Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/glm4-moe.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_glm4_moe::llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
6
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
8
0
    ggml_tensor * cur;
9
0
    ggml_tensor * inpL;
10
11
0
    inpL = build_inp_embd(model.tok_embd);
12
13
    // inp_pos - contains the positions
14
0
    ggml_tensor * inp_pos = build_inp_pos();
15
16
0
    auto * inp_attn = build_attn_inp_kv();
17
18
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
19
20
    // Only process up to last layer (skip final NextN layer)
21
    // Final layer tensors are loaded but not processed in forward pass
22
0
    const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
23
0
    for (int il = 0; il < n_transformer_layers; ++il) {
24
0
        ggml_tensor * inpSA = inpL;
25
26
        // Pre-attention norm
27
0
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
28
0
        cb(cur, "attn_norm", il);
29
30
        // self-attention
31
0
        {
32
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
33
0
            if (model.layers[il].bq) {
34
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
35
0
            }
36
0
            cb(Qcur, "Qcur", il);
37
38
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
39
0
            if (model.layers[il].bk) {
40
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
41
0
            }
42
0
            cb(Kcur, "Kcur", il);
43
44
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
45
0
            if (model.layers[il].bv) {
46
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
47
0
            }
48
0
            cb(Vcur, "Vcur", il);
49
50
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
51
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
52
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
53
54
            // Apply Q/K norm if available (GLM-4.5 355B variant)
55
0
            if (model.layers[il].attn_q_norm) {
56
0
                Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
57
0
                cb(Qcur, "Qcur_normed", il);
58
0
            }
59
0
            if (model.layers[il].attn_k_norm) {
60
0
                Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
61
0
                cb(Kcur, "Kcur_normed", il);
62
0
            }
63
0
            Qcur = ggml_rope_ext(
64
0
                    ctx0, Qcur, inp_pos, nullptr,
65
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
66
0
                    ext_factor, attn_factor, beta_fast, beta_slow
67
0
                    );
68
69
0
            Kcur = ggml_rope_ext(
70
0
                    ctx0, Kcur, inp_pos, nullptr,
71
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
72
0
                    ext_factor, attn_factor, beta_fast, beta_slow
73
0
                    );
74
75
0
            cb(Qcur, "Qcur", il);
76
0
            cb(Kcur, "Kcur", il);
77
0
            cb(Vcur, "Vcur", il);
78
79
0
            cur = build_attn(inp_attn,
80
0
                    model.layers[il].wo, NULL,
81
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
82
0
        }
83
0
        if (il == n_transformer_layers - 1 && inp_out_ids) {
84
0
            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
85
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
86
0
        }
87
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
88
0
        cb(ffn_inp, "ffn_inp", il);
89
90
        // Post-attention norm
91
0
        cur = build_norm(ffn_inp, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
92
0
        cb(cur, "post_attn_norm", il);
93
94
        // Check if this is a dense layer (n_layer_dense_lead=1, so layer 0 is dense)
95
0
        if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
96
            // Dense FFN layer
97
0
            cur = build_ffn(cur,
98
0
                    model.layers[il].ffn_up,   NULL, NULL,
99
0
                    model.layers[il].ffn_gate, NULL, NULL,
100
0
                    model.layers[il].ffn_down, NULL, NULL,
101
0
                    NULL,
102
0
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
103
0
            cb(cur, "ffn_out", il);
104
0
        } else {
105
            // Process routed experts using existing MoE infrastructure
106
0
            ggml_tensor * routed_out = build_moe_ffn(cur,
107
0
                    model.layers[il].ffn_gate_inp,
108
0
                    model.layers[il].ffn_up_exps,
109
0
                    model.layers[il].ffn_gate_exps,
110
0
                    model.layers[il].ffn_down_exps,
111
0
                    model.layers[il].ffn_exp_probs_b,
112
0
                    n_expert, n_expert_used,
113
0
                    LLM_FFN_SILU, hparams.expert_weights_norm,
114
0
                    true, hparams.expert_weights_scale,
115
0
                    (llama_expert_gating_func_type) hparams.expert_gating_func,
116
0
                    il);
117
0
            cb(routed_out, "ffn_moe_out", il);
118
119
            // Process shared expert on original input
120
0
            ggml_tensor * shared_out = build_ffn(cur,
121
0
                    model.layers[il].ffn_up_shexp,   NULL, NULL,
122
0
                    model.layers[il].ffn_gate_shexp, NULL, NULL,
123
0
                    model.layers[il].ffn_down_shexp, NULL, NULL,
124
0
                    NULL,
125
0
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
126
0
            cb(shared_out, "ffn_shexp_out", il);
127
128
            // Final output: routed_output + shared_output
129
0
            cur = ggml_add(ctx0, routed_out, shared_out);
130
0
            cb(cur, "ffn_out", il);
131
0
        }
132
0
        cur = ggml_add(ctx0, cur, ffn_inp);
133
134
0
        cur = build_cvec(cur, il);
135
0
        cb(cur, "l_out", il);
136
137
        // input for next layer
138
0
        inpL = cur;
139
0
    }
140
0
    cur = inpL;
141
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
142
143
0
    cb(cur, "result_norm", -1);
144
0
    res->t_embd = cur;
145
146
    // lm_head
147
0
    cur = build_lora_mm(model.output, cur);
148
149
0
    cb(cur, "result_output", -1);
150
0
    res->t_logits = cur;
151
152
0
    ggml_build_forward_expand(gf, cur);
153
0
}