up ? build_lora_mm(up, cur) : cur; |
714 | 0 | cb(tmp, "ffn_up", il); |
715 | |
|
716 | 0 | if (up_b) { |
717 | 0 | tmp = ggml_add(ctx0, tmp, up_b); |
718 | 0 | cb(tmp, "ffn_up_b", il); |
719 | 0 | } |
720 | |
|
721 | 0 | if (up_s) { |
722 | 0 | tmp = ggml_mul(ctx0, tmp, up_s); |
723 | 0 | cb(tmp, "ffn_up_s", il); |
724 | 0 | } |
725 | |
|
726 | 0 | if (gate) { |
727 | 0 | switch (type_gate) { |
728 | 0 | case LLM_FFN_SEQ: |
729 | 0 | { |
730 | 0 | cur = build_lora_mm(gate, tmp); |
731 | 0 | cb(cur, "ffn_gate", il); |
732 | 0 | } break; |
733 | 0 | case LLM_FFN_PAR: |
734 | 0 | { |
735 | 0 | cur = build_lora_mm(gate, cur); |
736 | 0 | cb(cur, "ffn_gate", il); |
737 | 0 | } break; |
738 | 0 | } |
739 | | |
740 | 0 | if (gate_b) { |
741 | 0 | cur = ggml_add(ctx0, cur, gate_b); |
742 | 0 | cb(cur, "ffn_gate_b", il); |
743 | 0 | } |
744 | |
|
745 | 0 | if (gate_s) { |
746 | 0 | cur = ggml_mul(ctx0, cur, gate_s); |
747 | 0 | cb(cur, "ffn_gate_s", il); |
748 | 0 | } |
749 | |
|
750 | 0 | } else { |
751 | 0 | cur = tmp; |
752 | 0 | } |
753 | | |
754 | 0 | switch (type_op) { |
755 | 0 | case LLM_FFN_SILU: |
756 | 0 | if (gate && type_gate == LLM_FFN_PAR) { |
757 | 0 | cur = ggml_swiglu_split(ctx0, cur, tmp); |
758 | 0 | cb(cur, "ffn_swiglu", il); |
759 | 0 | type_gate = LLM_FFN_SEQ; |
760 | 0 | } else { |
761 | 0 | cur = ggml_silu(ctx0, cur); |
762 | 0 | cb(cur, "ffn_silu", il); |
763 | 0 | } break; |
764 | 0 | case LLM_FFN_GELU: |
765 | 0 | if (gate && type_gate == LLM_FFN_PAR) { |
766 | 0 | cur = ggml_geglu_split(ctx0, cur, tmp); |
767 | 0 | cb(cur, "ffn_geglu", il); |
768 | 0 | type_gate = LLM_FFN_SEQ; |
769 | 0 | } else { |
770 | 0 | cur = ggml_gelu(ctx0, cur); |
771 | 0 | cb(cur, "ffn_gelu", il); |
772 | 0 | if (act_scales != NULL) { |
773 | 0 | cur = ggml_div(ctx0, cur, act_scales); |
774 | 0 | cb(cur, "ffn_act", il); |
775 | 0 | } |
776 | 0 | } break; |
777 | 0 | case LLM_FFN_RELU: |
778 | 0 | if (gate && type_gate == LLM_FFN_PAR) { |
779 | 0 | cur = ggml_reglu_split(ctx0, cur, tmp); |
780 | 0 | cb(cur, "ffn_reglu", il); |
781 | 0 | type_gate = LLM_FFN_SEQ; |
782 | 0 | } else { |
783 | 0 | cur = ggml_relu(ctx0, cur); |
784 | 0 | cb(cur, "ffn_relu", il); |
785 | 0 | } break; |
786 | 0 | case LLM_FFN_RELU_SQR: |
787 | 0 | { |
788 | 0 | cur = ggml_relu(ctx0, cur); |
789 | 0 | cb(cur, "ffn_relu", il); |
790 | |
|
791 | 0 | cur = ggml_sqr(ctx0, cur); |
792 | 0 | cb(cur, "ffn_sqr(relu)", il); |
793 | 0 | } break; |
794 | 0 | case LLM_FFN_SWIGLU: |
795 | 0 | { |
796 | 0 | cur = ggml_swiglu(ctx0, cur); |
797 | 0 | cb(cur, "ffn_swiglu", il); |
798 | 0 | } break; |
799 | 0 | case LLM_FFN_GEGLU: |
800 | 0 | { |
801 | 0 | cur = ggml_geglu(ctx0, cur); |
802 | 0 | cb(cur, "ffn_geglu", il); |
803 | 0 | } break; |
804 | 0 | case LLM_FFN_REGLU: |
805 | 0 | { |
806 | 0 | cur = ggml_reglu(ctx0, cur); |
807 | 0 | cb(cur, "ffn_reglu", il); |
808 | 0 | } break; |
809 | 0 | default: |
810 | 0 | GGML_ABORT("fatal error"); |
811 | 0 | } |
812 | | |
813 | | //expand here so that we can fuse ffn gate |
814 | 0 | ggml_build_forward_expand(gf, cur); |
815 | |
|
816 | 0 | if (gate && type_gate == LLM_FFN_PAR) { |
817 | 0 | cur = ggml_mul(ctx0, cur, tmp); |
818 | 0 | cb(cur, "ffn_gate_par", il); |
819 | 0 | } |
820 | |
|
821 | 0 | if (down) { |
822 | 0 | cur = build_lora_mm(down, cur); |
823 | 0 | if (arch == LLM_ARCH_GLM4 || arch == LLM_ARCH_GLM4_MOE) { |
824 | | // GLM4 and GLM4_MOE seem to have numerical issues with half-precision accumulators |
825 | 0 | ggml_mul_mat_set_prec(cur, GGML_PREC_F32); |
826 | 0 | } |
827 | 0 | } |
828 | |
|
829 | 0 | if (down_b) { |
830 | 0 | cb(cur, "ffn_down", il); |
831 | 0 | } |
832 | |
|
833 | 0 | if (down_b) { |
834 | 0 | cur = ggml_add(ctx0, cur, down_b); |
835 | 0 | } |
836 | |
|
837 | 0 | if (down_s) { |
838 | 0 | cur = ggml_mul(ctx0, cur, down_s); |
839 | 0 | cb(cur, "ffn_down_s", il); |
840 | 0 | } |
841 | |
|
842 | 0 | return cur; |
843 | 0 | } |
844 | | |
845 | | ggml_tensor * llm_graph_context::build_moe_ffn( |
846 | | ggml_tensor * cur, |
847 | | ggml_tensor * gate_inp, |
848 | | ggml_tensor * up_exps, |
849 | | ggml_tensor * gate_exps, |
850 | | ggml_tensor * down_exps, |
851 | | ggml_tensor * exp_probs_b, |
852 | | int64_t n_expert, |
853 | | int64_t n_expert_used, |
854 | | llm_ffn_op_type type_op, |
855 | | bool norm_w, |
856 | | bool scale_w, |
857 | | float w_scale, |
858 | | llama_expert_gating_func_type gating_op, |
859 | | int il, |
860 | 0 | ggml_tensor * probs_in) const { |
861 | 0 | return build_moe_ffn( |
862 | 0 | cur, |
863 | 0 | gate_inp, /* gate_inp_b */ nullptr, |
864 | 0 | up_exps, /* up_exps_b */ nullptr, |
865 | 0 | gate_exps, /* gate_exps_b */ nullptr, |
866 | 0 | down_exps, /* down_exps_b */ nullptr, |
867 | 0 | exp_probs_b, |
868 | 0 | n_expert, |
869 | 0 | n_expert_used, |
870 | 0 | type_op, |
871 | 0 | norm_w, |
872 | 0 | scale_w, |
873 | 0 | w_scale, |
874 | 0 | gating_op, |
875 | 0 | il, |
876 | 0 | probs_in |
877 | 0 | ); |
878 | 0 | } |
879 | | |
880 | | ggml_tensor * llm_graph_context::build_moe_ffn( |
881 | | ggml_tensor * cur, |
882 | | ggml_tensor * gate_inp, |
883 | | ggml_tensor * gate_inp_b, |
884 | | ggml_tensor * up_exps, |
885 | | ggml_tensor * up_exps_b, |
886 | | ggml_tensor * gate_exps, |
887 | | ggml_tensor * gate_exps_b, |
888 | | ggml_tensor * down_exps, |
889 | | ggml_tensor * down_exps_b, |
890 | | ggml_tensor * exp_probs_b, |
891 | | int64_t n_expert, |
892 | | int64_t n_expert_used, |
893 | | llm_ffn_op_type type_op, |
894 | | bool norm_w, |
895 | | bool scale_w, |
896 | | float w_scale, |
897 | | llama_expert_gating_func_type gating_op, |
898 | | int il, |
899 | 0 | ggml_tensor * probs_in) const { |
900 | 0 | const int64_t n_embd = cur->ne[0]; |
901 | 0 | const int64_t n_tokens = cur->ne[1]; |
902 | 0 | const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN |
903 | |
|
904 | 0 | ggml_tensor * logits = nullptr; |
905 | |
|
906 | 0 | if (probs_in == nullptr) { |
907 | 0 | logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens] |
908 | 0 | cb(logits, "ffn_moe_logits", il); |
909 | 0 | } else { |
910 | 0 | logits = probs_in; |
911 | 0 | } |
912 | |
|
913 | 0 | if (gate_inp_b) { |
914 | 0 | logits = ggml_add(ctx0, logits, gate_inp_b); |
915 | 0 | cb(logits, "ffn_moe_logits_biased", il); |
916 | 0 | } |
917 | |
|
918 | 0 | ggml_tensor * probs = nullptr; |
919 | 0 | switch (gating_op) { |
920 | 0 | case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: |
921 | 0 | { |
922 | 0 | probs = ggml_soft_max(ctx0, logits); // [n_expert, n_tokens] |
923 | 0 | } break; |
