Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/chameleon.cpp
Line
Count
Source
1
#include "models.h"
2
3
#include <float.h>
4
5
0
llm_build_chameleon::llm_build_chameleon(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
6
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
7
8
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
9
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
10
11
0
    ggml_tensor * cur;
12
0
    ggml_tensor * inpL;
13
14
0
    inpL = build_inp_embd(model.tok_embd);
15
16
    // inp_pos - contains the positions
17
0
    ggml_tensor * inp_pos = build_inp_pos();
18
19
0
    auto * inp_attn = build_attn_inp_kv();
20
21
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
22
23
0
    for (int il = 0; il < n_layer; ++il) {
24
0
        ggml_tensor * inpSA = inpL;
25
26
        // norm
27
0
        if (hparams.swin_norm) {
28
0
            cur = inpL;
29
0
        } else {
30
0
            cur = build_norm(inpL,
31
0
                    model.layers[il].attn_norm, NULL,
32
0
                    LLM_NORM_RMS, il);
33
0
            cb(cur, "attn_norm", il);
34
0
        }
35
36
        // self-attention
37
0
        {
38
            // compute Q and K and RoPE them
39
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
40
0
            cb(Qcur, "Qcur", il);
41
42
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
43
0
            cb(Kcur, "Kcur", il);
44
45
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
46
0
            cb(Vcur, "Vcur", il);
47
48
0
            if (model.layers[il].attn_q_norm) {
49
0
                Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
50
0
                        ggml_element_size(Qcur) * n_embd_head,
51
0
                        ggml_element_size(Qcur) * n_embd_head * n_head,
52
0
                        0);
53
0
                cb(Qcur, "Qcur", il);
54
55
0
                Qcur = build_norm(Qcur,
56
0
                        model.layers[il].attn_q_norm,
57
0
                        model.layers[il].attn_q_norm_b,
58
0
                        LLM_NORM, il);
59
0
                cb(Qcur, "Qcur", il);
60
0
            }
61
62
0
            if (model.layers[il].attn_k_norm) {
63
0
                Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
64
0
                        ggml_element_size(Kcur) * n_embd_head,
65
0
                        ggml_element_size(Kcur) * n_embd_head * n_head_kv,
66
0
                        0);
67
0
                cb(Kcur, "Kcur", il);
68
69
0
                Kcur = build_norm(Kcur,
70
0
                        model.layers[il].attn_k_norm,
71
0
                        model.layers[il].attn_k_norm_b,
72
0
                        LLM_NORM, il);
73
0
                cb(Kcur, "Kcur", il);
74
0
            }
75
76
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
77
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
78
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
79
80
0
            Qcur = ggml_rope_ext(
81
0
                    ctx0, Qcur, inp_pos, nullptr,
82
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
83
0
                    ext_factor, attn_factor, beta_fast, beta_slow
84
0
                    );
85
86
0
            Kcur = ggml_rope_ext(
87
0
                    ctx0, Kcur, inp_pos, nullptr,
88
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
89
0
                    ext_factor, attn_factor, beta_fast, beta_slow
90
0
                    );
91
92
0
            cb(Qcur, "Qcur", il);
93
0
            cb(Kcur, "Kcur", il);
94
0
            cb(Vcur, "Vcur", il);
95
96
0
            cur = build_attn(inp_attn,
97
0
                    model.layers[il].wo, nullptr,
98
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
99
0
        }
100
101
0
        if (il == n_layer - 1 && inp_out_ids) {
102
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
103
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
104
0
        }
105
106
0
        if (hparams.swin_norm) {
107
0
            cur = build_norm(cur,
108
0
                    model.layers[il].attn_norm, NULL,
109
0
                    LLM_NORM_RMS, il);
110
0
        }
111
112
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
113
0
        cb(ffn_inp, "ffn_inp", il);
114
115
        // feed-forward network
116
0
        if (!hparams.swin_norm) {
117
0
            cur = build_norm(ffn_inp,
118
0
                    model.layers[il].ffn_norm, NULL,
119
0
                    LLM_NORM_RMS, il);
120
0
            cb(cur, "ffn_norm", il);
121
0
        }
122
123
0
        cur = build_ffn(cur,
124
0
                model.layers[il].ffn_up,   NULL, NULL,
125
0
                model.layers[il].ffn_gate, NULL, NULL,
126
0
                model.layers[il].ffn_down, NULL, NULL,
127
0
                NULL,
128
0
                LLM_FFN_SILU, LLM_FFN_PAR, il);
129
0
        cb(cur, "ffn_out", il);
130
131
0
        if (hparams.swin_norm) {
132
0
            cur = build_norm(cur,
133
0
                    model.layers[il].ffn_norm, NULL,
134
0
                    LLM_NORM_RMS, il);
135
0
            cb(cur, "ffn_norm", il);
136
0
        }
137
138
0
        cur = ggml_add(ctx0, cur, ffn_inp);
139
0
        cb(cur, "ffn_out", il);
140
141
0
        cur = build_cvec(cur, il);
142
0
        cb(cur, "l_out", il);
143
144
        // input for next layer
145
0
        inpL = cur;
146
0
    }
147
148
0
    cur = inpL;
149
150
0
    cur = build_norm(cur,
151
0
            model.output_norm, NULL,
152
0
            LLM_NORM_RMS, -1);
153
154
0
    cb(cur, "result_norm", -1);
155
0
    res->t_embd = cur;
156
157
    // lm_head
158
0
    cur = build_lora_mm(model.output, cur);
159
0
    cb(cur, "result_output_with_img_logits", -1);
160
161
    // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
162
    // Needs to be removed once image outputs are supported.
163
0
    int img_token_end_idx = 8196;
164
0
    int img_token_start_idx = 4;
165
0
    int num_img_tokens = img_token_end_idx - img_token_start_idx;
166
    // creates 1d tensor of size num_img_tokens and values -FLT_MAX,
167
    // which ensures that text token values are always at least larger than image token values
168
0
    ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
169
0
    img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
170
0
    cb(img_logits, "img_logits", -1);
171
172
0
    cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
173
174
0
    cb(cur, "result_output", -1);
175
0
    res->t_logits = cur;
176
177
0
    ggml_build_forward_expand(gf, cur);
178
0
}