Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/falcon-h1.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
5
llm_build_falcon_h1::llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params) :
6
0
    llm_graph_context_mamba(params) {
7
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
8
9
0
    ggml_tensor * cur;
10
0
    ggml_tensor * inpL;
11
12
0
    inpL = build_inp_embd(model.tok_embd);
13
14
    // inp_pos - contains the positions
15
0
    ggml_tensor * inp_pos = build_inp_pos();
16
17
    // Build the inputs in the recurrent & kv cache
18
0
    auto * inp = build_inp_mem_hybrid();
19
20
0
    const float kq_scale =
21
0
        hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
22
23
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
24
25
0
    for (int il = 0; il < n_layer; ++il) {
26
0
        ggml_tensor * inpSA = inpL;
27
28
0
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
29
0
        cb(cur, "attn_norm", il);
30
31
        // self-attention
32
0
        ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
33
0
        cb(Qcur, "Qcur", il);
34
35
0
        ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
36
0
        cb(Kcur, "Kcur", il);
37
38
0
        ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
39
0
        cb(Vcur, "Vcur", il);
40
41
0
        Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
42
0
        Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
43
44
0
        Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
45
46
0
        Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, hparams.rope_type, n_ctx_orig, freq_base, freq_scale,
47
0
                             ext_factor, attn_factor, beta_fast, beta_slow);
48
49
0
        Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, hparams.rope_type, n_ctx_orig, freq_base, freq_scale,
50
0
                             ext_factor, attn_factor, beta_fast, beta_slow);
51
52
0
        cb(Qcur, "Qcur-post-rope", il);
53
0
        cb(Kcur, "Kcur-post-rope", il);
54
0
        cb(Vcur, "Vcur-post-rope", il);
55
56
0
        ggml_tensor * attn_out = build_attn(inp->get_attn(),
57
0
                                    model.layers[il].wo, NULL,
58
0
                                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
59
0
        cb(attn_out, "attn_out", il);
60
61
0
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
62
        // Mamba2 layer
63
0
        cb(cur, "ssm_in", il);
64
65
0
        ggml_tensor * ssm_out = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il);
66
0
        cb(ssm_out, "ssm_out", il);
67
68
        // // Aggregation
69
0
        cur   = ggml_add(ctx0, attn_out, ssm_out);
70
0
        inpSA = ggml_add(ctx0, cur, inpSA);
71
0
        cb(cur, "layer_out", il);
72
73
0
        if (il == n_layer - 1 && inp_out_ids) {
74
0
            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
75
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
76
0
        }
77
0
        ggml_tensor * ffn_inp = inpSA;
78
0
        cb(ffn_inp, "ffn_inp", il);
79
80
        // feed-forward network
81
0
        cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
82
0
        cb(cur, "ffn_norm", il);
83
84
0
        cur = build_ffn(cur,
85
0
                model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
86
0
                model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
87
0
                model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
88
0
                NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
89
0
        cb(cur, "ffn_out", il);
90
91
0
        cur = ggml_add(ctx0, cur, inpSA);
92
93
0
        cur = build_cvec(cur, il);
94
0
        cb(cur, "l_out", il);
95
96
        // input for next layer
97
0
        inpL = cur;
98
0
    }
99
0
    cur = inpL;
100
101
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
102
103
0
    cb(cur, "result_norm", -1);
104
0
    res->t_embd = cur;
105
106
    // lm_head
107
0
    cur = build_lora_mm(model.output, cur);
108
109
0
    cb(cur, "result_output", -1);
110
0
    res->t_logits = cur;
111
112
0
    ggml_build_forward_expand(gf, cur);
113
0
}