Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/t5-enc.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_t5_enc::llm_build_t5_enc(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
6
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
8
0
    ggml_tensor * cur;
9
0
    ggml_tensor * inpL;
10
11
0
    inpL = build_inp_embd(model.tok_embd);
12
13
0
    ggml_tensor * pos_bucket_enc = build_inp_pos_bucket_enc();
14
15
0
    auto * inp_attn = build_attn_inp_no_cache();
16
17
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
18
19
0
    for (int il = 0; il < n_layer; ++il) {
20
0
        ggml_tensor * inpSA = inpL;
21
22
        // norm
23
0
        cur = build_norm(inpL,
24
0
                model.layers[il].attn_norm_enc, NULL,
25
0
                LLM_NORM_RMS, il);
26
0
        cb(cur, "attn_norm", il);
27
28
        // self-attention
29
0
        {
30
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_enc, cur);
31
0
            cb(Qcur, "Qcur", il);
32
33
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_enc, cur);
34
0
            cb(Kcur, "Kcur", il);
35
36
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_enc, cur);
37
0
            cb(Vcur, "Vcur", il);
38
39
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
40
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
41
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
42
43
0
            ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
44
0
            ggml_tensor * kq_b = build_pos_bias(pos_bucket_enc, attn_rel_b);
45
46
0
            cur = build_attn(inp_attn,
47
0
                    model.layers[il].wo_enc, nullptr,
48
0
                    Qcur, Kcur, Vcur, kq_b, nullptr, nullptr, 1.0f, il);
49
0
            cb(cur, "kqv_out", il);
50
0
        }
51
0
        if (il == n_layer - 1 && inp_out_ids) {
52
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
53
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
54
0
        }
55
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
56
0
        cb(ffn_inp, "ffn_inp", il);
57
58
        // feed-forward network
59
0
        {
60
0
            cur = build_norm(ffn_inp,
61
0
                    model.layers[il].ffn_norm_enc, NULL,
62
0
                    LLM_NORM_RMS, il);
63
0
            cb(cur, "ffn_norm", il);
64
65
            // T5 uses relu, flan-T5 uses gelu-gated
66
0
            cur = build_ffn(cur,
67
0
                    model.layers[il].ffn_up_enc,   NULL, NULL,
68
0
                    model.layers[il].ffn_gate_enc, NULL, NULL,
69
0
                    model.layers[il].ffn_down_enc, NULL, NULL,
70
0
                    NULL,
71
0
                    model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
72
0
                    model.layers[il].ffn_gate_enc ? LLM_FFN_PAR  : LLM_FFN_SEQ,
73
0
                    il);
74
0
            cb(cur, "ffn_out", il);
75
0
        }
76
0
        cur = ggml_add(ctx0, cur, ffn_inp);
77
0
        cb(cur, "ffn_out", il);
78
79
0
        cur = build_cvec(cur, il);
80
0
        cb(cur, "l_out", il);
81
82
        // input for next layer
83
0
        inpL = cur;
84
0
    }
85
0
    cur = inpL;
86
0
    cb(cur, "result_embd", -1);
87
88
0
    cur = build_norm(cur,
89
0
            model.output_norm_enc, NULL,
90
0
            LLM_NORM_RMS, -1);
91
92
0
    cb(cur, "result_norm", -1);
93
0
    res->t_embd = cur;
94
95
0
    ggml_build_forward_expand(gf, cur);
96
0
}