Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/nemotron.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_nemotron::llm_build_nemotron(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
6
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
    //GGML_ASSERT(n_embd_head == hparams.n_rot);
8
9
0
    ggml_tensor * cur;
10
0
    ggml_tensor * inpL;
11
12
0
    inpL = build_inp_embd(model.tok_embd);
13
14
    // inp_pos - contains the positions
15
0
    ggml_tensor * inp_pos = build_inp_pos();
16
17
0
    auto * inp_attn = build_attn_inp_kv();
18
19
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
20
21
0
    for (int il = 0; il < n_layer; ++il) {
22
0
        ggml_tensor * inpSA = inpL;
23
24
        // norm
25
0
        cur = build_norm(inpL,
26
0
                model.layers[il].attn_norm,
27
0
                model.layers[il].attn_norm_b,
28
0
                LLM_NORM, il);
29
0
        cb(cur, "attn_norm", il);
30
31
        // self-attention
32
0
        {
33
            // compute Q and K and RoPE them
34
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
35
0
            cb(Qcur, "Qcur", il);
36
0
            if (model.layers[il].bq) {
37
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
38
0
                cb(Qcur, "Qcur", il);
39
0
            }
40
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
41
0
            cb(Kcur, "Kcur", il);
42
0
            if (model.layers[il].bk) {
43
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
44
0
                cb(Kcur, "Kcur", il);
45
0
            }
46
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
47
0
            cb(Vcur, "Vcur", il);
48
0
            if (model.layers[il].bv) {
49
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
50
0
                cb(Vcur, "Vcur", il);
51
0
            }
52
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
53
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
54
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
55
56
0
            Qcur = ggml_rope_ext(
57
0
                    ctx0, Qcur, inp_pos, nullptr,
58
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
59
0
                    ext_factor, attn_factor, beta_fast, beta_slow
60
0
                    );
61
62
0
            Kcur = ggml_rope_ext(
63
0
                    ctx0, Kcur, inp_pos, nullptr,
64
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
65
0
                    ext_factor, attn_factor, beta_fast, beta_slow
66
0
                    );
67
68
0
            cb(Qcur, "Qcur", il);
69
0
            cb(Kcur, "Kcur", il);
70
0
            cb(Vcur, "Vcur", il);
71
72
0
            cur = build_attn(inp_attn,
73
0
                    model.layers[il].wo, model.layers[il].bo,
74
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
75
0
        }
76
0
        if (il == n_layer - 1 && inp_out_ids) {
77
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
78
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
79
0
        }
80
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
81
0
        cb(ffn_inp, "ffn_inp", il);
82
83
        // feed-forward network
84
0
        cur = build_norm(ffn_inp,
85
0
                model.layers[il].ffn_norm,
86
0
                model.layers[il].ffn_norm_b,
87
0
                LLM_NORM, il);
88
0
        cb(cur, "ffn_norm", il);
89
90
0
        cur = build_ffn(cur,
91
0
                model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
92
0
                NULL,                      NULL,                        NULL,
93
0
                model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
94
0
                NULL,
95
0
                LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
96
97
0
        cur = ggml_add(ctx0, cur, ffn_inp);
98
0
        cb(cur, "ffn_out", il);
99
100
0
        cur = build_cvec(cur, il);
101
0
        cb(cur, "l_out", il);
102
103
        // input for next layer
104
0
        inpL = cur;
105
0
    }
106
0
    cur = inpL;
107
108
0
    cur = build_norm(cur,
109
0
            model.output_norm, model.output_norm_b,
110
0
            LLM_NORM, -1);
111
112
0
    cb(cur, "result_norm", -1);
113
0
    res->t_embd = cur;
114
115
    // lm_head
116
0
    cur = build_lora_mm(model.output, cur);
117
118
0
    cb(cur, "result_output", -1);
119
0
    res->t_logits = cur;
120
121
0
    ggml_build_forward_expand(gf, cur);
122
0
}