924 | 0 | case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: |
925 | 0 | { |
926 | 0 | probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens] |
927 | 0 | } break; |
928 | 0 | case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT: |
929 | 0 | { |
930 | 0 | probs = logits; // [n_expert, n_tokens] |
931 | 0 | } break; |
932 | 0 | default: |
933 | 0 | GGML_ABORT("fatal error"); |
934 | 0 | } |
935 | 0 | cb(probs, "ffn_moe_probs", il); |
936 | | |
937 | | // add experts selection bias - introduced in DeepSeek V3 |
938 | | // leave probs unbiased as it's later used to get expert weights |
939 | 0 | ggml_tensor * selection_probs = probs; |
940 | 0 | if (exp_probs_b != nullptr) { |
941 | 0 | selection_probs = ggml_add(ctx0, probs, exp_probs_b); |
942 | 0 | cb(selection_probs, "ffn_moe_probs_biased", il); |
943 | 0 | } |
944 | | |
945 | | // llama4 doesn't have exp_probs_b, and sigmoid is only used after top_k |
946 | | // see: https://github.com/meta-llama/llama-models/blob/699a02993512fb36936b1b0741e13c06790bcf98/models/llama4/moe.py#L183-L198 |
947 | 0 | if (arch == LLM_ARCH_LLAMA4) { |
948 | 0 | selection_probs = logits; |
949 | 0 | } |
950 | |
|
951 | 0 | if (arch == LLM_ARCH_GROVEMOE) { |
952 | 0 | selection_probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens] |
953 | 0 | cb(selection_probs, "ffn_moe_probs_biased", il); |
954 | 0 | } |
955 | | |
956 | | // select top n_group_used expert groups |
957 | | // https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/e815299b0bcbac849fa540c768ef21845365c9eb/modeling_deepseek.py#L440-L457 |
958 | 0 | if (hparams.n_expert_groups > 1 && n_tokens > 0) { |
959 | 0 | const int64_t n_exp_per_group = n_expert / hparams.n_expert_groups; |
960 | | |
961 | | // organize experts into n_expert_groups |
962 | 0 | ggml_tensor * selection_groups = ggml_reshape_3d(ctx0, selection_probs, n_exp_per_group, hparams.n_expert_groups, n_tokens); // [n_exp_per_group, n_expert_groups, n_tokens] |
963 | |
|
964 | 0 | ggml_tensor * group_scores = ggml_top_k(ctx0, selection_groups, 2); // [2, n_expert_groups, n_tokens] |
965 | 0 | group_scores = ggml_get_rows(ctx0, ggml_reshape_4d(ctx0, selection_groups, 1, selection_groups->ne[0], selection_groups->ne[1], selection_groups->ne[2]), group_scores); // [1, 2, n_expert_groups, n_tokens] |
966 | | |
967 | | // get top n_group_used expert groups |
968 | 0 | group_scores = ggml_sum_rows(ctx0, ggml_reshape_3d(ctx0, group_scores, group_scores->ne[1], group_scores->ne[2], group_scores->ne[3])); // [1, n_expert_groups, n_tokens] |
969 | 0 | group_scores = ggml_reshape_2d(ctx0, group_scores, group_scores->ne[1], group_scores->ne[2]); // [n_expert_groups, n_tokens] |
970 | |
|
971 | 0 | ggml_tensor * expert_groups = ggml_top_k(ctx0, group_scores, hparams.n_group_used); // [n_group_used, n_tokens] |
972 | 0 | cb(expert_groups, "ffn_moe_group_topk", il); |
973 | | |
974 | | // mask out the other groups |
975 | 0 | selection_probs = ggml_get_rows(ctx0, selection_groups, expert_groups); // [n_exp_per_group, n_group_used, n_tokens] |
976 | 0 | selection_probs = ggml_set_rows(ctx0, ggml_scale_bias(ctx0, selection_groups, 0.0f, -INFINITY), selection_probs, expert_groups); // [n_exp_per_group, n_expert_groups, n_tokens] |
977 | 0 | selection_probs = ggml_reshape_2d(ctx0, selection_probs, n_expert, n_tokens); // [n_expert, n_tokens] |
978 | 0 | cb(selection_probs, "ffn_moe_probs_masked", il); |
979 | 0 | } |
980 | | |
981 | | // select experts |
982 | 0 | ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens] |
983 | 0 | cb(selected_experts->src[0], "ffn_moe_argsort", il); |
984 | 0 | cb(selected_experts, "ffn_moe_topk", il); |
985 | |
|
986 | 0 | if (arch == LLM_ARCH_GROVEMOE && n_expert != hparams.n_expert) { |
987 | | // TODO: Use scalar div instead when/if implemented |
988 | 0 | ggml_tensor * f_sel = ggml_cast(ctx0, selected_experts, GGML_TYPE_F32); |
989 | 0 | selected_experts = ggml_cast(ctx0, ggml_scale(ctx0, f_sel, 1.0f / float(hparams.n_group_experts)), GGML_TYPE_I32); |
990 | 0 | probs = ggml_reshape_3d(ctx0, probs, 1, hparams.n_expert, n_tokens); |
991 | 0 | } else { |
992 | 0 | probs = ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens); |
993 | 0 | } |
994 | |
|
995 | 0 | ggml_tensor * weights = ggml_get_rows(ctx0, probs, selected_experts); // [1, n_expert_used, n_tokens] |
996 | 0 | cb(weights, "ffn_moe_weights", il); |
997 | | |
998 | |
|
999 | 0 | if (gating_op == LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT) { |
1000 | 0 | weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); |
1001 | 0 | weights = ggml_soft_max(ctx0, weights); // [n_expert_used, n_tokens] |
1002 | 0 | weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens); |
1003 | 0 | cb(weights, "ffn_moe_weights_softmax", il); |
1004 | 0 | } |
1005 | |
|
1006 | 0 | if (norm_w) { |
1007 | 0 | weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); |
1008 | |
|
1009 | 0 | ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens] |
1010 | 0 | cb(weights_sum, "ffn_moe_weights_sum", il); |
1011 | | |
1012 | | // Avoid division by zero, clamp to smallest number representable by F16 |
1013 | 0 | weights_sum = ggml_clamp(ctx0, weights_sum, 6.103515625e-5, INFINITY); |
1014 | 0 | cb(weights_sum, "ffn_moe_weights_sum_clamped", il); |
1015 | |
|
1016 | 0 | weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens] |
1017 | 0 | cb(weights, "ffn_moe_weights_norm", il); |
1018 | |
|
1019 | 0 | weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens); |
1020 | 0 | } |
1021 | 0 | if (scale_w) { |
1022 | 0 | weights = ggml_scale(ctx0, weights, w_scale); |
1023 | 0 | cb(weights, "ffn_moe_weights_scaled", il); |
1024 | 0 | } |
1025 | | |
1026 | | //call early so that topk-moe can be used |
1027 | 0 | ggml_build_forward_expand(gf, weights); |
1028 | |
|
1029 | 0 | cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens); |
1030 | |
|
1031 | 0 | if (weight_before_ffn) { |
1032 | | // repeat cur to [n_embd, n_expert_used, n_tokens] |
1033 | 0 | ggml_tensor * repeated = ggml_repeat_4d(ctx0, cur, n_embd, n_expert_used, n_tokens, 1); |
1034 | 0 | cur = ggml_mul(ctx0, repeated, weights); |
1035 | 0 | cb(cur, "ffn_moe_weighted", il); |
1036 | 0 | } |
1037 | |
|
1038 | 0 | ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens] |
1039 | 0 | cb(up, "ffn_moe_up", il); |
1040 | |
|
1041 | 0 | if (up_exps_b) { |
1042 | 0 | up = ggml_add_id(ctx0, up, up_exps_b, selected_experts); |
1043 | 0 | cb(up, "ffn_moe_up_biased", il); |
1044 | 0 | } |
1045 | |
|
1046 | 0 | ggml_tensor * experts = nullptr; |
