/src/llama.cpp/src/models/plm.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | 0 | llm_build_plm::llm_build_plm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
4 | 0 | const float kq_scale = 1.0f/sqrtf(float(hparams.n_embd_head_k)); |
5 | |
|
6 | 0 | const uint32_t n_embd_head_qk_rope = hparams.n_rot; |
7 | 0 | const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot; |
8 | 0 | const uint32_t kv_lora_rank = hparams.n_lora_kv; |
9 | |
|
10 | 0 | ggml_tensor * cur; |
11 | 0 | ggml_tensor * inpL; |
12 | | |
13 | | // {n_embd, n_tokens} |
14 | 0 | inpL = build_inp_embd(model.tok_embd); |
15 | | |
16 | | // inp_pos - contains the positions |
17 | 0 | ggml_tensor * inp_pos = build_inp_pos(); |
18 | |
|
19 | 0 | auto * inp_attn = build_attn_inp_kv(); |
20 | |
|
21 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
22 | |
|
23 | 0 | for (int il = 0; il < n_layer; ++il) { |
24 | 0 | ggml_tensor * inpSA = inpL; |
25 | | |
26 | | // norm |
27 | 0 | cur = build_norm(inpL, |
28 | 0 | model.layers[il].attn_norm, NULL, |
29 | 0 | LLM_NORM_RMS, il); |
30 | 0 | cb(cur, "attn_norm", il); |
31 | | |
32 | | // self_attention |
33 | 0 | { |
34 | 0 | ggml_tensor * q = NULL; |
35 | 0 | q = ggml_mul_mat(ctx0, model.layers[il].wq, cur); |
36 | 0 | cb(q, "q", il); |
37 | | |
38 | | // split into {n_head * n_embd_head_qk_nope, n_tokens} |
39 | 0 | ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens, |
40 | 0 | ggml_row_size(q->type, hparams.n_embd_head_k), |
41 | 0 | ggml_row_size(q->type, hparams.n_embd_head_k * n_head), |
42 | 0 | 0); |
43 | 0 | cb(q_nope, "q_nope", il); |
44 | | |
45 | | // and {n_head * n_embd_head_qk_rope, n_tokens} |
46 | 0 | ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens, |
47 | 0 | ggml_row_size(q->type, hparams.n_embd_head_k), |
48 | 0 | ggml_row_size(q->type, hparams.n_embd_head_k * n_head), |
49 | 0 | ggml_row_size(q->type, n_embd_head_qk_nope)); |
50 | 0 | cb(q_pe, "q_pe", il); |
51 | | |
52 | | // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens} |
53 | 0 | ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur); |
54 | 0 | cb(kv_pe_compresseed, "kv_pe_compresseed", il); |
55 | | |
56 | | // split into {kv_lora_rank, n_tokens} |
57 | 0 | ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens, |
58 | 0 | kv_pe_compresseed->nb[1], |
59 | 0 | 0); |
60 | 0 | cb(kv_compressed, "kv_compressed", il); |
61 | | |
62 | | // and {n_embd_head_qk_rope, n_tokens} |
63 | 0 | ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens, |
64 | 0 | kv_pe_compresseed->nb[1], |
65 | 0 | kv_pe_compresseed->nb[1], |
66 | 0 | ggml_row_size(kv_pe_compresseed->type, kv_lora_rank)); |
67 | 0 | cb(k_pe, "k_pe", il); |
68 | |
|
69 | 0 | kv_compressed = build_norm(kv_compressed, |
70 | 0 | model.layers[il].attn_kv_a_norm, NULL, |
71 | 0 | LLM_NORM_RMS, il); |
72 | 0 | cb(kv_compressed, "kv_compressed", il); |
73 | | |
74 | | // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens} |
75 | 0 | ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed); |
76 | 0 | cb(kv, "kv", il); |
77 | | |
78 | | // split into {n_head * n_embd_head_qk_nope, n_tokens} |
79 | 0 | ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens, |
80 | 0 | ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v), |
81 | 0 | ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)), |
82 | 0 | 0); |
83 | 0 | cb(k_nope, "k_nope", il); |
84 | | |
85 | | // and {n_head * n_embd_head_v, n_tokens} |
86 | 0 | ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens, |
87 | 0 | ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)), |
88 | 0 | ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head), |
89 | 0 | ggml_row_size(kv->type, (n_embd_head_qk_nope))); |
90 | 0 | cb(v_states, "v_states", il); |
91 | |
|
92 | 0 | v_states = ggml_cont(ctx0, v_states); |
93 | 0 | cb(v_states, "v_states", il); |
94 | |
|
95 | 0 | v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens, |
96 | 0 | ggml_row_size(kv->type, hparams.n_embd_head_v * n_head), |
97 | 0 | 0); |
98 | 0 | cb(v_states, "v_states", il); |
99 | |
|
100 | 0 | q_pe = ggml_rope_ext( |
101 | 0 | ctx0, q_pe, inp_pos, nullptr, |
102 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
103 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
104 | 0 | ); |
105 | 0 | cb(q_pe, "q_pe", il); |
106 | | |
107 | | // shared RoPE key |
108 | 0 | k_pe = ggml_rope_ext( |
109 | 0 | ctx0, k_pe, inp_pos, nullptr, |
110 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
111 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
112 | 0 | ); |
113 | 0 | cb(k_pe, "k_pe", il); |
114 | |
|
115 | 0 | ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0); |
116 | 0 | cb(q_states, "q_states", il); |
117 | |
|
118 | 0 | ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0); |
119 | 0 | cb(k_states, "k_states", il); |
120 | |
|
121 | 0 | cur = build_attn(inp_attn, |
122 | 0 | model.layers[il].wo, NULL, |
123 | 0 | q_states, k_states, v_states, nullptr, nullptr, nullptr, kq_scale, il); |
124 | 0 | } |
125 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
126 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
127 | 0 | inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); |
128 | 0 | } |
129 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); |
130 | 0 | cb(ffn_inp, "ffn_inp", il); |
131 | |
|
132 | 0 | cur = build_norm(ffn_inp, |
133 | 0 | model.layers[il].ffn_norm, NULL, |
134 | 0 | LLM_NORM_RMS, il); |
135 | 0 | cb(cur, "ffn_norm", il); |
136 | |
|
137 | 0 | cur = build_ffn(cur, |
138 | 0 | model.layers[il].ffn_up, NULL, NULL, |
139 | 0 | NULL, NULL, NULL, |
140 | 0 | model.layers[il].ffn_down, NULL, NULL, |
141 | 0 | NULL, |
142 | 0 | LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il); |
143 | 0 | cb(cur, "ffn_out", il); |
144 | |
|
145 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
146 | |
|
147 | 0 | cur = build_cvec(cur, il); |
148 | 0 | cb(cur, "l_out", il); |
149 | | |
150 | | // input for next layer |
151 | 0 | inpL = cur; |
152 | 0 | } |
153 | 0 | cur = inpL; |
154 | |
|
155 | 0 | cur = build_norm(cur, |
156 | 0 | model.output_norm, NULL, |
157 | 0 | LLM_NORM_RMS, -1); |
158 | |
|
159 | 0 | cb(cur, "result_norm", -1); |
160 | 0 | res->t_embd = cur; |
161 | |
|
162 | 0 | cur = build_lora_mm(model.output, cur); |
163 | |
|
164 | 0 | cb(cur, "result_output", -1); |
165 | 0 | res->t_logits = cur; |
166 | |
|
167 | 0 | ggml_build_forward_expand(gf, cur); |
168 | 0 | } |