Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/gemma2-iswa.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_gemma2_iswa::llm_build_gemma2_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_k;
5
6
0
    ggml_tensor * cur;
7
0
    ggml_tensor * inpL;
8
9
0
    inpL = build_inp_embd(model.tok_embd);
10
11
0
    inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
12
0
    cb(inpL, "inp_scaled", -1);
13
14
    // inp_pos - contains the positions
15
0
    ggml_tensor * inp_pos = build_inp_pos();
16
17
0
    auto * inp_attn = build_attn_inp_kv_iswa();
18
19
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
20
21
0
    for (int il = 0; il < n_layer; ++il) {
22
        // norm
23
0
        cur = build_norm(inpL,
24
0
                model.layers[il].attn_norm, NULL,
25
0
                LLM_NORM_RMS, il);
26
0
        cb(cur, "attn_norm", il);
27
28
        // self-attention
29
0
        {
30
            // compute Q and K and RoPE them
31
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
32
0
            cb(Qcur, "Qcur", il);
33
34
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
35
0
            cb(Kcur, "Kcur", il);
36
37
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
38
0
            cb(Vcur, "Vcur", il);
39
40
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
41
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
42
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
43
44
0
            Qcur = ggml_rope_ext(
45
0
                    ctx0, Qcur, inp_pos, nullptr,
46
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
47
0
                    ext_factor, attn_factor, beta_fast, beta_slow);
48
49
0
            Kcur = ggml_rope_ext(
50
0
                    ctx0, Kcur, inp_pos, nullptr,
51
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
52
0
                    ext_factor, attn_factor, beta_fast, beta_slow);
53
54
0
            cb(Qcur, "Qcur", il);
55
0
            cb(Kcur, "Kcur", il);
56
0
            cb(Vcur, "Vcur", il);
57
58
0
            Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
59
60
0
            cur = build_attn(inp_attn,
61
0
                    model.layers[il].wo, NULL,
62
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
63
0
        }
64
0
        if (il == n_layer - 1 && inp_out_ids) {
65
0
            cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
66
0
            inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
67
0
        }
68
0
        cur = build_norm(cur,
69
0
                model.layers[il].attn_post_norm, NULL,
70
0
                LLM_NORM_RMS, il);
71
0
        cb(cur, "attn_post_norm", il);
72
73
0
        ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
74
0
        cb(sa_out, "sa_out", il);
75
76
0
        cur = build_norm(sa_out,
77
0
                model.layers[il].ffn_norm, NULL,
78
0
                LLM_NORM_RMS, il);
79
0
        cb(cur, "ffn_norm", il);
80
81
        // feed-forward network
82
0
        {
83
0
            cur = build_ffn(cur,
84
0
                    model.layers[il].ffn_up,   NULL, NULL,
85
0
                    model.layers[il].ffn_gate, NULL, NULL,
86
0
                    model.layers[il].ffn_down, NULL, NULL,
87
0
                    NULL,
88
0
                    LLM_FFN_GELU, LLM_FFN_PAR, il);
89
0
            cb(cur, "ffn_out", il);
90
0
        }
91
0
        cur = build_norm(cur,
92
0
                model.layers[il].ffn_post_norm, NULL,
93
0
                LLM_NORM_RMS, -1);
94
0
        cb(cur, "ffn_post_norm", -1);
95
96
0
        cur = ggml_add(ctx0, cur, sa_out);
97
98
0
        cur = build_cvec(cur, il);
99
0
        cb(cur, "l_out", il);
100
101
        // input for next layer
102
0
        inpL = cur;
103
0
    }
104
0
    cur = inpL;
105
106
0
    cur = build_norm(cur,
107
0
            model.output_norm, NULL,
108
0
            LLM_NORM_RMS, -1);
109
110
0
    cb(cur, "result_norm", -1);
111
0
    res->t_embd = cur;
112
113
    // lm_head
114
0
    cur = build_lora_mm(model.output, cur);
115
116
    // final logit soft-capping
117
0
    cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
118
0
    cur = ggml_tanh(ctx0, cur);
119
0
    cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
120
121
0
    cb(cur, "result_output", -1);
122
0
    res->t_logits = cur;
123
124
0
    ggml_build_forward_expand(gf, cur);
125
0
}