1047 | 0 | if (gate_exps) { |
1048 | 0 | cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens] |
1049 | 0 | cb(cur, "ffn_moe_gate", il); |
1050 | 0 | } else { |
1051 | 0 | cur = up; |
1052 | 0 | } |
1053 | |
|
1054 | 0 | if (gate_exps_b) { |
1055 | 0 | cur = ggml_add_id(ctx0, cur, gate_exps_b, selected_experts); |
1056 | 0 | cb(cur, "ffn_moe_gate_biased", il); |
1057 | 0 | } |
1058 | |
|
1059 | 0 | switch (type_op) { |
1060 | 0 | case LLM_FFN_SILU: |
1061 | 0 | if (gate_exps) { |
1062 | 0 | cur = ggml_swiglu_split(ctx0, cur, up); |
1063 | 0 | cb(cur, "ffn_moe_swiglu", il); |
1064 | 0 | } else { |
1065 | 0 | cur = ggml_silu(ctx0, cur); |
1066 | 0 | cb(cur, "ffn_moe_silu", il); |
1067 | 0 | } break; |
1068 | 0 | case LLM_FFN_GELU: |
1069 | 0 | if (gate_exps) { |
1070 | 0 | cur = ggml_geglu_split(ctx0, cur, up); |
1071 | 0 | cb(cur, "ffn_moe_geglu", il); |
1072 | 0 | } else { |
1073 | 0 | cur = ggml_gelu(ctx0, cur); |
1074 | 0 | cb(cur, "ffn_moe_gelu", il); |
1075 | 0 | } break; |
1076 | 0 | case LLM_FFN_SWIGLU_OAI_MOE: |
1077 | 0 | { |
1078 | | // TODO: move to hparams? |
1079 | 0 | constexpr float alpha = 1.702f; |
1080 | 0 | constexpr float limit = 7.0f; |
1081 | 0 | cur = ggml_swiglu_oai(ctx0, cur, up, alpha, limit); |
1082 | 0 | cb(cur, "ffn_moe_swiglu_oai", il); |
1083 | 0 | } break; |
1084 | 0 | case LLM_FFN_RELU: |
1085 | 0 | if (gate_exps) { |
1086 | 0 | cur = ggml_reglu_split(ctx0, cur, up); |
1087 | 0 | cb(cur, "ffn_moe_reglu", il); |
1088 | 0 | } else { |
1089 | 0 | cur = ggml_relu(ctx0, cur); |
1090 | 0 | cb(cur, "ffn_moe_relu", il); |
1091 | 0 | } break; |
1092 | 0 | default: |
1093 | 0 | GGML_ABORT("fatal error"); |
1094 | 0 | } |
1095 | | |
1096 | | //expand here so that we can fuse ffn gate |
1097 | 0 | ggml_build_forward_expand(gf, cur); |
1098 | |
|
1099 | 0 | experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens] |
1100 | 0 | cb(experts, "ffn_moe_down", il); |
1101 | |
|
1102 | 0 | if (down_exps_b) { |
1103 | 0 | experts = ggml_add_id(ctx0, experts, down_exps_b, selected_experts); |
1104 | 0 | cb(experts, "ffn_moe_down_biased", il); |
1105 | 0 | } |
1106 | |
|
1107 | 0 | if (!weight_before_ffn) { |
1108 | 0 | experts = ggml_mul(ctx0, experts, weights); |
1109 | 0 | cb(cur, "ffn_moe_weighted", il); |
1110 | 0 | } |
1111 | |
|
1112 | 0 | ggml_tensor * cur_experts[LLAMA_MAX_EXPERTS] = { nullptr }; |
1113 | |
|
1114 | 0 | assert(n_expert_used > 0); |
1115 | | |
1116 | | // order the views before the adds |
1117 | 0 | for (uint32_t i = 0; i < hparams.n_expert_used; ++i) { |
1118 | 0 | cur_experts[i] = ggml_view_2d(ctx0, experts, n_embd, n_tokens, experts->nb[2], i*experts->nb[1]); |
1119 | |
|
1120 | 0 | ggml_build_forward_expand(gf, cur_experts[i]); |
1121 | 0 | } |
1122 | | |
1123 | | // aggregate experts |
1124 | | // note: here we explicitly use hparams.n_expert_used instead of n_expert_used |
1125 | | // to avoid potentially a large number of add nodes during warmup |
1126 | | // ref: https://github.com/ggml-org/llama.cpp/pull/14753 |
1127 | 0 | ggml_tensor * moe_out = cur_experts[0]; |
1128 | |
|
1129 | 0 | for (uint32_t i = 1; i < hparams.n_expert_used; ++i) { |
1130 | 0 | moe_out = ggml_add(ctx0, moe_out, cur_experts[i]); |
1131 | 0 | } |
1132 | |
|
1133 | 0 | if (hparams.n_expert_used == 1) { |
1134 | | // avoid returning a non-contiguous tensor |
1135 | 0 | moe_out = ggml_cont(ctx0, moe_out); |
1136 | 0 | } |
1137 | |
|
1138 | 0 | cb(moe_out, "ffn_moe_out", il); |
1139 | |
|
1140 | 0 | return moe_out; |
1141 | 0 | } |
1142 | | |
1143 | | // input embeddings with optional lora |
1144 | 0 | ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const { |
1145 | 0 | const int64_t n_embd = hparams.n_embd_inp(); |
1146 | |
|
1147 | 0 | auto inp = std::make_unique<llm_graph_input_embd>(); |
1148 | |
|
1149 | 0 | ggml_tensor * cur = nullptr; |
1150 | |
|
1151 | 0 | if (ubatch.token) { |
1152 | 0 | inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens); |
1153 | | //cb(inp->tokens, "inp_tokens", -1); |
1154 | 0 | ggml_set_input(inp->tokens); |
1155 | 0 | res->t_tokens = inp->tokens; |
1156 | |
|
1157 | 0 | cur = ggml_get_rows(ctx0, tok_embd, inp->tokens); |
1158 | | |
1159 | | // apply lora for embedding tokens if needed |
1160 | 0 | for (const auto & lora : *loras) { |
1161 | 0 | llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd); |
1162 | 0 | if (lw == nullptr) { |
1163 | 0 | continue; |
1164 | 0 | } |
1165 | | |
1166 | 0 | const float adapter_scale = lora.second; |
1167 | 0 | const float scale = lw->get_scale(lora.first->alpha, adapter_scale); |
1168 | |
|
1169 | 0 | ggml_tensor * inpL_delta = ggml_scale(ctx0, ggml_mul_mat( |
1170 | 0 | ctx0, lw->b, // non-transposed lora_b |
1171 | 0 | ggml_get_rows(ctx0, lw->a, inp->tokens) |
1172 | 0 | ), scale); |
1173 | |
|
1174 | 0 | cur = ggml_add(ctx0, cur, inpL_delta); |
1175 | 0 | } |
1176 | 0 | } else { |
1177 | 0 | inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens); |
1178 | 0 | ggml_set_input(inp->embd); |
1179 | |
|
1180 | 0 | cur = inp->embd; |
1181 | 0 | } |
1182 | | |
1183 | | // For Granite architecture |
1184 | 0 | if (hparams.f_embedding_scale != 0.0f) { |
1185 | 0 | cur = ggml_scale(ctx0, cur, hparams.f_embedding_scale); |
1186 | 0 | } |
1187 | |
|
1188 | 0 | cb(cur, "inp_embd", -1); |
1189 | |
|
1190 | 0 | res->add_input(std::move(inp)); |
1191 | |
|
1192 | 0 | return cur; |
1193 | 0 | } |
1194 | | |
1195 | 0 | ggml_tensor * llm_graph_context::build_inp_pos() const { |
1196 | 0 | auto inp = std::make_unique<llm_graph_input_pos>(hparams.n_pos_per_embd()); |
1197 | |
|
1198 | 0 | auto & cur = inp->pos; |
1199 | |
|
1200 | 0 | cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, (int64_t)n_tokens*hparams.n_pos_per_embd()); |
1201 | 0 | ggml_set_input(cur); |
1202 | |
|
1203 | 0 | res->add_input(std::move(inp)); |
1204 | |
|
1205 | 0 | return cur; |
1206 | 0 | } |
1207 | | |
1208 | 0 | ggml_tensor * llm_graph_context::build_inp_attn_scale() const { |
1209 | 0 | auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale); |
1210 | |
|
1211 | 0 | auto & cur = inp->attn_scale; |
1212 | | |
1213 | | // this need to be 1x1xN for broadcasting |
1214 | 0 | cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens); |
1215 | 0 | ggml_set_input(cur); |
1216 | |
|
1217 | 0 | res->add_input(std::move(inp)); |
1218 | |
|
1219 | 0 | return cur; |
1220 | 0 | } |
1221 | | |
1222 | 0 | ggml_tensor * llm_graph_context::build_inp_out_ids() const { |
1223 | | // note: when all tokens are output, we could skip this optimization to spare the ggml_get_rows() calls, |
