Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/gpt2.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_gpt2::llm_build_gpt2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
0
    const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
6
7
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
9
0
    ggml_tensor * cur;
10
0
    ggml_tensor * pos;
11
0
    ggml_tensor * inpL;
12
13
0
    inpL = build_inp_embd(model.tok_embd);
14
15
    // inp_pos - contains the positions
16
0
    ggml_tensor * inp_pos = build_inp_pos();
17
18
0
    auto * inp_attn = build_attn_inp_kv();
19
20
0
    pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
21
0
    cb(pos, "pos_embd", -1);
22
23
0
    inpL = ggml_add(ctx0, inpL, pos);
24
0
    cb(inpL, "inpL", -1);
25
26
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
27
28
0
    for (int il = 0; il < n_layer; ++il) {
29
0
        cur = build_norm(inpL,
30
0
                model.layers[il].attn_norm,
31
0
                model.layers[il].attn_norm_b,
32
0
                LLM_NORM, il);
33
0
        cb(cur, "attn_norm", il);
34
35
        // self-attention
36
0
        {
37
0
            cur = build_lora_mm(model.layers[il].wqkv, cur);
38
0
            cb(cur, "wqkv", il);
39
40
0
            cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
41
0
            cb(cur, "bqkv", il);
42
43
0
            ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head,    n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
44
0
            ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
45
0
            ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
46
47
0
            cb(Qcur, "Qcur", il);
48
0
            cb(Kcur, "Kcur", il);
49
0
            cb(Vcur, "Vcur", il);
50
51
0
            cur = build_attn(inp_attn,
52
0
                    model.layers[il].wo, model.layers[il].bo,
53
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
54
0
        }
55
56
0
        if (il == n_layer - 1 && inp_out_ids) {
57
0
            cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
58
0
            inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
59
0
        }
60
61
        // add the input
62
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
63
0
        cb(ffn_inp, "ffn_inp", il);
64
65
        // FF
66
0
        {
67
0
            cur = build_norm(ffn_inp,
68
0
                    model.layers[il].ffn_norm,
69
0
                    model.layers[il].ffn_norm_b,
70
0
                    LLM_NORM, il);
71
0
            cb(cur, "ffn_norm", il);
72
73
0
            cur = build_ffn(cur,
74
0
                    model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
75
0
                    NULL,                      NULL,                        NULL,
76
0
                    model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
77
0
                    NULL,
78
0
                    LLM_FFN_GELU, LLM_FFN_SEQ, il);
79
0
            cb(cur, "ffn_out", il);
80
0
        }
81
82
0
        cur = ggml_add(ctx0, cur, ffn_inp);
83
84
0
        cur = build_cvec(cur, il);
85
0
        cb(cur, "l_out", il);
86
87
        // input for next layer
88
0
        inpL = cur;
89
0
    }
90
91
0
    cur = build_norm(inpL,
92
0
            model.output_norm,
93
0
            model.output_norm_b,
94
0
            LLM_NORM, -1);
95
96
0
    cb(cur, "result_norm", -1);
97
0
    res->t_embd = cur;
98
99
0
    cur = build_lora_mm(model.output, cur);
100
101
0
    cb(cur, "result_output", -1);
102
0
    res->t_logits = cur;
103
104
0
    ggml_build_forward_expand(gf, cur);
105
0
}