Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/gemma3-iswa.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_gemma3_iswa::llm_build_gemma3_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_k;
5
6
0
    ggml_tensor * cur;
7
0
    ggml_tensor * inpL;
8
9
0
    inpL = build_inp_embd(model.tok_embd);
10
11
    // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
12
0
    if (ubatch.token) {
13
0
        inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
14
0
        cb(inpL, "inp_scaled", -1);
15
0
    }
16
    // inp_pos - contains the positions
17
0
    ggml_tensor * inp_pos = build_inp_pos();
18
19
    // TODO: is causal == true correct? might need some changes
20
0
    auto * inp_attn = build_attn_inp_kv_iswa();
21
22
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
23
24
0
    for (int il = 0; il < n_layer; ++il) {
25
0
        const float freq_base_l  = model.get_rope_freq_base (cparams, il);
26
0
        const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
27
28
        // norm
29
0
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
30
0
        cb(cur, "attn_norm", il);
31
32
        // self-attention
33
0
        {
34
            // compute Q and K and RoPE them
35
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
36
0
            cb(Qcur, "Qcur", il);
37
38
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
39
0
            cb(Kcur, "Kcur", il);
40
41
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
42
0
            cb(Vcur, "Vcur", il);
43
44
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
45
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
46
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
47
48
0
            Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
49
0
            cb(Qcur, "Qcur_normed", il);
50
51
0
            Qcur = ggml_rope_ext(
52
0
                    ctx0, Qcur, inp_pos, nullptr,
53
0
                    n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
54
0
                    ext_factor, attn_factor, beta_fast, beta_slow);
55
56
0
            Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
57
0
            cb(Kcur, "Kcur_normed", il);
58
59
0
            Kcur = ggml_rope_ext(
60
0
                    ctx0, Kcur, inp_pos, nullptr,
61
0
                    n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
62
0
                    ext_factor, attn_factor, beta_fast, beta_slow);
63
64
0
            cb(Qcur, "Qcur", il);
65
0
            cb(Kcur, "Kcur", il);
66
0
            cb(Vcur, "Vcur", il);
67
68
            // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/model.py#L315
69
0
            Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
70
71
0
            cur = build_attn(inp_attn,
72
0
                    model.layers[il].wo, NULL,
73
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
74
0
        }
75
0
        if (il == n_layer - 1 && inp_out_ids) {
76
0
            cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
77
0
            inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
78
0
        }
79
0
        cur = build_norm(cur,
80
0
                model.layers[il].attn_post_norm, NULL,
81
0
                LLM_NORM_RMS, il);
82
0
        cb(cur, "attn_post_norm", il);
83
84
0
        ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
85
0
        cb(sa_out, "sa_out", il);
86
87
0
        cur = build_norm(sa_out,
88
0
                model.layers[il].ffn_norm, NULL,
89
0
                LLM_NORM_RMS, il);
90
0
        cb(cur, "ffn_norm", il);
91
92
        // feed-forward network
93
0
        {
94
0
            cur = build_ffn(cur,
95
0
                    model.layers[il].ffn_up,   NULL, NULL,
96
0
                    model.layers[il].ffn_gate, NULL, NULL,
97
0
                    model.layers[il].ffn_down, NULL, NULL,
98
0
                    NULL,
99
0
                    LLM_FFN_GELU, LLM_FFN_PAR, il);
100
0
            cb(cur, "ffn_out", il);
101
0
        }
102
0
        cur = build_norm(cur,
103
0
                model.layers[il].ffn_post_norm, NULL,
104
0
                LLM_NORM_RMS, -1);
105
0
        cb(cur, "ffn_post_norm", -1);
106
107
0
        cur = ggml_add(ctx0, cur, sa_out);
108
109
0
        cur = build_cvec(cur, il);
110
0
        cb(cur, "l_out", il);
111
112
        // input for next layer
113
0
        inpL = cur;
114
0
    }
115
0
    cur = inpL;
116
117
0
    cur = build_norm(cur,
118
0
            model.output_norm, NULL,
119
0
            LLM_NORM_RMS, -1);
120
121
0
    cb(cur, "result_norm", -1);
122
0
    res->t_embd = cur;
123
124
    // lm_head
125
0
    cur = build_lora_mm(model.output, cur);
126
127
0
    cb(cur, "result_output", -1);
128
0
    res->t_logits = cur;
129
130
0
    ggml_build_forward_expand(gf, cur);
131
0
}