1224 | | // but this would make the graph topology depend on the number of output tokens, which can interere with |
1225 | | // features that require constant topology such as pipline parallelism |
1226 | | // ref: https://github.com/ggml-org/llama.cpp/pull/14275#issuecomment-2987424471 |
1227 | | //if (n_outputs < n_tokens) { |
1228 | | // return nullptr; |
1229 | | //} |
1230 | |
|
1231 | 0 | auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs); |
1232 | |
|
1233 | 0 | auto & cur = inp->out_ids; |
1234 | |
|
1235 | 0 | cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs); |
1236 | 0 | ggml_set_input(cur); |
1237 | |
|
1238 | 0 | res->add_input(std::move(inp)); |
1239 | |
|
1240 | 0 | return cur; |
1241 | 0 | } |
1242 | | |
1243 | 0 | ggml_tensor * llm_graph_context::build_inp_mean() const { |
1244 | 0 | auto inp = std::make_unique<llm_graph_input_mean>(cparams); |
1245 | |
|
1246 | 0 | auto & cur = inp->mean; |
1247 | |
|
1248 | 0 | cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, ubatch.n_seqs_unq); |
1249 | 0 | ggml_set_input(cur); |
1250 | |
|
1251 | 0 | res->add_input(std::move(inp)); |
1252 | |
|
1253 | 0 | return cur; |
1254 | 0 | } |
1255 | | |
1256 | 0 | ggml_tensor * llm_graph_context::build_inp_cls() const { |
1257 | 0 | auto inp = std::make_unique<llm_graph_input_cls>(cparams, arch); |
1258 | |
|
1259 | 0 | auto & cur = inp->cls; |
1260 | |
|
1261 | 0 | cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_seqs_unq); |
1262 | 0 | ggml_set_input(cur); |
1263 | |
|
1264 | 0 | res->add_input(std::move(inp)); |
1265 | |
|
1266 | 0 | return cur; |
1267 | 0 | } |
1268 | | |
1269 | 0 | ggml_tensor * llm_graph_context::build_inp_cross_embd() const { |
1270 | 0 | auto inp = std::make_unique<llm_graph_input_cross_embd>(cross); |
1271 | |
|
1272 | 0 | auto & cur = inp->cross_embd; |
1273 | | |
1274 | | // if we have the output embeddings from the encoder, use them directly |
1275 | | // TODO: needs more work to be correct, for now just use the tensor shape |
1276 | | //if (cross->t_embd) { |
1277 | | // cur = ggml_view_tensor(ctx0, cross->t_embd); |
1278 | | |
1279 | | // return cur; |
1280 | | //} |
1281 | |
|
1282 | 0 | const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd_inp(); |
1283 | 0 | const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train; |
1284 | |
|
1285 | 0 | cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc); |
1286 | 0 | ggml_set_input(cur); |
1287 | |
|
1288 | 0 | res->add_input(std::move(inp)); |
1289 | |
|
1290 | 0 | return cur; |
1291 | 0 | } |
1292 | | |
1293 | 0 | ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const { |
1294 | 0 | auto inp = std::make_unique<llm_graph_input_pos_bucket>(hparams); |
1295 | |
|
1296 | 0 | auto & cur = inp->pos_bucket; |
1297 | |
|
1298 | 0 | cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens); |
1299 | 0 | ggml_set_input(cur); |
1300 | |
|
1301 | 0 | res->add_input(std::move(inp)); |
1302 | |
|
1303 | 0 | return cur; |
1304 | 0 | } |
1305 | | |
1306 | 0 | ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const { |
1307 | 0 | const auto * mctx_cur = static_cast<const llama_kv_cache_context *>(mctx); |
1308 | |
|
1309 | 0 | auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, mctx_cur); |
1310 | |
|
1311 | 0 | const auto n_kv = mctx_cur->get_n_kv(); |
1312 | |
|
1313 | 0 | auto & cur = inp->pos_bucket; |
1314 | |
|
1315 | 0 | cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens); |
1316 | 0 | ggml_set_input(cur); |
1317 | |
|
1318 | 0 | res->add_input(std::move(inp)); |
1319 | |
|
1320 | 0 | return cur; |
1321 | 0 | } |
1322 | | |
1323 | 0 | ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const { |
1324 | 0 | ggml_tensor * pos_bucket_1d = ggml_reshape_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1]); |
1325 | 0 | cb(pos_bucket_1d, "pos_bucket_1d", -1); |
1326 | |
|
1327 | 0 | ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d); |
1328 | |
|
1329 | 0 | pos_bias = ggml_reshape_3d(ctx0, pos_bias, pos_bias->ne[0], pos_bucket->ne[0], pos_bucket->ne[1]); |
1330 | 0 | pos_bias = ggml_permute (ctx0, pos_bias, 2, 0, 1, 3); |
1331 | 0 | pos_bias = ggml_cont (ctx0, pos_bias); |
1332 | |
|
1333 | 0 | cb(pos_bias, "pos_bias", -1); |
1334 | |
|
1335 | 0 | return pos_bias; |
1336 | 0 | } |
1337 | | |
1338 | | ggml_tensor * llm_graph_context::build_attn_mha( |
1339 | | ggml_tensor * q, |
1340 | | ggml_tensor * k, |
1341 | | ggml_tensor * v, |
1342 | | ggml_tensor * kq_b, |
1343 | | ggml_tensor * kq_mask, |
1344 | | ggml_tensor * sinks, |
1345 | | ggml_tensor * v_mla, |
1346 | | float kq_scale, |
1347 | 0 | int il) const { |
1348 | 0 | const bool v_trans = v->nb[1] > v->nb[2]; |
1349 | | |
1350 | | // split the batch into streams if needed |
1351 | 0 | const auto n_stream = k->ne[3]; |
1352 | |
|
1353 | 0 | q = ggml_view_4d(ctx0, q, q->ne[0], q->ne[1], q->ne[2]/n_stream, n_stream, q->nb[1], q->nb[2], q->nb[3]/n_stream, 0); |
1354 | |
|
1355 | 0 | q = ggml_permute(ctx0, q, 0, 2, 1, 3); |
1356 | 0 | k = ggml_permute(ctx0, k, 0, 2, 1, 3); |
1357 | 0 | v = ggml_permute(ctx0, v, 0, 2, 1, 3); |
1358 | |
|
1359 | 0 | ggml_tensor * cur; |
1360 | |
|
1361 | 0 | if (cparams.flash_attn && kq_b == nullptr) { |
1362 | 0 | GGML_ASSERT(kq_b == nullptr && "Flash attention does not support KQ bias yet"); |
1363 | |
|
1364 | 0 | if (v_trans) { |
1365 | 0 | v = ggml_transpose(ctx0, v); |
1366 | 0 | } |
1367 | | |
1368 | | // this can happen when KV cache is not used (e.g. an embedding model with non-causal attn) |
1369 | 0 | if (k->type == GGML_TYPE_F32) { |
1370 | 0 | k = ggml_cast(ctx0, k, GGML_TYPE_F16); |
1371 | 0 | } |
1372 | |
|
1373 | 0 | if (v->type == GGML_TYPE_F32) { |
1374 | 0 | v = ggml_cast(ctx0, v, GGML_TYPE_F16); |
1375 | 0 | } |
1376 | |
|
1377 | 0 | cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias, |
1378 | 0 | hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f); |
1379 | 0 | cb(cur, LLAMA_TENSOR_NAME_FATTN, il); |
1380 | |
|
1381 | 0 | ggml_flash_attn_ext_add_sinks(cur, sinks); |
1382 | 0 | ggml_flash_attn_ext_set_prec (cur, GGML_PREC_F32); |
1383 | |
|
1384 | 0 | if (v_mla) { |
1385 | | #if 0 |
1386 | | // v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens. |
1387 | | // However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient. |
1388 | | cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens); |
1389 | | cur = ggml_mul_mat(ctx0, v_mla, cur); |
1390 | | #else |
1391 | | // It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1. |
