Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/gemma-embedding.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
5
llm_build_gemma_embedding::llm_build_gemma_embedding(const llama_model & model, const llm_graph_params & params) :
6
0
    llm_graph_context(params) {
7
0
    const int64_t n_embd_head = hparams.n_embd_head_k;
8
9
0
    ggml_tensor * cur;
10
0
    ggml_tensor * inpL;
11
12
0
    inpL = build_inp_embd(model.tok_embd);
13
14
    // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
15
0
    if (ubatch.token) {
16
0
        inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
17
0
        cb(inpL, "inp_scaled", -1);
18
0
    }
19
20
    // inp_pos - contains the positions
21
0
    ggml_tensor * inp_pos = build_inp_pos();
22
23
0
    auto * inp_attn = build_attn_inp_no_cache();
24
25
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
26
27
0
    for (int il = 0; il < n_layer; ++il) {
28
0
        const float freq_base_l  = model.get_rope_freq_base(cparams, il);
29
0
        const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
30
31
        // norm
32
0
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
33
0
        cb(cur, "attn_norm", il);
34
35
        // self-attention
36
0
        {
37
            // compute Q and K and RoPE them
38
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
39
0
            cb(Qcur, "Qcur", il);
40
41
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
42
0
            cb(Kcur, "Kcur", il);
43
44
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
45
0
            cb(Vcur, "Vcur", il);
46
47
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
48
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
49
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
50
51
0
            Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
52
0
            cb(Qcur, "Qcur_normed", il);
53
54
0
            Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
55
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
56
57
0
            Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
58
0
            cb(Kcur, "Kcur_normed", il);
59
60
0
            Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
61
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
62
63
0
            cb(Qcur, "Qcur", il);
64
0
            cb(Kcur, "Kcur", il);
65
0
            cb(Vcur, "Vcur", il);
66
67
            // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/model.py#L315
68
0
            Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
69
70
0
            cur =
71
0
                build_attn(inp_attn,
72
0
                    model.layers[il].wo, NULL,
73
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
74
0
        }
75
76
0
        if (il == n_layer - 1 && inp_out_ids) {
77
0
            cur  = ggml_get_rows(ctx0, cur, inp_out_ids);
78
0
            inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
79
0
        }
80
81
0
        cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
82
0
        cb(cur, "attn_post_norm", il);
83
84
0
        ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
85
0
        cb(sa_out, "sa_out", il);
86
87
0
        cur = build_norm(sa_out, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
88
0
        cb(cur, "ffn_norm", il);
89
90
        // feed-forward network
91
0
        {
92
0
            cur = build_ffn(cur,
93
0
                model.layers[il].ffn_up, NULL, NULL,
94
0
                model.layers[il].ffn_gate, NULL, NULL,
95
0
                model.layers[il].ffn_down, NULL, NULL,
96
0
                NULL, LLM_FFN_GELU, LLM_FFN_PAR, il);
97
0
            cb(cur, "ffn_out", il);
98
0
        }
99
100
0
        cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, -1);
101
0
        cb(cur, "ffn_post_norm", -1);
102
103
0
        cur = ggml_add(ctx0, cur, sa_out);
104
105
0
        cur = build_cvec(cur, il);
106
0
        cb(cur, "l_out", il);
107
108
        // input for next layer
109
0
        inpL = cur;
110
0
    }
111
112
0
    cur = inpL;
113
114
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
115
116
0
    cb(cur, "result_norm", -1);
117
0
    res->t_embd = cur;
118
119
0
    ggml_build_forward_expand(gf, cur);
120
0
}