Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/dots1.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
5
llm_build_dots1::llm_build_dots1(const llama_model & model, const llm_graph_params & params) :
6
0
    llm_graph_context(params) {
7
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
8
9
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
10
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
11
12
0
    ggml_tensor * cur;
13
0
    ggml_tensor * inpL;
14
15
0
    inpL = build_inp_embd(model.tok_embd);
16
17
    // inp_pos - contains the positions
18
0
    ggml_tensor * inp_pos = build_inp_pos();
19
20
0
    auto * inp_attn = build_attn_inp_kv();
21
22
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
23
24
0
    for (int il = 0; il < n_layer; ++il) {
25
0
        ggml_tensor * inpSA = inpL;
26
27
        // norm
28
0
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
29
0
        cb(cur, "attn_norm", il);
30
31
        // self_attention
32
0
        {
33
            // compute Q and K and RoPE them
34
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
35
0
            cb(Qcur, "Qcur", il);
36
37
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
38
0
            cb(Kcur, "Kcur", il);
39
40
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
41
0
            cb(Vcur, "Vcur", il);
42
43
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
44
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
45
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
46
47
0
            Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
48
0
            cb(Qcur, "Qcur_normed", il);
49
50
0
            Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
51
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
52
53
0
            Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
54
0
            cb(Kcur, "Kcur_normed", il);
55
56
0
            Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
57
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
58
59
0
            cb(Qcur, "Qcur", il);
60
0
            cb(Kcur, "Kcur", il);
61
0
            cb(Vcur, "Vcur", il);
62
63
0
            cur = build_attn(inp_attn,
64
0
                    model.layers[il].wo, model.layers[il].bo,
65
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
66
0
        }
67
0
        if (il == n_layer - 1 && inp_out_ids) {
68
0
            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
69
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
70
0
        }
71
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
72
0
        cb(ffn_inp, "ffn_inp", il);
73
74
        // MoE branch
75
0
        cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
76
0
        cb(cur, "ffn_norm", il);
77
78
0
        if ((uint32_t) il < hparams.n_layer_dense_lead) {
79
0
            cur = build_ffn(cur,
80
0
                    model.layers[il].ffn_up, NULL, NULL,
81
0
                    model.layers[il].ffn_gate, NULL, NULL,
82
0
                    model.layers[il].ffn_down, NULL, NULL,
83
0
                    NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
84
0
            cb(cur, "ffn_out", il);
85
0
        } else {
86
0
            ggml_tensor * moe_out = build_moe_ffn(cur,
87
0
                model.layers[il].ffn_gate_inp,
88
0
                model.layers[il].ffn_up_exps,
89
0
                model.layers[il].ffn_gate_exps,
90
0
                model.layers[il].ffn_down_exps,
91
0
                model.layers[il].ffn_exp_probs_b,
92
0
                n_expert, n_expert_used,
93
0
                LLM_FFN_SILU, hparams.expert_weights_norm,
94
0
                true, hparams.expert_weights_scale,
95
0
                (llama_expert_gating_func_type) hparams.expert_gating_func,
96
0
                il);
97
0
            cb(moe_out, "ffn_moe_out", il);
98
99
0
            {
100
0
                ggml_tensor * ffn_shexp =
101
0
                    build_ffn(cur,
102
0
                        model.layers[il].ffn_up_shexp, NULL, NULL,
103
0
                        model.layers[il].ffn_gate_shexp, NULL, NULL,
104
0
                        model.layers[il].ffn_down_shexp, NULL, NULL,
105
0
                        NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
106
0
                cb(ffn_shexp, "ffn_shexp", il);
107
108
0
                cur = ggml_add(ctx0, moe_out, ffn_shexp);
109
0
                cb(cur, "ffn_out", il);
110
0
            }
111
0
        }
112
0
        cur = ggml_add(ctx0, cur, ffn_inp);
113
114
0
        cur = build_cvec(cur, il);
115
0
        cb(cur, "l_out", il);
116
117
        // input for next layer
118
0
        inpL = cur;
119
0
    }
120
0
    cur = inpL;
121
122
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
123
124
0
    cb(cur, "result_norm", -1);
125
0
    res->t_embd = cur;
126
127
    // lm_head
128
0
    cur = build_lora_mm(model.output, cur);
129
130
0
    cb(cur, "result_output", -1);
131
0
    res->t_logits = cur;
132
133
0
    ggml_build_forward_expand(gf, cur);
134
0
}