1392 | | // The permutations are noops and only change how the tensor data is interpreted. |
1393 | 0 | cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); |
1394 | 0 | cur = ggml_mul_mat(ctx0, v_mla, cur); |
1395 | 0 | cb(cur, "fattn_mla", il); |
1396 | 0 | cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); |
1397 | 0 | cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs. |
1398 | 0 | #endif |
1399 | 0 | } |
1400 | |
|
1401 | 0 | cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]); |
1402 | 0 | } else { |
1403 | 0 | ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); |
1404 | 0 | cb(kq, "kq", il); |
1405 | | |
1406 | | // note: this op tends to require high floating point range |
1407 | | // while for some models F16 is enough, for others it is not, so we default to F32 here |
1408 | 0 | ggml_mul_mat_set_prec(kq, GGML_PREC_F32); |
1409 | |
|
1410 | 0 | if (arch == LLM_ARCH_GROK) { |
1411 | | // need to do the following: |
1412 | | // multiply by attn_output_multiplier |
1413 | | // and then : |
1414 | | // kq = 30 * tanh(kq / 30) |
1415 | | // before the softmax below |
1416 | |
|
1417 | 0 | kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, hparams.f_attn_out_scale / hparams.f_attn_logit_softcapping)); |
1418 | 0 | cb(kq, "kq_tanh", il); |
1419 | 0 | kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping); |
1420 | 0 | cb(kq, "kq_scaled", il); |
1421 | 0 | } |
1422 | |
|
1423 | 0 | if (hparams.attn_soft_cap) { |
1424 | 0 | kq = ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping); |
1425 | 0 | cb(kq, "kq_scaled_1", il); |
1426 | 0 | kq = ggml_tanh (ctx0, kq); |
1427 | 0 | cb(kq, "kq_tanh", il); |
1428 | 0 | kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping); |
1429 | 0 | cb(kq, "kq_scaled_2", il); |
1430 | 0 | } |
1431 | |
|
1432 | 0 | if (kq_b) { |
1433 | 0 | kq = ggml_add(ctx0, kq, kq_b); |
1434 | 0 | cb(kq, "kq_plus_kq_b", il); |
1435 | 0 | } |
1436 | |
|
1437 | 0 | kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias); |
1438 | 0 | ggml_soft_max_add_sinks(kq, sinks); |
1439 | 0 | cb(kq, "kq_soft_max", il); |
1440 | |
|
1441 | 0 | if (!v_trans) { |
1442 | | // note: avoid this branch |
1443 | 0 | v = ggml_cont(ctx0, ggml_transpose(ctx0, v)); |
1444 | 0 | cb(v, "v_cont", il); |
1445 | 0 | } |
1446 | |
|
1447 | 0 | ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq); |
1448 | 0 | cb(kqv, "kqv", il); |
1449 | | |
1450 | | // for MLA with the absorption optimization, we need to "decompress" from MQA back to MHA |
1451 | 0 | if (v_mla) { |
1452 | 0 | kqv = ggml_mul_mat(ctx0, v_mla, kqv); |
1453 | 0 | cb(kqv, "kqv_mla", il); |
1454 | 0 | } |
1455 | |
|
1456 | 0 | cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3); |
1457 | | |
1458 | | // recombine streams |
1459 | 0 | cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]); |
1460 | |
|
1461 | 0 | if (!cparams.offload_kqv) { |
1462 | | // all nodes between the KV store and the attention output are run on the CPU |
1463 | 0 | ggml_backend_sched_set_tensor_backend(sched, cur, backend_cpu); |
1464 | 0 | } |
1465 | 0 | } |
1466 | |
|
1467 | 0 | ggml_build_forward_expand(gf, cur); |
1468 | |
|
1469 | 0 | return cur; |
1470 | 0 | } |
1471 | | |
1472 | 0 | llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() const { |
1473 | 0 | auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams); |
1474 | | |
1475 | | // note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch |
1476 | 0 | inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1); |
1477 | 0 | ggml_set_input(inp->self_kq_mask); |
1478 | |
|
1479 | 0 | inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask; |
1480 | |
|
1481 | 0 | if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) { |
1482 | 0 | inp->self_kq_mask_swa = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1); |
1483 | 0 | ggml_set_input(inp->self_kq_mask_swa); |
1484 | |
|
1485 | 0 | inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa; |
1486 | 0 | } else { |
1487 | 0 | inp->self_kq_mask_swa = nullptr; |
1488 | 0 | inp->self_kq_mask_swa_cnv = nullptr; |
1489 | 0 | } |
1490 | |
|
1491 | 0 | return (llm_graph_input_attn_no_cache *) res->add_input(std::move(inp)); |
1492 | 0 | } |
1493 | | |
1494 | | ggml_tensor * llm_graph_context::build_attn( |
1495 | | llm_graph_input_attn_no_cache * inp, |
1496 | | ggml_tensor * wo, |
1497 | | ggml_tensor * wo_b, |
1498 | | ggml_tensor * q_cur, |
1499 | | ggml_tensor * k_cur, |
1500 | | ggml_tensor * v_cur, |
1501 | | ggml_tensor * kq_b, |
1502 | | ggml_tensor * sinks, |
1503 | | ggml_tensor * v_mla, |
1504 | | float kq_scale, |
1505 | 0 | int il) const { |
1506 | 0 | GGML_UNUSED(n_tokens); |
1507 | | |
1508 | | // these nodes are added to the graph together so that they are not reordered |
1509 | | // by doing so, the number of splits in the graph is reduced |
1510 | 0 | ggml_build_forward_expand(gf, q_cur); |
1511 | 0 | ggml_build_forward_expand(gf, k_cur); |
1512 | 0 | ggml_build_forward_expand(gf, v_cur); |
1513 | |
|
1514 | 0 | const bool is_swa = hparams.is_swa(il); |
1515 | |
|
1516 | 0 | const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask(); |
1517 | | |
1518 | | // [TAG_NO_CACHE_PAD] |
1519 | | // TODO: if ubatch.equal_seqs() == true, we can split the three tensors below into ubatch.n_seqs_unq streams |
1520 | | // but it might not be worth it: https://github.com/ggml-org/llama.cpp/pull/15636 |
1521 | | //assert(!ubatch.equal_seqs() || (k_cur->ne[3] == 1 && k_cur->ne[3] == ubatch.n_seqs_unq)); |
1522 | |
|
1523 | 0 | ggml_tensor * q = q_cur; |
1524 | 0 | ggml_tensor * k = k_cur; |
1525 | 0 | ggml_tensor * v = v_cur; |
1526 | |
|
1527 | 0 | ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il); |
1528 | 0 | cb(cur, "kqv_out", il); |
1529 | |
|
1530 | 0 | if (wo) { |
1531 | 0 | cur = build_lora_mm(wo, cur); |
1532 | 0 | } |
1533 | |
|
1534 | 0 | if (wo_b) { |
1535 | | //cb(cur, "kqv_wo", il); |
1536 | 0 | } |
1537 | |
|
1538 | 0 | if (wo_b) { |
1539 | 0 | cur = ggml_add(ctx0, cur, wo_b); |
1540 | 0 | } |
1541 | |
|
1542 | 0 | return cur; |
1543 | 0 | } |
1544 | | |
1545 | | static std::unique_ptr<llm_graph_input_attn_kv> build_attn_inp_kv_impl( |
1546 | | ggml_context * ctx0, |
1547 | | const llama_ubatch & ubatch, |
1548 | | const llama_hparams & hparams, |
1549 | | const llama_cparams & cparams, |
1550 | 0 | const llama_kv_cache_context * mctx_cur) { |
1551 | |
|
1552 | 0 | auto inp = std::make_unique<llm_graph_input_attn_kv>(hparams, cparams, mctx_cur); |
1553 | |
|
1554 | 0 | { |
1555 | 0 | GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_iswa for SWA"); |
