Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/granite-hybrid.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
llm_build_granite_hybrid::llm_build_granite_hybrid(const llama_model & model, const llm_graph_params & params) :
5
0
    llm_graph_context_mamba(params) {
6
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
7
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
9
0
    ggml_tensor * cur;
10
0
    ggml_tensor * inpL;
11
12
0
    inpL = build_inp_embd(model.tok_embd);
13
14
0
    auto * inp = build_inp_mem_hybrid();
15
16
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
17
18
    // Positional embeddings populated if rope enabled
19
0
    ggml_tensor * inp_pos = nullptr;
20
0
    if (hparams.rope_finetuned) {
21
0
        inp_pos = build_inp_pos();
22
0
    }
23
24
0
    for (int il = 0; il < n_layer; ++il) {
25
0
        struct ggml_tensor * inpSA = inpL;
26
27
        // norm
28
0
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
29
0
        cb(cur, "attn_norm", il);
30
31
0
        if (hparams.is_recurrent(il)) {
32
            // ssm layer //
33
0
            cur = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il);
34
0
        } else {
35
            // attention layer //
36
0
            cur = build_attention_layer(cur, inp_pos, inp->get_attn(), model, n_embd_head, il);
37
0
        }
38
39
0
        if (il == n_layer - 1 && inp_out_ids) {
40
0
            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
41
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
42
0
        }
43
44
        // ffn
45
0
        cur = build_layer_ffn(cur, inpSA, model, il);
46
47
        // input for next layer
48
0
        inpL = cur;
49
0
    }
50
51
0
    cur = inpL;
52
53
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
54
55
0
    cb(cur, "result_norm", -1);
56
0
    res->t_embd = cur;
57
58
    // lm_head
59
0
    cur = build_lora_mm(model.output, cur);
60
61
    // For Granite architectures - scale logits
62
0
    if (hparams.f_logit_scale) {
63
0
        cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
64
0
    }
65
0
    cb(cur, "result_output", -1);
66
0
    res->t_logits = cur;
67
68
0
    ggml_build_forward_expand(gf, cur);
69
0
}
70
71
ggml_tensor * llm_build_granite_hybrid::build_attention_layer(ggml_tensor *             cur,
72
                                                              ggml_tensor *             inp_pos,
73
                                                              llm_graph_input_attn_kv * inp_attn,
74
                                                              const llama_model &       model,
75
                                                              const int64_t             n_embd_head,
76
0
                                                              const int                 il) {
77
    // compute Q and K and (optionally) RoPE them
78
0
    ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
79
0
    cb(Qcur, "Qcur", il);
80
0
    if (model.layers[il].bq) {
81
0
        Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
82
0
        cb(Qcur, "Qcur", il);
83
0
    }
84
85
0
    ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
86
0
    cb(Kcur, "Kcur", il);
87
0
    if (model.layers[il].bk) {
88
0
        Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
89
0
        cb(Kcur, "Kcur", il);
90
0
    }
91
92
0
    ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
93
0
    cb(Vcur, "Vcur", il);
94
0
    if (model.layers[il].bv) {
95
0
        Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
96
0
        cb(Vcur, "Vcur", il);
97
0
    }
98
99
0
    Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens);
100
0
    Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
101
0
    Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
102
103
0
    const bool use_rope = hparams.rope_finetuned;
104
0
    if (use_rope) {
105
0
        ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
106
0
        Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
107
0
                             ext_factor, attn_factor, beta_fast, beta_slow);
108
109
0
        Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
110
0
                             ext_factor, attn_factor, beta_fast, beta_slow);
111
0
    }
112
113
0
    cb(Qcur, "Qcur", il);
114
0
    cb(Kcur, "Kcur", il);
115
0
    cb(Vcur, "Vcur", il);
116
117
0
    const float kq_scale =
118
0
        hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
119
0
    cur = build_attn(inp_attn,
120
0
            model.layers[il].wo, model.layers[il].bo,
121
0
            Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
122
0
    cb(cur, "attn_out", il);
123
0
    return cur;
124
0
}
125
126
ggml_tensor * llm_build_granite_hybrid::build_layer_ffn(ggml_tensor *       cur,
127
                                                        ggml_tensor *       inpSA,
128
                                                        const llama_model & model,
129
0
                                                        const int           il) {
130
    // For Granite architectures - scale residual
131
0
    if (hparams.f_residual_scale) {
132
0
        cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
133
0
    }
134
0
    ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
135
0
    cb(ffn_inp, "ffn_inp", il);
136
137
    // feed-forward network (non-MoE)
138
0
    if (model.layers[il].ffn_gate_inp == nullptr) {
139
0
        cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
140
0
        cb(cur, "ffn_norm", il);
141
142
0
        cur = build_ffn(cur,
143
0
                model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
144
0
                model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
145
0
                model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
146
0
                NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
147
0
        cb(cur, "ffn_out", il);
148
149
0
    } else {
150
        // MoE branch
151
0
        cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
152
0
        cb(cur, "ffn_norm", il);
153
154
0
        ggml_tensor * moe_out =
155
0
            build_moe_ffn(cur,
156
0
                model.layers[il].ffn_gate_inp,
157
0
                model.layers[il].ffn_up_exps,
158
0
                model.layers[il].ffn_gate_exps,
159
0
                model.layers[il].ffn_down_exps,
160
0
                nullptr,
161
0
                n_expert, n_expert_used,
162
0
                LLM_FFN_SILU, true,
163
0
                false, 0.0,
164
0
                LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
165
0
                il);
166
0
        cb(moe_out, "ffn_moe_out", il);
167
168
        // For Granite MoE Shared
169
0
        if (hparams.n_ff_shexp > 0) {
170
0
            ggml_tensor * ffn_shexp =
171
0
                build_ffn(cur,
172
0
                    model.layers[il].ffn_up_shexp, NULL, NULL,
173
0
                    model.layers[il].ffn_gate_shexp, NULL, NULL,
174
0
                    model.layers[il].ffn_down_shexp, NULL, NULL,
175
0
                    NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
176
0
            cb(ffn_shexp, "ffn_shexp", il);
177
178
0
            cur = ggml_add(ctx0, moe_out, ffn_shexp);
179
0
            cb(cur, "ffn_out", il);
180
0
        } else {
181
0
            cur = moe_out;
182
0
        }
183
0
    }
184
185
    // For Granite architectures - scale residual
186
0
    if (hparams.f_residual_scale) {
187
0
        cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
188
0
    }
189
0
    cur = ggml_add(ctx0, cur, ffn_inp);
190
0
    cb(cur, "ffn_out", il);
191
192
0
    cur = build_cvec(cur, il);
193
0
    cb(cur, "l_out", il);
194
195
0
    return cur;
196
0
}