/src/llama.cpp/src/models/plamo.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | 0 | llm_build_plamo::llm_build_plamo(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
4 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
5 | |
|
6 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
7 | 0 | GGML_ASSERT(n_embd_head == hparams.n_rot); |
8 | |
|
9 | 0 | ggml_tensor * cur; |
10 | 0 | ggml_tensor * inpL; |
11 | |
|
12 | 0 | inpL = build_inp_embd(model.tok_embd); |
13 | | |
14 | | // inp_pos - contains the positions |
15 | 0 | ggml_tensor * inp_pos = build_inp_pos(); |
16 | |
|
17 | 0 | auto * inp_attn = build_attn_inp_kv(); |
18 | |
|
19 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
20 | |
|
21 | 0 | for (int il = 0; il < n_layer; ++il) { |
22 | | // norm |
23 | 0 | cur = build_norm(inpL, |
24 | 0 | model.layers[il].attn_norm, NULL, |
25 | 0 | LLM_NORM_RMS, il); |
26 | 0 | cb(cur, "attn_norm", il); |
27 | |
|
28 | 0 | ggml_tensor * sa_inp = cur; |
29 | | |
30 | | // self-attention |
31 | 0 | { |
32 | | // compute Q and K and RoPE them |
33 | 0 | ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); |
34 | 0 | cb(Qcur, "Qcur", il); |
35 | |
|
36 | 0 | ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); |
37 | 0 | cb(Kcur, "Kcur", il); |
38 | |
|
39 | 0 | ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); |
40 | 0 | cb(Vcur, "Vcur", il); |
41 | |
|
42 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
43 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); |
44 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); |
45 | |
|
46 | 0 | Qcur = ggml_rope_ext( |
47 | 0 | ctx0, Qcur, inp_pos, nullptr, |
48 | 0 | n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale, |
49 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
50 | 0 | ); |
51 | |
|
52 | 0 | Kcur = ggml_rope_ext( |
53 | 0 | ctx0, Kcur, inp_pos, nullptr, |
54 | 0 | n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale, |
55 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
56 | 0 | ); |
57 | |
|
58 | 0 | cb(Qcur, "Qcur", il); |
59 | 0 | cb(Kcur, "Kcur", il); |
60 | 0 | cb(Vcur, "Vcur", il); |
61 | |
|
62 | 0 | cur = build_attn(inp_attn, |
63 | 0 | model.layers[il].wo, NULL, |
64 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); |
65 | 0 | } |
66 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
67 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
68 | 0 | sa_inp = ggml_get_rows(ctx0, sa_inp, inp_out_ids); |
69 | 0 | inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); |
70 | 0 | } |
71 | 0 | ggml_tensor * sa_out = cur; |
72 | |
|
73 | 0 | cur = sa_inp; |
74 | | |
75 | | // feed-forward network |
76 | 0 | { |
77 | 0 | cur = build_ffn(cur, |
78 | 0 | model.layers[il].ffn_up, NULL, NULL, |
79 | 0 | model.layers[il].ffn_gate, NULL, NULL, |
80 | 0 | model.layers[il].ffn_down, NULL, NULL, |
81 | 0 | NULL, |
82 | 0 | LLM_FFN_SILU, LLM_FFN_PAR, il); |
83 | 0 | cb(cur, "ffn_out", il); |
84 | 0 | } |
85 | 0 | cur = ggml_add(ctx0, cur, sa_out); |
86 | 0 | cur = ggml_add(ctx0, cur, inpL); |
87 | |
|
88 | 0 | cur = build_cvec(cur, il); |
89 | 0 | cb(cur, "l_out", il); |
90 | | |
91 | | // input for next layer |
92 | 0 | inpL = cur; |
93 | 0 | } |
94 | 0 | cur = inpL; |
95 | |
|
96 | 0 | cur = build_norm(cur, |
97 | 0 | model.output_norm, NULL, |
98 | 0 | LLM_NORM_RMS, -1); |
99 | |
|
100 | 0 | cb(cur, "result_norm", -1); |
101 | 0 | res->t_embd = cur; |
102 | | |
103 | | // lm_head |
104 | 0 | cur = build_lora_mm(model.output, cur); |
105 | |
|
106 | 0 | cb(cur, "result_output", -1); |
107 | 0 | res->t_logits = cur; |
108 | |
|
109 | 0 | ggml_build_forward_expand(gf, cur); |
110 | 0 | } |