Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/gemma.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
0
llm_build_gemma::llm_build_gemma(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
6
7
0
    ggml_tensor * cur;
8
0
    ggml_tensor * inpL;
9
10
0
    inpL = build_inp_embd(model.tok_embd);
11
12
0
    inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
13
0
    cb(inpL, "inp_scaled", -1);
14
15
    // inp_pos - contains the positions
16
0
    ggml_tensor * inp_pos = build_inp_pos();
17
18
0
    auto * inp_attn = build_attn_inp_kv();
19
20
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
21
22
0
    for (int il = 0; il < n_layer; ++il) {
23
        // norm
24
0
        cur = build_norm(inpL,
25
0
                model.layers[il].attn_norm, NULL,
26
0
                LLM_NORM_RMS, il);
27
0
        cb(cur, "attn_norm", il);
28
29
        // self-attention
30
0
        {
31
            // compute Q and K and RoPE them
32
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
33
0
            cb(Qcur, "Qcur", il);
34
35
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
36
0
            cb(Kcur, "Kcur", il);
37
38
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
39
0
            cb(Vcur, "Vcur", il);
40
41
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
42
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
43
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
44
45
0
            Qcur = ggml_rope_ext(
46
0
                    ctx0, Qcur, inp_pos, nullptr,
47
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
48
0
                    ext_factor, attn_factor, beta_fast, beta_slow);
49
50
0
            Kcur = ggml_rope_ext(
51
0
                    ctx0, Kcur, inp_pos, nullptr,
52
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
53
0
                    ext_factor, attn_factor, beta_fast, beta_slow);
54
55
0
            cb(Qcur, "Qcur", il);
56
0
            cb(Kcur, "Kcur", il);
57
0
            cb(Vcur, "Vcur", il);
58
59
0
            Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
60
0
            cb(Qcur, "Qcur_scaled", il);
61
62
0
            cur = build_attn(inp_attn,
63
0
                    model.layers[il].wo, NULL,
64
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
65
0
        }
66
0
        if (il == n_layer - 1 && inp_out_ids) {
67
0
            cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
68
0
            inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
69
0
        }
70
0
        ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
71
0
        cb(sa_out, "sa_out", il);
72
73
0
        cur = build_norm(sa_out,
74
0
                model.layers[il].ffn_norm, NULL,
75
0
                LLM_NORM_RMS, il);
76
0
        cb(cur, "ffn_norm", il);
77
78
        // feed-forward network
79
0
        {
80
0
            cur = build_ffn(cur,
81
0
                    model.layers[il].ffn_up,   NULL, NULL,
82
0
                    model.layers[il].ffn_gate, NULL, NULL,
83
0
                    model.layers[il].ffn_down, NULL, NULL,
84
0
                    NULL,
85
0
                    LLM_FFN_GELU, LLM_FFN_PAR, il);
86
0
            cb(cur, "ffn_out", il);
87
0
        }
88
0
        cur = ggml_add(ctx0, cur, sa_out);
89
90
0
        cur = build_cvec(cur, il);
91
0
        cb(cur, "l_out", il);
92
93
        // input for next layer
94
0
        inpL = cur;
95
0
    }
96
0
    cur = inpL;
97
98
0
    cur = build_norm(cur,
99
0
            model.output_norm, NULL,
100
0
            LLM_NORM_RMS, -1);
101
102
0
    cb(cur, "result_norm", -1);
103
0
    res->t_embd = cur;
104
105
    // lm_head
106
0
    cur = build_lora_mm(model.output, cur);
107
108
0
    cb(cur, "result_output", -1);
109
0
    res->t_logits = cur;
110
111
0
    ggml_build_forward_expand(gf, cur);
112
0
}