Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/afmoe.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_afmoe::llm_build_afmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
6
7
0
    ggml_tensor * cur;
8
0
    ggml_tensor * inpL;
9
10
0
    inpL = build_inp_embd(model.tok_embd);
11
12
    // MuP scaling: embeddings * sqrt(hidden_size)
13
    // mup_enabled = true, hidden_size = 1024, scale = 32.0
14
0
    inpL = ggml_scale(ctx0, inpL, sqrtf(float(n_embd)));
15
0
    cb(inpL, "inp_embd_scaled", -1);
16
17
    // inp_pos - contains the positions
18
0
    ggml_tensor * inp_pos = build_inp_pos();
19
0
    auto * inp_attn = build_attn_inp_kv_iswa();
20
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
21
22
0
    const float kq_scale = 1.0f/sqrtf(float(n_embd_head));
23
24
0
    for (int il = 0; il < n_layer; ++il) {
25
0
        ggml_tensor * inpSA = inpL;
26
27
        // dual attention normalization (pre)
28
0
        cur = build_norm(inpL,
29
0
                model.layers[il].attn_norm, NULL,
30
0
                LLM_NORM_RMS, il);
31
0
        cb(cur, "attn_norm", il);
32
33
        // self-attention
34
0
        {
35
0
            ggml_tensor * attn_inp = cur;  // save input for gate computation
36
37
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
38
0
            cb(Qcur, "Qcur", il);
39
40
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
41
0
            cb(Kcur, "Kcur", il);
42
43
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
44
0
            cb(Vcur, "Vcur", il);
45
46
            // compute gate from input
47
0
            ggml_tensor * gate = build_lora_mm(model.layers[il].wqkv_gate, attn_inp);
48
0
            cb(gate, "attn_gate_proj", il);
49
50
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
51
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
52
53
            // Q/K normalization
54
0
            Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
55
0
            Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
56
0
            cb(Qcur, "Qcur_normed", il);
57
0
            cb(Kcur, "Kcur_normed", il);
58
59
            // RoPE only for sliding_attention layers
60
0
            const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
61
0
                                ((il + 1) % hparams.n_no_rope_layer_step) != 0;
62
0
            if (use_rope) {
63
0
                Qcur = ggml_rope_ext(
64
0
                        ctx0, Qcur, inp_pos, nullptr,
65
0
                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
66
0
                        ext_factor, attn_factor, beta_fast, beta_slow);
67
0
                cb(Qcur, "Qcur_rope", il);
68
69
0
                Kcur = ggml_rope_ext(
70
0
                        ctx0, Kcur, inp_pos, nullptr,
71
0
                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
72
0
                        ext_factor, attn_factor, beta_fast, beta_slow);
73
0
                cb(Kcur, "Kcur_rope", il);
74
0
            }
75
76
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
77
78
0
            cur = build_attn(inp_attn,
79
0
                    NULL, NULL,  // wo will be applied after gating
80
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
81
0
            cb(cur, "attn_out", il);
82
83
            // attention gating: attn_out * sigmoid(gate) BEFORE o_proj
84
0
            gate = ggml_sigmoid(ctx0, gate);
85
0
            cb(gate, "attn_gate_sig", il);
86
0
            cur = ggml_mul(ctx0, cur, gate);
87
0
            cb(cur, "attn_gated", il);
88
89
            // now apply output projection
90
0
            cur = build_lora_mm(model.layers[il].wo, cur);
91
0
            cb(cur, "attn_o_proj", il);
92
0
        }
93
94
        // dual attention normalization (post)
95
0
        cur = build_norm(cur,
96
0
                model.layers[il].attn_post_norm, NULL,
97
0
                LLM_NORM_RMS, il);
98
0
        cb(cur, "attn_post_norm", il);
99
100
0
        if (il == n_layer - 1 && inp_out_ids) {
101
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
102
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
103
0
        }
104
105
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
106
0
        cb(ffn_inp, "ffn_inp", il);
107
108
        // dual ffn normalization (pre)
109
0
        cur = build_norm(ffn_inp,
110
0
                model.layers[il].ffn_norm, NULL,
111
0
                LLM_NORM_RMS, il);
112
0
        cb(cur, "ffn_norm", il);
113
114
        // MoE or dense FFN
115
0
        if ((uint32_t)il >= hparams.n_layer_dense_lead) {
116
            // MoE layer with sigmoid routing, normalization, and scaling
117
0
            ggml_tensor * moe_out = build_moe_ffn(cur,
118
0
                    model.layers[il].ffn_gate_inp,
119
0
                    model.layers[il].ffn_up_exps,
120
0
                    model.layers[il].ffn_gate_exps,
121
0
                    model.layers[il].ffn_down_exps,
122
0
                    model.layers[il].ffn_exp_probs_b,
123
0
                    n_expert, n_expert_used,
124
0
                    LLM_FFN_SILU,
125
0
                    hparams.expert_weights_norm,           // norm_w (route_norm=True)
126
0
                    hparams.expert_weights_scale,          // scale_w
127
0
                    hparams.expert_weights_scale,          // w_scale (route_scale=2.826)
128
0
                    (llama_expert_gating_func_type) hparams.expert_gating_func,
129
0
                    il);
130
0
            cb(moe_out, "ffn_moe_out", il);
131
132
            // shared expert
133
0
            if (hparams.n_expert_shared > 0) {
134
0
                ggml_tensor * ffn_shexp = build_ffn(cur,
135
0
                        model.layers[il].ffn_up_shexp,   NULL, NULL,
136
0
                        model.layers[il].ffn_gate_shexp, NULL, NULL,
137
0
                        model.layers[il].ffn_down_shexp, NULL, NULL,
138
0
                        NULL,
139
0
                        LLM_FFN_SILU, LLM_FFN_PAR, il);
140
0
                cb(ffn_shexp, "ffn_shexp", il);
141
142
0
                cur = ggml_add(ctx0, moe_out, ffn_shexp);
143
0
                cb(cur, "ffn_out", il);
144
0
            } else {
145
0
                cur = moe_out;
146
0
            }
147
0
        } else {
148
            // dense layer
149
0
            cur = build_ffn(cur,
150
0
                    model.layers[il].ffn_up,   NULL, NULL,
151
0
                    model.layers[il].ffn_gate, NULL, NULL,
152
0
                    model.layers[il].ffn_down, NULL, NULL,
153
0
                    NULL,
154
0
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
155
0
            cb(cur, "ffn_out", il);
156
0
        }
157
158
        // dual ffn normalization (post)
159
0
        cur = build_norm(cur,
160
0
                model.layers[il].ffn_post_norm, NULL,
161
0
                LLM_NORM_RMS, il);
162
0
        cb(cur, "ffn_post_norm", il);
163
164
0
        cur = ggml_add(ctx0, cur, ffn_inp);
165
0
        cur = build_cvec(cur, il);
166
0
        cb(cur, "l_out", il);
167
168
        // input for next layer
169
0
        inpL = cur;
170
0
    }
171
172
0
    cur = inpL;
173
174
0
    cur = build_norm(cur,
175
0
            model.output_norm, NULL,
176
0
            LLM_NORM_RMS, -1);
177
0
    cb(cur, "result_norm", -1);
178
179
0
    res->t_embd = cur;
180
181
    // lm_head
182
0
    cur = build_lora_mm(model.output, cur);
183
0
    cb(cur, "result_output", -1);
184
0
    res->t_logits = cur;
185
186
0
    ggml_build_forward_expand(gf, cur);
187
0
}