1556 | |
|
1557 | 0 | const auto n_kv = mctx_cur->get_n_kv(); |
1558 | 0 | const auto n_tokens = ubatch.n_tokens; |
1559 | 0 | const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq; |
1560 | |
|
1561 | 0 | inp->self_k_idxs = mctx_cur->build_input_k_idxs(ctx0, ubatch); |
1562 | 0 | inp->self_v_idxs = mctx_cur->build_input_v_idxs(ctx0, ubatch); |
1563 | |
|
1564 | 0 | inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream); |
1565 | 0 | ggml_set_input(inp->self_kq_mask); |
1566 | |
|
1567 | 0 | inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask; |
1568 | 0 | } |
1569 | |
|
1570 | 0 | return inp; |
1571 | 0 | } |
1572 | | |
1573 | 0 | llm_graph_input_attn_kv * llm_graph_context::build_attn_inp_kv() const { |
1574 | 0 | const auto * mctx_cur = static_cast<const llama_kv_cache_context *>(mctx); |
1575 | |
|
1576 | 0 | auto inp = build_attn_inp_kv_impl(ctx0, ubatch, hparams, cparams, mctx_cur); |
1577 | |
|
1578 | 0 | return (llm_graph_input_attn_kv *) res->add_input(std::move(inp)); |
1579 | 0 | } |
1580 | | |
1581 | | ggml_tensor * llm_graph_context::build_attn( |
1582 | | llm_graph_input_attn_kv * inp, |
1583 | | ggml_tensor * wo, |
1584 | | ggml_tensor * wo_b, |
1585 | | ggml_tensor * q_cur, |
1586 | | ggml_tensor * k_cur, |
1587 | | ggml_tensor * v_cur, |
1588 | | ggml_tensor * kq_b, |
1589 | | ggml_tensor * sinks, |
1590 | | ggml_tensor * v_mla, |
1591 | | float kq_scale, |
1592 | 0 | int il) const { |
1593 | | // these nodes are added to the graph together so that they are not reordered |
1594 | | // by doing so, the number of splits in the graph is reduced |
1595 | | // expand k later to enable rope fusion which directly writes into k-v cache |
1596 | 0 | ggml_build_forward_expand(gf, q_cur); |
1597 | 0 | ggml_build_forward_expand(gf, v_cur); |
1598 | 0 | ggml_build_forward_expand(gf, k_cur); |
1599 | |
|
1600 | 0 | const auto * mctx_cur = inp->mctx; |
1601 | | |
1602 | | // store to KV cache |
1603 | 0 | { |
1604 | 0 | const auto & k_idxs = inp->get_k_idxs(); |
1605 | 0 | const auto & v_idxs = inp->get_v_idxs(); |
1606 | |
|
1607 | 0 | ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, k_idxs, il)); |
1608 | 0 | ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, v_idxs, il)); |
1609 | 0 | } |
1610 | |
|
1611 | 0 | const auto & kq_mask = inp->get_kq_mask(); |
1612 | |
|
1613 | 0 | ggml_tensor * q = q_cur; |
1614 | 0 | ggml_tensor * k = mctx_cur->get_k(ctx0, il); |
1615 | 0 | ggml_tensor * v = mctx_cur->get_v(ctx0, il); |
1616 | |
|
1617 | 0 | ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il); |
1618 | 0 | cb(cur, "kqv_out", il); |
1619 | |
|
1620 | 0 | if (wo) { |
1621 | 0 | cur = build_lora_mm(wo, cur); |
1622 | 0 | if (arch == LLM_ARCH_GLM4 || arch == LLM_ARCH_GLM4_MOE) { |
1623 | | // GLM4 and GLM4_MOE seem to have numerical issues with half-precision accumulators |
1624 | 0 | ggml_mul_mat_set_prec(cur, GGML_PREC_F32); |
1625 | 0 | } |
1626 | 0 | } |
1627 | |
|
1628 | 0 | if (wo_b) { |
1629 | 0 | cur = ggml_add(ctx0, cur, wo_b); |
1630 | 0 | } |
1631 | |
|
1632 | 0 | return cur; |
1633 | 0 | } |
1634 | | |
1635 | | ggml_tensor * llm_graph_context::build_attn( |
1636 | | llm_graph_input_attn_kv_iswa * inp, |
1637 | | ggml_tensor * wo, |
1638 | | ggml_tensor * wo_b, |
1639 | | ggml_tensor * q_cur, |
1640 | | ggml_tensor * k_cur, |
1641 | | ggml_tensor * v_cur, |
1642 | | ggml_tensor * kq_b, |
1643 | | ggml_tensor * sinks, |
1644 | | ggml_tensor * v_mla, |
1645 | | float kq_scale, |
1646 | 0 | int il) const { |
1647 | | // these nodes are added to the graph together so that they are not reordered |
1648 | | // by doing so, the number of splits in the graph is reduced |
1649 | 0 | ggml_build_forward_expand(gf, q_cur); |
1650 | |
|
1651 | 0 | if (k_cur) { |
1652 | 0 | ggml_build_forward_expand(gf, k_cur); |
1653 | 0 | } |
1654 | |
|
1655 | 0 | if (v_cur) { |
1656 | 0 | ggml_build_forward_expand(gf, v_cur); |
1657 | 0 | } |
1658 | |
|
1659 | 0 | const auto * mctx_iswa = inp->mctx; |
1660 | |
|
1661 | 0 | const bool is_swa = hparams.is_swa(il); |
1662 | |
|
1663 | 0 | const auto * mctx_cur = is_swa ? mctx_iswa->get_swa() : mctx_iswa->get_base(); |
1664 | | |
1665 | | // optionally store to KV cache |
1666 | 0 | if (k_cur) { |
1667 | 0 | const auto & k_idxs = is_swa ? inp->get_k_idxs_swa() : inp->get_k_idxs(); |
1668 | |
|
1669 | 0 | ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, k_idxs, il)); |
1670 | 0 | } |
1671 | |
|
1672 | 0 | if (v_cur) { |
1673 | 0 | const auto & v_idxs = is_swa ? inp->get_v_idxs_swa() : inp->get_v_idxs(); |
1674 | |
|
1675 | 0 | ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, v_idxs, il)); |
1676 | 0 | } |
1677 | |
|
1678 | 0 | const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask(); |
1679 | |
|
1680 | 0 | ggml_tensor * q = q_cur; |
1681 | 0 | ggml_tensor * k = mctx_cur->get_k(ctx0, il); |
1682 | 0 | ggml_tensor * v = mctx_cur->get_v(ctx0, il); |
1683 | |
|
1684 | 0 | ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il); |
1685 | 0 | cb(cur, "kqv_out", il); |
1686 | |
|
1687 | 0 | if (wo) { |
1688 | 0 | cur = build_lora_mm(wo, cur); |
1689 | 0 | } |
1690 | |
|
1691 | 0 | if (wo_b) { |
1692 | | //cb(cur, "kqv_wo", il); |
1693 | 0 | } |
1694 | |
|
1695 | 0 | if (wo_b) { |
1696 | 0 | cur = ggml_add(ctx0, cur, wo_b); |
1697 | 0 | } |
1698 | |
|
1699 | 0 | return cur; |
1700 | 0 | } |
1701 | | |
1702 | 0 | llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const { |
1703 | 0 | auto inp = std::make_unique<llm_graph_input_attn_cross>(cross); |
1704 | |
|
1705 | 0 | const int32_t n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train; |
1706 | |
|
1707 | 0 | inp->cross_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1); |
1708 | 0 | ggml_set_input(inp->cross_kq_mask); |
1709 | |
|
1710 | 0 | inp->cross_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->cross_kq_mask, GGML_TYPE_F16) : inp->cross_kq_mask; |
1711 | |
|
1712 | 0 | return (llm_graph_input_attn_cross *) res->add_input(std::move(inp)); |
1713 | 0 | } |
1714 | | |
1715 | | ggml_tensor * llm_graph_context::build_attn( |
1716 | | llm_graph_input_attn_cross * inp, |
1717 | | ggml_tensor * wo, |
1718 | | ggml_tensor * wo_b, |
1719 | | ggml_tensor * q_cur, |
1720 | | ggml_tensor * k_cur, |
1721 | | ggml_tensor * v_cur, |
1722 | | ggml_tensor * kq_b, |
1723 | | ggml_tensor * sinks, |
1724 | | ggml_tensor * v_mla, |
1725 | | float kq_scale, |
1726 | 0 | int il) const { |
1727 | | // these nodes are added to the graph together so that they are not reordered |
