Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/bailingmoe.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
0
llm_build_bailingmoe::llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
0
    ggml_tensor * cur;
6
0
    ggml_tensor * inpL;
7
8
0
    inpL = build_inp_embd(model.tok_embd);
9
10
    // inp_pos - contains the positions
11
0
    ggml_tensor * inp_pos = build_inp_pos();
12
13
0
    auto * inp_attn = build_attn_inp_kv();
14
15
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
16
17
0
    for (int il = 0; il < n_layer; ++il) {
18
0
        ggml_tensor * inpSA = inpL;
19
20
        // norm
21
0
        cur = build_norm(inpL,
22
0
                model.layers[il].attn_norm, NULL,
23
0
                LLM_NORM_RMS, il);
24
0
        cb(cur, "attn_norm", il);
25
26
        // self-attention
27
0
        {
28
            // rope freq factors for llama3; may return nullptr for llama2 and other models
29
0
            ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
30
31
            // compute Q and K and RoPE them
32
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
33
0
            cb(Qcur, "Qcur", il);
34
0
            if (model.layers[il].bq) {
35
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
36
0
                cb(Qcur, "Qcur", il);
37
0
            }
38
39
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
40
0
            cb(Kcur, "Kcur", il);
41
0
            if (model.layers[il].bk) {
42
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
43
0
                cb(Kcur, "Kcur", il);
44
0
            }
45
46
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
47
0
            cb(Vcur, "Vcur", il);
48
0
            if (model.layers[il].bv) {
49
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
50
0
                cb(Vcur, "Vcur", il);
51
0
            }
52
53
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head,    n_tokens);
54
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
55
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
56
57
0
            Qcur = ggml_rope_ext(
58
0
                    ctx0, Qcur, inp_pos, rope_factors,
59
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
60
0
                    ext_factor, attn_factor, beta_fast, beta_slow
61
0
                    );
62
63
0
            Kcur = ggml_rope_ext(
64
0
                    ctx0, Kcur, inp_pos, rope_factors,
65
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
66
0
                    ext_factor, attn_factor, beta_fast, beta_slow
67
0
                    );
68
69
0
            cb(Qcur, "Qcur", il);
70
0
            cb(Kcur, "Kcur", il);
71
0
            cb(Vcur, "Vcur", il);
72
73
0
            cur = build_attn(inp_attn,
74
0
                    model.layers[il].wo, model.layers[il].bo,
75
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_rot)), il);
76
0
        }
77
78
0
        if (il == n_layer - 1 && inp_out_ids) {
79
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
80
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
81
0
        }
82
83
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
84
0
        cb(ffn_inp, "ffn_inp", il);
85
86
0
        cur = build_norm(ffn_inp,
87
0
                model.layers[il].ffn_norm, NULL,
88
0
                LLM_NORM_RMS, il);
89
0
        cb(cur, "ffn_norm", il);
90
91
0
        ggml_tensor * moe_out =
92
0
            build_moe_ffn(cur,
93
0
                    model.layers[il].ffn_gate_inp,
94
0
                    model.layers[il].ffn_up_exps,
95
0
                    model.layers[il].ffn_gate_exps,
96
0
                    model.layers[il].ffn_down_exps,
97
0
                    nullptr,
98
0
                    n_expert, n_expert_used,
99
0
                    LLM_FFN_SILU, hparams.expert_weights_norm,
100
0
                    false, hparams.expert_weights_scale,
101
0
                    LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
102
0
                    il);
103
0
        cb(moe_out, "ffn_moe_out", il);
104
105
        // FFN shared expert
106
0
        {
107
0
            ggml_tensor * ffn_shexp = build_ffn(cur,
108
0
                    model.layers[il].ffn_up_shexp,   NULL, NULL,
109
0
                    model.layers[il].ffn_gate_shexp, NULL, NULL,
110
0
                    model.layers[il].ffn_down_shexp, NULL, NULL,
111
0
                    NULL,
112
0
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
113
0
            cb(ffn_shexp, "ffn_shexp", il);
114
115
0
            cur = ggml_add(ctx0, moe_out, ffn_shexp);
116
0
            cb(cur, "ffn_out", il);
117
0
        }
118
119
0
        cur = ggml_add(ctx0, cur, ffn_inp);
120
121
0
        cur = build_cvec(cur, il);
122
0
        cb(cur, "l_out", il);
123
124
        // input for next layer
125
0
        inpL = cur;
126
0
    }
127
128
0
    cur = inpL;
129
130
0
    cur = build_norm(cur,
131
0
            model.output_norm, NULL,
132
0
            LLM_NORM_RMS, -1);
133
134
0
    cb(cur, "result_norm", -1);
135
0
    res->t_embd = cur;
136
137
    // lm_head
138
0
    cur = build_lora_mm(model.output, cur);
139
140
0
    cb(cur, "result_output", -1);
141
0
    res->t_logits = cur;
142
143
0
    ggml_build_forward_expand(gf, cur);
144
0
}