Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/llama-adapter.h
Line
Count
Source
1
#pragma once
2
3
#include "llama.h"
4
5
#include "ggml-cpp.h"
6
7
#include <string>
8
#include <unordered_map>
9
#include <vector>
10
11
// TODO: pimpl
12
13
//
14
// llama_adapter_cvec
15
//
16
17
struct llama_adapter_cvec {
18
    ggml_tensor * tensor_for(int il) const;
19
20
    ggml_tensor * apply_to(ggml_context * ctx, ggml_tensor * cur, int  il) const;
21
22
    bool apply(
23
            const llama_model & model,
24
            const float * data,
25
            size_t len,
26
            int32_t n_embd,
27
            int32_t il_start,
28
            int32_t il_end);
29
30
private:
31
    bool init(const llama_model & model);
32
33
    int32_t layer_start = -1;
34
    int32_t layer_end   = -1;
35
36
    std::vector<ggml_context_ptr> ctxs;
37
    std::vector<ggml_backend_buffer_ptr> bufs;
38
39
    std::vector<ggml_tensor *> tensors; // per layer
40
};
41
42
//
43
// llama_adapter_lora
44
//
45
46
struct llama_adapter_lora_weight {
47
    ggml_tensor * a = nullptr;
48
    ggml_tensor * b = nullptr;
49
50
    // get actual scale based on rank and alpha
51
0
    float get_scale(float alpha, float adapter_scale) const {
52
0
        const float rank  = (float) b->ne[0];
53
0
        const float scale = alpha ? adapter_scale * alpha / rank : adapter_scale;
54
0
        return scale;
55
0
    }
56
57
0
    llama_adapter_lora_weight() = default;
58
0
    llama_adapter_lora_weight(ggml_tensor * a, ggml_tensor * b) : a(a), b(b) {}
59
};
60
61
struct llama_adapter_lora {
62
    // map tensor name to lora_a_b
63
    std::unordered_map<std::string, llama_adapter_lora_weight> ab_map;
64
65
    std::vector<ggml_context_ptr> ctxs;
66
    std::vector<ggml_backend_buffer_ptr> bufs;
67
68
    float alpha;
69
70
    // gguf metadata
71
    std::unordered_map<std::string, std::string> gguf_kv;
72
73
    // activated lora (aLoRA)
74
    std::vector<llama_token> alora_invocation_tokens;
75
76
0
    llama_adapter_lora() = default;
77
0
    ~llama_adapter_lora() = default;
78
79
    llama_adapter_lora_weight * get_weight(ggml_tensor * w);
80
};
81
82
using llama_adapter_loras = std::unordered_map<llama_adapter_lora *, float>;