Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/qwen.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
0
llm_build_qwen::llm_build_qwen(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
6
7
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
9
0
    ggml_tensor * cur;
10
0
    ggml_tensor * inpL;
11
12
0
    inpL = build_inp_embd(model.tok_embd);
13
14
    // inp_pos - contains the positions
15
0
    ggml_tensor * inp_pos = build_inp_pos();
16
17
0
    auto * inp_attn = build_attn_inp_kv();
18
19
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
20
21
0
    for (int il = 0; il < n_layer; ++il) {
22
0
        ggml_tensor * inpSA = inpL;
23
24
0
        cur = build_norm(inpL,
25
0
                model.layers[il].attn_norm, NULL,
26
0
                LLM_NORM_RMS, il);
27
0
        cb(cur, "attn_norm", il);
28
29
        // self-attention
30
0
        {
31
0
            cur = build_lora_mm(model.layers[il].wqkv, cur);
32
0
            cb(cur, "wqkv", il);
33
34
0
            cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
35
0
            cb(cur, "bqkv", il);
36
37
0
            ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head,    n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
38
0
            ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
39
0
            ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 2*sizeof(float)*(n_embd));
40
41
            // using mode = 2 for neox mode
42
0
            Qcur = ggml_rope_ext(
43
0
                    ctx0, Qcur, inp_pos, nullptr,
44
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
45
0
                    ext_factor, attn_factor, beta_fast, beta_slow
46
0
                    );
47
48
0
            Kcur = ggml_rope_ext(
49
0
                    ctx0, Kcur, inp_pos, nullptr,
50
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
51
0
                    ext_factor, attn_factor, beta_fast, beta_slow
52
0
                    );
53
54
0
            cb(Qcur, "Qcur", il);
55
0
            cb(Kcur, "Kcur", il);
56
0
            cb(Vcur, "Vcur", il);
57
58
0
            cur = build_attn(inp_attn,
59
0
                    model.layers[il].wo, NULL,
60
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
61
0
        }
62
0
        if (il == n_layer - 1 && inp_out_ids) {
63
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
64
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
65
0
        }
66
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
67
0
        cb(ffn_inp, "ffn_inp", il);
68
69
        // feed-forward forward
70
0
        {
71
0
            cur = build_norm(ffn_inp,
72
0
                    model.layers[il].ffn_norm, NULL,
73
0
                    LLM_NORM_RMS, il);
74
0
            cb(cur, "ffn_norm", il);
75
76
0
            cur = build_ffn(cur,
77
0
                    model.layers[il].ffn_up,   NULL, NULL,
78
0
                    model.layers[il].ffn_gate, NULL, NULL,
79
0
                    model.layers[il].ffn_down, NULL, NULL,
80
0
                    NULL,
81
0
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
82
0
            cb(cur, "ffn_out", il);
83
0
        }
84
0
        cur = ggml_add(ctx0, cur, ffn_inp);
85
86
0
        cur = build_cvec(cur, il);
87
0
        cb(cur, "l_out", il);
88
89
        // input for next layer
90
0
        inpL = cur;
91
0
    }
92
0
    cur = inpL;
93
94
0
    cur = build_norm(cur,
95
0
            model.output_norm, NULL,
96
0
            LLM_NORM_RMS, -1);
97
98
0
    cb(cur, "result_norm", -1);
99
0
    res->t_embd = cur;
100
101
    // lm_head
102
0
    cur = build_lora_mm(model.output, cur);
103
104
0
    cb(cur, "result_output", -1);
105
0
    res->t_logits = cur;
106
107
0
    ggml_build_forward_expand(gf, cur);
108
0
}