1728 | | // by doing so, the number of splits in the graph is reduced |
1729 | 0 | ggml_build_forward_expand(gf, q_cur); |
1730 | 0 | ggml_build_forward_expand(gf, k_cur); |
1731 | 0 | ggml_build_forward_expand(gf, v_cur); |
1732 | |
|
1733 | 0 | const auto & kq_mask = inp->get_kq_mask_cross(); |
1734 | |
|
1735 | 0 | ggml_tensor * q = q_cur; |
1736 | 0 | ggml_tensor * k = k_cur; |
1737 | 0 | ggml_tensor * v = v_cur; |
1738 | |
|
1739 | 0 | ggml_tensor * cur = build_attn_mha(q, k, v, kq_b, kq_mask, sinks, v_mla, kq_scale, il); |
1740 | 0 | cb(cur, "kqv_out", il); |
1741 | |
|
1742 | 0 | if (wo) { |
1743 | 0 | cur = build_lora_mm(wo, cur); |
1744 | 0 | } |
1745 | |
|
1746 | 0 | if (wo_b) { |
1747 | | //cb(cur, "kqv_wo", il); |
1748 | 0 | } |
1749 | |
|
1750 | 0 | if (wo_b) { |
1751 | 0 | cur = ggml_add(ctx0, cur, wo_b); |
1752 | 0 | } |
1753 | |
|
1754 | 0 | return cur; |
1755 | 0 | } |
1756 | | |
1757 | | // TODO: maybe separate the inner implementation into a separate function |
1758 | | // like with the non-sliding window equivalent |
1759 | | // once sliding-window hybrid caches are a thing. |
1760 | 0 | llm_graph_input_attn_kv_iswa * llm_graph_context::build_attn_inp_kv_iswa() const { |
1761 | 0 | const auto * mctx_cur = static_cast<const llama_kv_cache_iswa_context *>(mctx); |
1762 | |
|
1763 | 0 | auto inp = std::make_unique<llm_graph_input_attn_kv_iswa>(hparams, cparams, mctx_cur); |
1764 | |
|
1765 | 0 | const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq; |
1766 | |
|
1767 | 0 | { |
1768 | 0 | const auto n_kv = mctx_cur->get_base()->get_n_kv(); |
1769 | |
|
1770 | 0 | inp->self_k_idxs = mctx_cur->get_base()->build_input_k_idxs(ctx0, ubatch); |
1771 | 0 | inp->self_v_idxs = mctx_cur->get_base()->build_input_v_idxs(ctx0, ubatch); |
1772 | |
|
1773 | 0 | inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream); |
1774 | 0 | ggml_set_input(inp->self_kq_mask); |
1775 | |
|
1776 | 0 | inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask; |
1777 | 0 | } |
1778 | |
|
1779 | 0 | { |
1780 | 0 | GGML_ASSERT(hparams.swa_type != LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache for non-SWA"); |
1781 | |
|
1782 | 0 | const auto n_kv = mctx_cur->get_swa()->get_n_kv(); |
1783 | |
|
1784 | 0 | inp->self_k_idxs_swa = mctx_cur->get_swa()->build_input_k_idxs(ctx0, ubatch); |
1785 | 0 | inp->self_v_idxs_swa = mctx_cur->get_swa()->build_input_v_idxs(ctx0, ubatch); |
1786 | |
|
1787 | 0 | inp->self_kq_mask_swa = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens/n_stream, GGML_KQ_MASK_PAD), 1, n_stream); |
1788 | 0 | ggml_set_input(inp->self_kq_mask_swa); |
1789 | |
|
1790 | 0 | inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa; |
1791 | 0 | } |
1792 | |
|
1793 | 0 | return (llm_graph_input_attn_kv_iswa *) res->add_input(std::move(inp)); |
1794 | 0 | } |
1795 | | |
1796 | | ggml_tensor * llm_graph_context::build_rs( |
1797 | | ggml_tensor * s, |
1798 | | ggml_tensor * state_copy_main, |
1799 | | ggml_tensor * state_copy_extra, |
1800 | | int32_t state_size, |
1801 | | int32_t n_seqs, |
1802 | | uint32_t n_rs, |
1803 | | uint32_t rs_head, |
1804 | | uint32_t rs_size, |
1805 | | int32_t rs_zero, |
1806 | 0 | const llm_graph_get_rows_fn & get_state_rows) const { |
1807 | |
|
1808 | 0 | ggml_tensor * states = ggml_reshape_2d(ctx0, s, state_size, rs_size); |
1809 | | |
1810 | | // Clear a single state which will then be copied to the other cleared states. |
1811 | | // Note that this is a no-op when the view is zero-sized. |
1812 | 0 | ggml_tensor * state_zero = ggml_view_1d(ctx0, states, state_size*(rs_zero >= 0), rs_zero*states->nb[1]*(rs_zero >= 0)); |
1813 | 0 | ggml_build_forward_expand(gf, ggml_scale_inplace(ctx0, state_zero, 0)); |
1814 | | |
1815 | | // copy states |
1816 | | // NOTE: assuming the copy destinations are ALL contained between rs_head and rs_head + n_rs |
1817 | | // {state_size, rs_size} -> {state_size, n_seqs} |
1818 | 0 | ggml_tensor * output_states = get_state_rows(ctx0, states, state_copy_main); |
1819 | 0 | ggml_build_forward_expand(gf, output_states); |
1820 | | |
1821 | | // copy extra states which won't be changed further (between n_seqs and n_rs) |
1822 | 0 | ggml_tensor * states_extra = ggml_get_rows(ctx0, states, state_copy_extra); |
1823 | 0 | ggml_build_forward_expand(gf, |
1824 | 0 | ggml_cpy(ctx0, |
1825 | 0 | states_extra, |
1826 | 0 | ggml_view_1d(ctx0, s, state_size*(n_rs - n_seqs), (rs_head + n_seqs)*state_size*ggml_element_size(s)))); |
1827 | |
|
1828 | 0 | return output_states; |
1829 | 0 | } |
1830 | | |
1831 | | static std::unique_ptr<llm_graph_input_rs> build_rs_inp_impl( |
1832 | | ggml_context * ctx0, |
1833 | | const llama_ubatch & ubatch, |
1834 | 0 | const llama_memory_recurrent_context * mctx_cur) { |
1835 | |
|
1836 | 0 | auto inp = std::make_unique<llm_graph_input_rs>(mctx_cur); |
1837 | |
|
1838 | 0 | const int64_t n_rs = mctx_cur->get_n_rs(); |
1839 | 0 | const int64_t n_seqs = ubatch.n_seqs; |
1840 | |
|
1841 | 0 | inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs); |
1842 | 0 | ggml_set_input(inp->s_copy); |
1843 | |
|
1844 | 0 | inp->s_copy_main = ggml_view_1d(ctx0, inp->s_copy, n_seqs, 0); |
1845 | 0 | inp->s_copy_extra = ggml_view_1d(ctx0, inp->s_copy, n_rs - n_seqs, n_seqs * inp->s_copy->nb[0]); |
1846 | |
|
1847 | 0 | return inp; |
1848 | 0 | } |
1849 | | |
1850 | 0 | llm_graph_input_rs * llm_graph_context::build_rs_inp() const { |
1851 | 0 | const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx); |
1852 | |
|
1853 | 0 | auto inp = build_rs_inp_impl(ctx0, ubatch, mctx_cur); |
1854 | |
|
1855 | 0 | return (llm_graph_input_rs *) res->add_input(std::move(inp)); |
1856 | 0 | } |
1857 | | |
1858 | | ggml_tensor * llm_graph_context::build_rs( |
1859 | | llm_graph_input_rs * inp, |
1860 | | ggml_tensor * s, |
1861 | | int32_t state_size, |
1862 | | int32_t n_seqs, |
1863 | 0 | const llm_graph_get_rows_fn & get_state_rows) const { |
1864 | 0 | const auto * kv_state = inp->mctx; |
1865 | |
|
1866 | 0 | return build_rs(s, inp->s_copy_main, inp->s_copy_extra, state_size, n_seqs, |
1867 | 0 | kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(), |
1868 | 0 | get_state_rows); |
1869 | 0 | } |
1870 | | |
1871 | | ggml_tensor * llm_graph_context::build_rwkv_token_shift_load( |
1872 | | llm_graph_input_rs * inp, |
1873 | | const llama_ubatch & ubatch, |
1874 | 0 | int il) const { |
1875 | 0 | const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx); |
1876 | |
|
1877 | 0 | const auto token_shift_count = hparams.token_shift_count; |
1878 | |
|
