/src/llama.cpp/src/models/granite-hybrid.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | | |
4 | | llm_build_granite_hybrid::llm_build_granite_hybrid(const llama_model & model, const llm_graph_params & params) : |
5 | 0 | llm_graph_context_mamba(params) { |
6 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
7 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
8 | |
|
9 | 0 | ggml_tensor * cur; |
10 | 0 | ggml_tensor * inpL; |
11 | |
|
12 | 0 | inpL = build_inp_embd(model.tok_embd); |
13 | |
|
14 | 0 | auto * inp = build_inp_mem_hybrid(); |
15 | |
|
16 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
17 | | |
18 | | // Positional embeddings populated if rope enabled |
19 | 0 | ggml_tensor * inp_pos = nullptr; |
20 | 0 | if (hparams.rope_finetuned) { |
21 | 0 | inp_pos = build_inp_pos(); |
22 | 0 | } |
23 | |
|
24 | 0 | for (int il = 0; il < n_layer; ++il) { |
25 | 0 | struct ggml_tensor * inpSA = inpL; |
26 | | |
27 | | // norm |
28 | 0 | cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); |
29 | 0 | cb(cur, "attn_norm", il); |
30 | |
|
31 | 0 | if (hparams.is_recurrent(il)) { |
32 | | // ssm layer // |
33 | 0 | cur = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il); |
34 | 0 | } else { |
35 | | // attention layer // |
36 | 0 | cur = build_attention_layer(cur, inp_pos, inp->get_attn(), model, n_embd_head, il); |
37 | 0 | } |
38 | |
|
39 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
40 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
41 | 0 | inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); |
42 | 0 | } |
43 | | |
44 | | // ffn |
45 | 0 | cur = build_layer_ffn(cur, inpSA, model, il); |
46 | | |
47 | | // input for next layer |
48 | 0 | inpL = cur; |
49 | 0 | } |
50 | |
|
51 | 0 | cur = inpL; |
52 | |
|
53 | 0 | cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); |
54 | |
|
55 | 0 | cb(cur, "result_norm", -1); |
56 | 0 | res->t_embd = cur; |
57 | | |
58 | | // lm_head |
59 | 0 | cur = build_lora_mm(model.output, cur); |
60 | | |
61 | | // For Granite architectures - scale logits |
62 | 0 | if (hparams.f_logit_scale) { |
63 | 0 | cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale); |
64 | 0 | } |
65 | 0 | cb(cur, "result_output", -1); |
66 | 0 | res->t_logits = cur; |
67 | |
|
68 | 0 | ggml_build_forward_expand(gf, cur); |
69 | 0 | } |
70 | | |
71 | | ggml_tensor * llm_build_granite_hybrid::build_attention_layer(ggml_tensor * cur, |
72 | | ggml_tensor * inp_pos, |
73 | | llm_graph_input_attn_kv * inp_attn, |
74 | | const llama_model & model, |
75 | | const int64_t n_embd_head, |
76 | 0 | const int il) { |
77 | | // compute Q and K and (optionally) RoPE them |
78 | 0 | ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); |
79 | 0 | cb(Qcur, "Qcur", il); |
80 | 0 | if (model.layers[il].bq) { |
81 | 0 | Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); |
82 | 0 | cb(Qcur, "Qcur", il); |
83 | 0 | } |
84 | |
|
85 | 0 | ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); |
86 | 0 | cb(Kcur, "Kcur", il); |
87 | 0 | if (model.layers[il].bk) { |
88 | 0 | Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); |
89 | 0 | cb(Kcur, "Kcur", il); |
90 | 0 | } |
91 | |
|
92 | 0 | ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); |
93 | 0 | cb(Vcur, "Vcur", il); |
94 | 0 | if (model.layers[il].bv) { |
95 | 0 | Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); |
96 | 0 | cb(Vcur, "Vcur", il); |
97 | 0 | } |
98 | |
|
99 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens); |
100 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens); |
101 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens); |
