/src/llama.cpp/src/models/exaone.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | | |
4 | | |
5 | | llm_build_exaone::llm_build_exaone(const llama_model & model, const llm_graph_params & params) : |
6 | 0 | llm_graph_context(params) { |
7 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
8 | |
|
9 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
10 | 0 | GGML_ASSERT(n_embd_head == hparams.n_rot); |
11 | |
|
12 | 0 | ggml_tensor * cur; |
13 | 0 | ggml_tensor * inpL; |
14 | |
|
15 | 0 | inpL = build_inp_embd(model.tok_embd); |
16 | | |
17 | | // inp_pos - contains the positions |
18 | 0 | ggml_tensor * inp_pos = build_inp_pos(); |
19 | |
|
20 | 0 | auto * inp_attn = build_attn_inp_kv(); |
21 | |
|
22 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
23 | |
|
24 | 0 | for (int il = 0; il < n_layer; ++il) { |
25 | 0 | ggml_tensor * inpSA = inpL; |
26 | | |
27 | | // norm |
28 | 0 | cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); |
29 | 0 | cb(cur, "attn_norm", il); |
30 | | |
31 | | // self-attention |
32 | 0 | { |
33 | | // rope freq factors for llama3; may return nullptr for llama2 and other models |
34 | 0 | ggml_tensor * rope_factors = model.get_rope_factors(cparams, il); |
35 | | |
36 | | // compute Q and K and RoPE them |
37 | 0 | ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); |
38 | 0 | cb(Qcur, "Qcur", il); |
39 | 0 | if (model.layers[il].bq) { |
40 | 0 | Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); |
41 | 0 | cb(Qcur, "Qcur", il); |
42 | 0 | } |
43 | 0 | ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); |
44 | 0 | cb(Kcur, "Kcur", il); |
45 | 0 | if (model.layers[il].bk) { |
46 | 0 | Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); |
47 | 0 | cb(Kcur, "Kcur", il); |
48 | 0 | } |
49 | 0 | ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); |
50 | 0 | cb(Vcur, "Vcur", il); |
51 | 0 | if (model.layers[il].bv) { |
52 | 0 | Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); |
53 | 0 | cb(Vcur, "Vcur", il); |
54 | 0 | } |
55 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
56 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); |
57 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); |
58 | |
|
59 | 0 | Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
60 | 0 | ext_factor, attn_factor, beta_fast, beta_slow); |
61 | |
|
62 | 0 | Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
63 | 0 | ext_factor, attn_factor, beta_fast, beta_slow); |
64 | |
|
65 | 0 | cb(Qcur, "Qcur", il); |
66 | 0 | cb(Kcur, "Kcur", il); |
67 | 0 | cb(Vcur, "Vcur", il); |
68 | |
|
69 | 0 | cur = build_attn(inp_attn, |
70 | 0 | model.layers[il].wo, model.layers[il].bo, |
71 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il); |
72 | 0 | } |
73 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
74 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
75 | 0 | inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); |
76 | 0 | } |
77 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); |
78 | 0 | cb(ffn_inp, "ffn_inp", il); |
79 | | |
80 | | // feed-forward network |
81 | 0 | cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); |
82 | 0 | cb(cur, "ffn_norm", il); |
83 | |
|
84 | 0 | cur = build_ffn(cur, |
85 | 0 | model.layers[il].ffn_up, NULL, NULL, |
86 | 0 | model.layers[il].ffn_gate, NULL, NULL, |
87 | 0 | model.layers[il].ffn_down, NULL, NULL, |
88 | 0 | NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); |
89 | 0 | cb(cur, "ffn_out", il); |
90 | |
|
91 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
92 | 0 | cb(cur, "ffn_out", il); |
93 | |
|
94 | 0 | cur = build_cvec(cur, il); |
95 | 0 | cb(cur, "l_out", il); |
96 | | |
97 | | // input for next layer |
98 | 0 | inpL = cur; |
99 | 0 | } |
100 | 0 | cur = inpL; |
101 | |
|
102 | 0 | cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); |
103 | |
|
104 | 0 | cb(cur, "result_norm", -1); |
105 | 0 | res->t_embd = cur; |
106 | | |
107 | | // lm_head |
108 | 0 | cur = build_lora_mm(model.output, cur); |
109 | |
|
110 | 0 | cb(cur, "result_output", -1); |
111 | 0 | res->t_logits = cur; |
112 | |
|
113 | 0 | ggml_build_forward_expand(gf, cur); |
114 | 0 | } |