/src/llama.cpp/src/models/glm4.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | | |
4 | | |
5 | 0 | llm_build_glm4::llm_build_glm4(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
6 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
7 | 0 | const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); |
8 | |
|
9 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
10 | |
|
11 | 0 | ggml_tensor * cur; |
12 | 0 | ggml_tensor * inpL; |
13 | |
|
14 | 0 | inpL = build_inp_embd(model.tok_embd); |
15 | | |
16 | | // inp_pos - contains the positions |
17 | 0 | ggml_tensor * inp_pos = build_inp_pos(); |
18 | |
|
19 | 0 | auto * inp_attn = build_attn_inp_kv(); |
20 | |
|
21 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
22 | |
|
23 | 0 | for (int il = 0; il < n_layer; ++il) { |
24 | 0 | ggml_tensor * inpSA = inpL; |
25 | | |
26 | | // Pre-attention norm |
27 | 0 | cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); |
28 | 0 | cb(cur, "attn_norm", il); |
29 | | |
30 | | // self-attention |
31 | 0 | { |
32 | 0 | ggml_tensor * Qcur = nullptr; |
33 | 0 | ggml_tensor * Kcur = nullptr; |
34 | 0 | ggml_tensor * Vcur = nullptr; |
35 | |
|
36 | 0 | if (model.layers[il].wqkv == nullptr) { |
37 | 0 | Qcur = build_lora_mm(model.layers[il].wq, cur); |
38 | 0 | if (model.layers[il].bq) { |
39 | 0 | Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); |
40 | 0 | } |
41 | 0 | Kcur = build_lora_mm(model.layers[il].wk, cur); |
42 | 0 | if (model.layers[il].bk) { |
43 | 0 | Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); |
44 | 0 | } |
45 | 0 | Vcur = build_lora_mm(model.layers[il].wv, cur); |
46 | 0 | if (model.layers[il].bv) { |
47 | 0 | Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); |
48 | 0 | } |
49 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
50 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); |
51 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); |
52 | 0 | } else { |
53 | 0 | cur = build_lora_mm(model.layers[il].wqkv, cur); |
54 | 0 | cb(cur, "wqkv", il); |
55 | 0 | if (model.layers[il].bqkv) { |
56 | 0 | cur = ggml_add(ctx0, cur, model.layers[il].bqkv); |
57 | 0 | cb(cur, "bqkv", il); |
58 | 0 | } |
59 | 0 | Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), cur->nb[1], |
60 | 0 | 0 * sizeof(float) * (n_embd)); |
61 | 0 | Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), |
62 | 0 | cur->nb[1], 1 * sizeof(float) * (n_embd)); |
63 | 0 | Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), |
64 | 0 | cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)); |
65 | 0 | } |
66 | 0 | Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
67 | 0 | ext_factor, attn_factor, beta_fast, beta_slow); |
68 | |
|
69 | 0 | Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
70 | 0 | ext_factor, attn_factor, beta_fast, beta_slow); |
71 | |
|
72 | 0 | cb(Qcur, "Qcur", il); |
73 | 0 | cb(Kcur, "Kcur", il); |
74 | 0 | cb(Vcur, "Vcur", il); |
75 | |
|
76 | 0 | cur = build_attn(inp_attn, |
77 | 0 | model.layers[il].wo, NULL, |
78 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il); |
79 | 0 | } |
80 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
81 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
82 | 0 | inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); |
83 | 0 | } |
84 | | // Post-attention norm (new!) |
85 | 0 | cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il); |
86 | 0 | cb(cur, "post_attn_norm", il); |
87 | | |
88 | | // Add the input (residual connection after post-attention norm) |
89 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); |
90 | 0 | cb(ffn_inp, "ffn_inp", il); |
91 | | |
92 | | // FF |
93 | 0 | { |
94 | | // Pre-MLP norm |
95 | 0 | cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); |
96 | 0 | cb(cur, "ffn_norm", il); |
97 | | |
98 | | // MLP |
99 | 0 | cur = build_ffn(cur, |
100 | 0 | model.layers[il].ffn_up, NULL, NULL, |
101 | 0 | NULL, NULL, NULL, |
102 | 0 | model.layers[il].ffn_down, NULL, NULL, |
103 | 0 | NULL, LLM_FFN_SWIGLU, LLM_FFN_SEQ, il); |
104 | 0 | cb(cur, "ffn_out", il); |
105 | | |
106 | | // Post-MLP norm |
107 | 0 | cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, il); |
108 | 0 | cb(cur, "post_mlp_norm", il); |
109 | 0 | } |
110 | | // Add residual connection after post-MLP norm |
111 | 0 | inpL = ggml_add(ctx0, cur, ffn_inp); |
112 | 0 | cb(inpL, "l_out", il); |
113 | 0 | } |
114 | | // Final norm |
115 | 0 | cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1); |
116 | |
|
117 | 0 | cb(cur, "result_norm", -1); |
118 | 0 | res->t_embd = cur; |
119 | | |
120 | | // Output projection |
121 | 0 | cur = build_lora_mm(model.output, cur); |
122 | |
|
123 | 0 | cb(cur, "result_output", -1); |
124 | 0 | res->t_logits = cur; |
125 | |
|
126 | 0 | ggml_build_forward_expand(gf, cur); |
127 | 0 | } |