102 | |
|
103 | 0 | const bool use_rope = hparams.rope_finetuned; |
104 | 0 | if (use_rope) { |
105 | 0 | ggml_tensor * rope_factors = model.get_rope_factors(cparams, il); |
106 | 0 | Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
107 | 0 | ext_factor, attn_factor, beta_fast, beta_slow); |
108 | |
|
109 | 0 | Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
110 | 0 | ext_factor, attn_factor, beta_fast, beta_slow); |
111 | 0 | } |
112 | |
|
113 | 0 | cb(Qcur, "Qcur", il); |
114 | 0 | cb(Kcur, "Kcur", il); |
115 | 0 | cb(Vcur, "Vcur", il); |
116 | |
|
117 | 0 | const float kq_scale = |
118 | 0 | hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale; |
119 | 0 | cur = build_attn(inp_attn, |
120 | 0 | model.layers[il].wo, model.layers[il].bo, |
121 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il); |
122 | 0 | cb(cur, "attn_out", il); |
123 | 0 | return cur; |
124 | 0 | } |
125 | | |
126 | | ggml_tensor * llm_build_granite_hybrid::build_layer_ffn(ggml_tensor * cur, |
127 | | ggml_tensor * inpSA, |
128 | | const llama_model & model, |
129 | 0 | const int il) { |
130 | | // For Granite architectures - scale residual |
131 | 0 | if (hparams.f_residual_scale) { |
132 | 0 | cur = ggml_scale(ctx0, cur, hparams.f_residual_scale); |
133 | 0 | } |
134 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); |
135 | 0 | cb(ffn_inp, "ffn_inp", il); |
136 | | |
137 | | // feed-forward network (non-MoE) |
138 | 0 | if (model.layers[il].ffn_gate_inp == nullptr) { |
139 | 0 | cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); |
140 | 0 | cb(cur, "ffn_norm", il); |
141 | |
|
142 | 0 | cur = build_ffn(cur, |
143 | 0 | model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, |
144 | 0 | model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL, |
145 | 0 | model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, |
146 | 0 | NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); |
147 | 0 | cb(cur, "ffn_out", il); |
148 | |
|
149 | 0 | } else { |
150 | | // MoE branch |
151 | 0 | cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); |
152 | 0 | cb(cur, "ffn_norm", il); |
153 | |
|
154 | 0 | ggml_tensor * moe_out = |
155 | 0 | build_moe_ffn(cur, |
156 | 0 | model.layers[il].ffn_gate_inp, |
157 | 0 | model.layers[il].ffn_up_exps, |
158 | 0 | model.layers[il].ffn_gate_exps, |
159 | 0 | model.layers[il].ffn_down_exps, |
160 | 0 | nullptr, |
161 | 0 | n_expert, n_expert_used, |
162 | 0 | LLM_FFN_SILU, true, |
163 | 0 | false, 0.0, |
164 | 0 | LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, |
165 | 0 | il); |
166 | 0 | cb(moe_out, "ffn_moe_out", il); |
167 | | |
168 | | // For Granite MoE Shared |
169 | 0 | if (hparams.n_ff_shexp > 0) { |
170 | 0 | ggml_tensor * ffn_shexp = |
171 | 0 | build_ffn(cur, |
172 | 0 | model.layers[il].ffn_up_shexp, NULL, NULL, |
173 | 0 | model.layers[il].ffn_gate_shexp, NULL, NULL, |
174 | 0 | model.layers[il].ffn_down_shexp, NULL, NULL, |
175 | 0 | NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); |
176 | 0 | cb(ffn_shexp, "ffn_shexp", il); |
177 | |
|
178 | 0 | cur = ggml_add(ctx0, moe_out, ffn_shexp); |
179 | 0 | cb(cur, "ffn_out", il); |
180 | 0 | } else { |
181 | 0 | cur = moe_out; |
182 | 0 | } |
183 | 0 | } |
184 | | |
185 | | // For Granite architectures - scale residual |
186 | 0 | if (hparams.f_residual_scale) { |
187 | 0 | cur = ggml_scale(ctx0, cur, hparams.f_residual_scale); |
188 | 0 | } |
189 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
190 | 0 | cb(cur, "ffn_out", il); |
191 | |
|
192 | 0 | cur = build_cvec(cur, il); |
193 | 0 | cb(cur, "l_out", il); |
194 | |
|
195 | 0 | return cur; |
196 | 0 | } |