1879 | 0 | const int64_t n_seqs = ubatch.n_seqs; |
1880 | |
|
1881 | 0 | ggml_tensor * token_shift_all = mctx_cur->get_r_l(il); |
1882 | |
|
1883 | 0 | ggml_tensor * token_shift = build_rs( |
1884 | 0 | inp, token_shift_all, |
1885 | 0 | hparams.n_embd_r(), n_seqs); |
1886 | |
|
1887 | 0 | token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs); |
1888 | |
|
1889 | 0 | return token_shift; |
1890 | 0 | } |
1891 | | |
1892 | | ggml_tensor * llm_graph_context::build_rwkv_token_shift_store( |
1893 | | ggml_tensor * token_shift, |
1894 | | const llama_ubatch & ubatch, |
1895 | 0 | int il) const { |
1896 | 0 | const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx); |
1897 | |
|
1898 | 0 | const auto token_shift_count = hparams.token_shift_count; |
1899 | 0 | const auto n_embd = hparams.n_embd; |
1900 | |
|
1901 | 0 | const int64_t n_seqs = ubatch.n_seqs; |
1902 | |
|
1903 | 0 | const auto kv_head = mctx_cur->get_head(); |
1904 | |
|
1905 | 0 | return ggml_cpy( |
1906 | 0 | ctx0, |
1907 | 0 | ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0), |
1908 | 0 | ggml_view_1d(ctx0, mctx_cur->get_r_l(il), hparams.n_embd_r()*n_seqs, hparams.n_embd_r()*kv_head*ggml_element_size(mctx_cur->get_r_l(il))) |
1909 | 0 | ); |
1910 | 0 | } |
1911 | | |
1912 | 0 | llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const { |
1913 | 0 | const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx); |
1914 | |
|
1915 | 0 | auto inp_rs = build_rs_inp_impl(ctx0, ubatch, mctx_cur->get_recr()); |
1916 | 0 | auto inp_attn = build_attn_inp_kv_impl(ctx0, ubatch, hparams, cparams, mctx_cur->get_attn()); |
1917 | |
|
1918 | 0 | auto inp = std::make_unique<llm_graph_input_mem_hybrid>(std::move(inp_attn), std::move(inp_rs), mctx_cur); |
1919 | |
|
1920 | 0 | return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp)); |
1921 | 0 | } |
1922 | | |
1923 | | void llm_graph_context::build_dense_out( |
1924 | | ggml_tensor * dense_2, |
1925 | 0 | ggml_tensor * dense_3) const { |
1926 | 0 | if (!cparams.embeddings || dense_2 == nullptr || dense_3 == nullptr) { |
1927 | 0 | return; |
1928 | 0 | } |
1929 | 0 | ggml_tensor * cur = res->t_embd_pooled != nullptr ? res->t_embd_pooled : res->t_embd; |
1930 | 0 | GGML_ASSERT(cur != nullptr && "missing t_embd_pooled/t_embd"); |
1931 | |
|
1932 | 0 | cur = ggml_mul_mat(ctx0, dense_2, cur); |
1933 | 0 | cur = ggml_mul_mat(ctx0, dense_3, cur); |
1934 | 0 | cb(cur, "result_embd_pooled", -1); |
1935 | 0 | res->t_embd_pooled = cur; |
1936 | 0 | ggml_build_forward_expand(gf, cur); |
1937 | 0 | } |
1938 | | |
1939 | | |
1940 | | void llm_graph_context::build_pooling( |
1941 | | ggml_tensor * cls, |
1942 | | ggml_tensor * cls_b, |
1943 | | ggml_tensor * cls_out, |
1944 | 0 | ggml_tensor * cls_out_b) const { |
1945 | 0 | if (!cparams.embeddings) { |
1946 | 0 | return; |
1947 | 0 | } |
1948 | | |
1949 | 0 | ggml_tensor * inp = res->t_embd; |
1950 | | |
1951 | | //// find result_norm tensor for input |
1952 | | //for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) { |
1953 | | // inp = ggml_graph_node(gf, i); |
1954 | | // if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) { |
1955 | | // break; |
1956 | | // } |
1957 | | |
1958 | | // inp = nullptr; |
1959 | | //} |
1960 | |
|
1961 | 0 | GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor"); |
1962 | |
|
1963 | 0 | ggml_tensor * cur; |
1964 | |
|
1965 | 0 | switch (pooling_type) { |
1966 | 0 | case LLAMA_POOLING_TYPE_NONE: |
1967 | 0 | { |
1968 | 0 | cur = inp; |
1969 | 0 | } break; |
1970 | 0 | case LLAMA_POOLING_TYPE_MEAN: |
1971 | 0 | { |
1972 | 0 | ggml_tensor * inp_mean = build_inp_mean(); |
1973 | 0 | cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean); |
1974 | 0 | } break; |
1975 | 0 | case LLAMA_POOLING_TYPE_CLS: |
1976 | 0 | case LLAMA_POOLING_TYPE_LAST: |
1977 | 0 | { |
1978 | 0 | ggml_tensor * inp_cls = build_inp_cls(); |
1979 | 0 | cur = ggml_get_rows(ctx0, inp, inp_cls); |
1980 | 0 | } break; |
1981 | 0 | case LLAMA_POOLING_TYPE_RANK: |
1982 | 0 | { |
1983 | 0 | ggml_tensor * inp_cls = build_inp_cls(); |
1984 | 0 | cur = ggml_get_rows(ctx0, inp, inp_cls); |
1985 | | |
1986 | | // classification head |
1987 | | // https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566 |
1988 | 0 | if (cls) { |
1989 | 0 | cur = ggml_mul_mat(ctx0, cls, cur); |
1990 | 0 | if (cls_b) { |
1991 | 0 | cur = ggml_add(ctx0, cur, cls_b); |
1992 | 0 | } |
1993 | 0 | cur = ggml_tanh(ctx0, cur); |
1994 | 0 | } |
1995 | | |
1996 | | // some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en |
1997 | | // https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896 |
1998 | | // Single layer classification head (direct projection) |
1999 | | // https://github.com/huggingface/transformers/blob/f4fc42216cd56ab6b68270bf80d811614d8d59e4/src/transformers/models/bert/modeling_bert.py#L1476 |
2000 | 0 | if (cls_out) { |
2001 | 0 | cur = ggml_mul_mat(ctx0, cls_out, cur); |
2002 | 0 | if (cls_out_b) { |
2003 | 0 | cur = ggml_add(ctx0, cur, cls_out_b); |
2004 | 0 | } |
2005 | 0 | } |
2006 | | |
2007 | | // softmax for qwen3 reranker |
2008 | 0 | if (arch == LLM_ARCH_QWEN3) { |
2009 | 0 | cur = ggml_soft_max(ctx0, cur); |
2010 | 0 | } |
2011 | 0 | } break; |
2012 | 0 | default: |
2013 | 0 | { |
2014 | 0 | GGML_ABORT("unknown pooling type"); |
2015 | 0 | } |
2016 | 0 | } |
2017 | | |
2018 | 0 | cb(cur, "result_embd_pooled", -1); |
2019 | 0 | res->t_embd_pooled = cur; |
2020 | |
|
2021 | 0 | ggml_build_forward_expand(gf, cur); |
2022 | 0 | } |
2023 | | |
2024 | 0 | int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) { |
2025 | | // TODO move to hparams if a T5 variant appears that uses a different value |
2026 | 0 | const int64_t max_distance = 128; |
2027 | |
|
2028 | 0 | if (bidirectional) { |
2029 | 0 | n_buckets >>= 1; |
2030 | 0 | } |
2031 | |
|
2032 | 0 | const int64_t max_exact = n_buckets >> 1; |
2033 | |
|
2034 | 0 | int32_t relative_position = x - y; |
2035 | 0 | int32_t relative_bucket = 0; |
2036 | |
|
2037 | 0 | if (bidirectional) { |
2038 | 0 | relative_bucket += (relative_position > 0) * n_buckets; |
2039 | 0 | relative_position = std::abs(relative_position); |
2040 | 0 | } else { |
2041 | 0 | relative_position = -std::min<int32_t>(relative_position, 0); |
2042 | 0 | } |
2043 | |
|
2044 | 0 | int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact)); |
2045 | 0 | relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1); |
2046 | 0 | relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large); |
2047 | |
|
2048 | 0 | return relative_bucket; |
2049 | 0 | } |