Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/exaone.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
5
llm_build_exaone::llm_build_exaone(const llama_model & model, const llm_graph_params & params) :
6
0
    llm_graph_context(params) {
7
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
8
9
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
10
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
11
12
0
    ggml_tensor * cur;
13
0
    ggml_tensor * inpL;
14
15
0
    inpL = build_inp_embd(model.tok_embd);
16
17
    // inp_pos - contains the positions
18
0
    ggml_tensor * inp_pos = build_inp_pos();
19
20
0
    auto * inp_attn = build_attn_inp_kv();
21
22
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
23
24
0
    for (int il = 0; il < n_layer; ++il) {
25
0
        ggml_tensor * inpSA = inpL;
26
27
        // norm
28
0
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
29
0
        cb(cur, "attn_norm", il);
30
31
        // self-attention
32
0
        {
33
            // rope freq factors for llama3; may return nullptr for llama2 and other models
34
0
            ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
35
36
            // compute Q and K and RoPE them
37
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
38
0
            cb(Qcur, "Qcur", il);
39
0
            if (model.layers[il].bq) {
40
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
41
0
                cb(Qcur, "Qcur", il);
42
0
            }
43
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
44
0
            cb(Kcur, "Kcur", il);
45
0
            if (model.layers[il].bk) {
46
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
47
0
                cb(Kcur, "Kcur", il);
48
0
            }
49
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
50
0
            cb(Vcur, "Vcur", il);
51
0
            if (model.layers[il].bv) {
52
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
53
0
                cb(Vcur, "Vcur", il);
54
0
            }
55
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
56
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
57
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
58
59
0
            Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
60
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
61
62
0
            Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
63
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
64
65
0
            cb(Qcur, "Qcur", il);
66
0
            cb(Kcur, "Kcur", il);
67
0
            cb(Vcur, "Vcur", il);
68
69
0
            cur = build_attn(inp_attn,
70
0
                    model.layers[il].wo, model.layers[il].bo,
71
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
72
0
        }
73
0
        if (il == n_layer - 1 && inp_out_ids) {
74
0
            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
75
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
76
0
        }
77
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
78
0
        cb(ffn_inp, "ffn_inp", il);
79
80
        // feed-forward network
81
0
        cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
82
0
        cb(cur, "ffn_norm", il);
83
84
0
        cur = build_ffn(cur,
85
0
                model.layers[il].ffn_up, NULL, NULL,
86
0
                model.layers[il].ffn_gate, NULL, NULL,
87
0
                model.layers[il].ffn_down, NULL, NULL,
88
0
                NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
89
0
        cb(cur, "ffn_out", il);
90
91
0
        cur = ggml_add(ctx0, cur, ffn_inp);
92
0
        cb(cur, "ffn_out", il);
93
94
0
        cur = build_cvec(cur, il);
95
0
        cb(cur, "l_out", il);
96
97
        // input for next layer
98
0
        inpL = cur;
99
0
    }
100
0
    cur = inpL;
101
102
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
103
104
0
    cb(cur, "result_norm", -1);
105
0
    res->t_embd = cur;
106
107
    // lm_head
108
0
    cur = build_lora_mm(model.output, cur);
109
110
0
    cb(cur, "result_output", -1);
111
0
    res->t_logits = cur;
112
113
0
    ggml_build_forward_expand(gf, cur);
114
0
}