/src/llama.cpp/src/models/glm4-moe.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | 0 | llm_build_glm4_moe::llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
4 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
5 | |
|
6 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
7 | |
|
8 | 0 | ggml_tensor * cur; |
9 | 0 | ggml_tensor * inpL; |
10 | |
|
11 | 0 | inpL = build_inp_embd(model.tok_embd); |
12 | | |
13 | | // inp_pos - contains the positions |
14 | 0 | ggml_tensor * inp_pos = build_inp_pos(); |
15 | |
|
16 | 0 | auto * inp_attn = build_attn_inp_kv(); |
17 | |
|
18 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
19 | | |
20 | | // Only process up to last layer (skip final NextN layer) |
21 | | // Final layer tensors are loaded but not processed in forward pass |
22 | 0 | const int n_transformer_layers = n_layer - hparams.nextn_predict_layers; |
23 | 0 | for (int il = 0; il < n_transformer_layers; ++il) { |
24 | 0 | ggml_tensor * inpSA = inpL; |
25 | | |
26 | | // Pre-attention norm |
27 | 0 | cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); |
28 | 0 | cb(cur, "attn_norm", il); |
29 | | |
30 | | // self-attention |
31 | 0 | { |
32 | 0 | ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); |
33 | 0 | if (model.layers[il].bq) { |
34 | 0 | Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); |
35 | 0 | } |
36 | 0 | cb(Qcur, "Qcur", il); |
37 | |
|
38 | 0 | ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); |
39 | 0 | if (model.layers[il].bk) { |
40 | 0 | Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); |
41 | 0 | } |
42 | 0 | cb(Kcur, "Kcur", il); |
43 | |
|
44 | 0 | ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); |
45 | 0 | if (model.layers[il].bv) { |
46 | 0 | Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); |
47 | 0 | } |
48 | 0 | cb(Vcur, "Vcur", il); |
49 | |
|
50 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
51 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); |
52 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); |
53 | | |
54 | | // Apply Q/K norm if available (GLM-4.5 355B variant) |
55 | 0 | if (model.layers[il].attn_q_norm) { |
56 | 0 | Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il); |
57 | 0 | cb(Qcur, "Qcur_normed", il); |
58 | 0 | } |
59 | 0 | if (model.layers[il].attn_k_norm) { |
60 | 0 | Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il); |
61 | 0 | cb(Kcur, "Kcur_normed", il); |
62 | 0 | } |
63 | 0 | Qcur = ggml_rope_ext( |
64 | 0 | ctx0, Qcur, inp_pos, nullptr, |
65 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
66 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
67 | 0 | ); |
68 | |
|
69 | 0 | Kcur = ggml_rope_ext( |
70 | 0 | ctx0, Kcur, inp_pos, nullptr, |
71 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
72 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
73 | 0 | ); |
74 | |
|
75 | 0 | cb(Qcur, "Qcur", il); |
76 | 0 | cb(Kcur, "Kcur", il); |
77 | 0 | cb(Vcur, "Vcur", il); |
78 | |
|
79 | 0 | cur = build_attn(inp_attn, |
80 | 0 | model.layers[il].wo, NULL, |
81 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); |
82 | 0 | } |
83 | 0 | if (il == n_transformer_layers - 1 && inp_out_ids) { |
84 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
85 | 0 | inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); |
86 | 0 | } |
87 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); |
88 | 0 | cb(ffn_inp, "ffn_inp", il); |
89 | | |
90 | | // Post-attention norm |
91 | 0 | cur = build_norm(ffn_inp, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il); |
92 | 0 | cb(cur, "post_attn_norm", il); |
93 | | |
94 | | // Check if this is a dense layer (n_layer_dense_lead=1, so layer 0 is dense) |
95 | 0 | if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) { |
96 | | // Dense FFN layer |
97 | 0 | cur = build_ffn(cur, |
98 | 0 | model.layers[il].ffn_up, NULL, NULL, |
99 | 0 | model.layers[il].ffn_gate, NULL, NULL, |
100 | 0 | model.layers[il].ffn_down, NULL, NULL, |
101 | 0 | NULL, |
102 | 0 | LLM_FFN_SILU, LLM_FFN_PAR, il); |
103 | 0 | cb(cur, "ffn_out", il); |
104 | 0 | } else { |
105 | | // Process routed experts using existing MoE infrastructure |
106 | 0 | ggml_tensor * routed_out = build_moe_ffn(cur, |
107 | 0 | model.layers[il].ffn_gate_inp, |
108 | 0 | model.layers[il].ffn_up_exps, |
109 | 0 | model.layers[il].ffn_gate_exps, |
110 | 0 | model.layers[il].ffn_down_exps, |
111 | 0 | model.layers[il].ffn_exp_probs_b, |
112 | 0 | n_expert, n_expert_used, |
113 | 0 | LLM_FFN_SILU, hparams.expert_weights_norm, |
114 | 0 | true, hparams.expert_weights_scale, |
115 | 0 | (llama_expert_gating_func_type) hparams.expert_gating_func, |
116 | 0 | il); |
117 | 0 | cb(routed_out, "ffn_moe_out", il); |
118 | | |
119 | | // Process shared expert on original input |
120 | 0 | ggml_tensor * shared_out = build_ffn(cur, |
121 | 0 | model.layers[il].ffn_up_shexp, NULL, NULL, |
122 | 0 | model.layers[il].ffn_gate_shexp, NULL, NULL, |
123 | 0 | model.layers[il].ffn_down_shexp, NULL, NULL, |
124 | 0 | NULL, |
125 | 0 | LLM_FFN_SILU, LLM_FFN_PAR, il); |
126 | 0 | cb(shared_out, "ffn_shexp_out", il); |
127 | | |
128 | | // Final output: routed_output + shared_output |
129 | 0 | cur = ggml_add(ctx0, routed_out, shared_out); |
130 | 0 | cb(cur, "ffn_out", il); |
131 | 0 | } |
132 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
133 | |
|
134 | 0 | cur = build_cvec(cur, il); |
135 | 0 | cb(cur, "l_out", il); |
136 | | |
137 | | // input for next layer |
138 | 0 | inpL = cur; |
139 | 0 | } |
140 | 0 | cur = inpL; |
141 | 0 | cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); |
142 | |
|
143 | 0 | cb(cur, "result_norm", -1); |
144 | 0 | res->t_embd = cur; |
145 | | |
146 | | // lm_head |
147 | 0 | cur = build_lora_mm(model.output, cur); |
148 | |
|
149 | 0 | cb(cur, "result_output", -1); |
150 | 0 | res->t_logits = cur; |
151 | |
|
152 | 0 | ggml_build_forward_expand(gf, cur); |
153 | 0 | } |