/src/llama.cpp/src/models/chameleon.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | | #include <float.h> |
4 | | |
5 | 0 | llm_build_chameleon::llm_build_chameleon(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
6 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
7 | |
|
8 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
9 | 0 | GGML_ASSERT(n_embd_head == hparams.n_rot); |
10 | |
|
11 | 0 | ggml_tensor * cur; |
12 | 0 | ggml_tensor * inpL; |
13 | |
|
14 | 0 | inpL = build_inp_embd(model.tok_embd); |
15 | | |
16 | | // inp_pos - contains the positions |
17 | 0 | ggml_tensor * inp_pos = build_inp_pos(); |
18 | |
|
19 | 0 | auto * inp_attn = build_attn_inp_kv(); |
20 | |
|
21 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
22 | |
|
23 | 0 | for (int il = 0; il < n_layer; ++il) { |
24 | 0 | ggml_tensor * inpSA = inpL; |
25 | | |
26 | | // norm |
27 | 0 | if (hparams.swin_norm) { |
28 | 0 | cur = inpL; |
29 | 0 | } else { |
30 | 0 | cur = build_norm(inpL, |
31 | 0 | model.layers[il].attn_norm, NULL, |
32 | 0 | LLM_NORM_RMS, il); |
33 | 0 | cb(cur, "attn_norm", il); |
34 | 0 | } |
35 | | |
36 | | // self-attention |
37 | 0 | { |
38 | | // compute Q and K and RoPE them |
39 | 0 | ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); |
40 | 0 | cb(Qcur, "Qcur", il); |
41 | |
|
42 | 0 | ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); |
43 | 0 | cb(Kcur, "Kcur", il); |
44 | |
|
45 | 0 | ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); |
46 | 0 | cb(Vcur, "Vcur", il); |
47 | |
|
48 | 0 | if (model.layers[il].attn_q_norm) { |
49 | 0 | Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens, |
50 | 0 | ggml_element_size(Qcur) * n_embd_head, |
51 | 0 | ggml_element_size(Qcur) * n_embd_head * n_head, |
52 | 0 | 0); |
53 | 0 | cb(Qcur, "Qcur", il); |
54 | |
|
55 | 0 | Qcur = build_norm(Qcur, |
56 | 0 | model.layers[il].attn_q_norm, |
57 | 0 | model.layers[il].attn_q_norm_b, |
58 | 0 | LLM_NORM, il); |
59 | 0 | cb(Qcur, "Qcur", il); |
60 | 0 | } |
61 | |
|
62 | 0 | if (model.layers[il].attn_k_norm) { |
63 | 0 | Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens, |
64 | 0 | ggml_element_size(Kcur) * n_embd_head, |
65 | 0 | ggml_element_size(Kcur) * n_embd_head * n_head_kv, |
66 | 0 | 0); |
67 | 0 | cb(Kcur, "Kcur", il); |
68 | |
|
69 | 0 | Kcur = build_norm(Kcur, |
70 | 0 | model.layers[il].attn_k_norm, |
71 | 0 | model.layers[il].attn_k_norm_b, |
72 | 0 | LLM_NORM, il); |
73 | 0 | cb(Kcur, "Kcur", il); |
74 | 0 | } |
75 | |
|
76 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
77 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); |
78 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); |
79 | |
|
80 | 0 | Qcur = ggml_rope_ext( |
81 | 0 | ctx0, Qcur, inp_pos, nullptr, |
82 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
83 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
84 | 0 | ); |
85 | |
|
86 | 0 | Kcur = ggml_rope_ext( |
87 | 0 | ctx0, Kcur, inp_pos, nullptr, |
88 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
89 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
90 | 0 | ); |
91 | |
|
92 | 0 | cb(Qcur, "Qcur", il); |
93 | 0 | cb(Kcur, "Kcur", il); |
94 | 0 | cb(Vcur, "Vcur", il); |
95 | |
|
96 | 0 | cur = build_attn(inp_attn, |
97 | 0 | model.layers[il].wo, nullptr, |
98 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); |
99 | 0 | } |
100 | |
|
101 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
102 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
103 | 0 | inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); |
104 | 0 | } |
105 | |
|
106 | 0 | if (hparams.swin_norm) { |
107 | 0 | cur = build_norm(cur, |
108 | 0 | model.layers[il].attn_norm, NULL, |
109 | 0 | LLM_NORM_RMS, il); |
110 | 0 | } |
111 | |
|
112 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); |
113 | 0 | cb(ffn_inp, "ffn_inp", il); |
114 | | |
115 | | // feed-forward network |
116 | 0 | if (!hparams.swin_norm) { |
117 | 0 | cur = build_norm(ffn_inp, |
118 | 0 | model.layers[il].ffn_norm, NULL, |
119 | 0 | LLM_NORM_RMS, il); |
120 | 0 | cb(cur, "ffn_norm", il); |
121 | 0 | } |
122 | |
|
123 | 0 | cur = build_ffn(cur, |
124 | 0 | model.layers[il].ffn_up, NULL, NULL, |
125 | 0 | model.layers[il].ffn_gate, NULL, NULL, |
126 | 0 | model.layers[il].ffn_down, NULL, NULL, |
127 | 0 | NULL, |
128 | 0 | LLM_FFN_SILU, LLM_FFN_PAR, il); |
129 | 0 | cb(cur, "ffn_out", il); |
130 | |
|
131 | 0 | if (hparams.swin_norm) { |
132 | 0 | cur = build_norm(cur, |
133 | 0 | model.layers[il].ffn_norm, NULL, |
134 | 0 | LLM_NORM_RMS, il); |
135 | 0 | cb(cur, "ffn_norm", il); |
136 | 0 | } |
137 | |
|
138 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
139 | 0 | cb(cur, "ffn_out", il); |
140 | |
|
141 | 0 | cur = build_cvec(cur, il); |
142 | 0 | cb(cur, "l_out", il); |
143 | | |
144 | | // input for next layer |
145 | 0 | inpL = cur; |
146 | 0 | } |
147 | |
|
148 | 0 | cur = inpL; |
149 | |
|
150 | 0 | cur = build_norm(cur, |
151 | 0 | model.output_norm, NULL, |
152 | 0 | LLM_NORM_RMS, -1); |
153 | |
|
154 | 0 | cb(cur, "result_norm", -1); |
155 | 0 | res->t_embd = cur; |
156 | | |
157 | | // lm_head |
158 | 0 | cur = build_lora_mm(model.output, cur); |
159 | 0 | cb(cur, "result_output_with_img_logits", -1); |
160 | | |
161 | | // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs. |
162 | | // Needs to be removed once image outputs are supported. |
163 | 0 | int img_token_end_idx = 8196; |
164 | 0 | int img_token_start_idx = 4; |
165 | 0 | int num_img_tokens = img_token_end_idx - img_token_start_idx; |
166 | | // creates 1d tensor of size num_img_tokens and values -FLT_MAX, |
167 | | // which ensures that text token values are always at least larger than image token values |
168 | 0 | ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens); |
169 | 0 | img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX); |
170 | 0 | cb(img_logits, "img_logits", -1); |
171 | |
|
172 | 0 | cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx); |
173 | |
|
174 | 0 | cb(cur, "result_output", -1); |
175 | 0 | res->t_logits = cur; |
176 | |
|
177 | 0 | ggml_build_forward_expand(gf, cur); |
178 | 0 | } |