/src/llama.cpp/src/models/qwen2moe.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | 0 | llm_build_qwen2moe::llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
4 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
5 | |
|
6 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
7 | 0 | GGML_ASSERT(n_embd_head == hparams.n_rot); |
8 | |
|
9 | 0 | ggml_tensor * cur; |
10 | 0 | ggml_tensor * inpL; |
11 | |
|
12 | 0 | inpL = build_inp_embd(model.tok_embd); |
13 | | |
14 | | // inp_pos - contains the positions |
15 | 0 | ggml_tensor * inp_pos = build_inp_pos(); |
16 | |
|
17 | 0 | auto * inp_attn = build_attn_inp_kv(); |
18 | |
|
19 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
20 | |
|
21 | 0 | for (int il = 0; il < n_layer; ++il) { |
22 | 0 | ggml_tensor * inpSA = inpL; |
23 | | |
24 | | // norm |
25 | 0 | cur = build_norm(inpL, |
26 | 0 | model.layers[il].attn_norm, NULL, |
27 | 0 | LLM_NORM_RMS, il); |
28 | 0 | cb(cur, "attn_norm", il); |
29 | | |
30 | | // self_attention |
31 | 0 | { |
32 | | // compute Q and K and RoPE them |
33 | 0 | ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); |
34 | 0 | cb(Qcur, "Qcur", il); |
35 | 0 | if (model.layers[il].bq) { |
36 | 0 | Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); |
37 | 0 | cb(Qcur, "Qcur", il); |
38 | 0 | } |
39 | 0 | ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); |
40 | 0 | cb(Kcur, "Kcur", il); |
41 | 0 | if (model.layers[il].bk) { |
42 | 0 | Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); |
43 | 0 | cb(Kcur, "Kcur", il); |
44 | 0 | } |
45 | 0 | ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); |
46 | 0 | cb(Vcur, "Vcur", il); |
47 | 0 | if (model.layers[il].bv) { |
48 | 0 | Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); |
49 | 0 | cb(Vcur, "Vcur", il); |
50 | 0 | } |
51 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
52 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); |
53 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); |
54 | |
|
55 | 0 | Qcur = ggml_rope_ext( |
56 | 0 | ctx0, Qcur, inp_pos, nullptr, |
57 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
58 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
59 | 0 | ); |
60 | |
|
61 | 0 | Kcur = ggml_rope_ext( |
62 | 0 | ctx0, Kcur, inp_pos, nullptr, |
63 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
64 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
65 | 0 | ); |
66 | |
|
67 | 0 | cb(Qcur, "Qcur", il); |
68 | 0 | cb(Kcur, "Kcur", il); |
69 | 0 | cb(Vcur, "Vcur", il); |
70 | |
|
71 | 0 | cur = build_attn(inp_attn, |
72 | 0 | model.layers[il].wo, model.layers[il].bo, |
73 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); |
74 | 0 | } |
75 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
76 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
77 | 0 | inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); |
78 | 0 | } |
79 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); |
80 | 0 | cb(ffn_inp, "ffn_inp", il); |
81 | | |
82 | | // MoE branch |
83 | 0 | cur = build_norm(ffn_inp, |
84 | 0 | model.layers[il].ffn_norm, NULL, |
85 | 0 | LLM_NORM_RMS, il); |
86 | 0 | cb(cur, "ffn_norm", il); |
87 | |
|
88 | 0 | ggml_tensor * moe_out = |
89 | 0 | build_moe_ffn(cur, |
90 | 0 | model.layers[il].ffn_gate_inp, |
91 | 0 | model.layers[il].ffn_up_exps, |
92 | 0 | model.layers[il].ffn_gate_exps, |
93 | 0 | model.layers[il].ffn_down_exps, |
94 | 0 | nullptr, |
95 | 0 | n_expert, n_expert_used, |
96 | 0 | LLM_FFN_SILU, false, |
97 | 0 | false, 0.0, |
98 | 0 | LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, |
99 | 0 | il); |
100 | 0 | cb(moe_out, "ffn_moe_out", il); |
101 | | |
102 | | // FFN shared expert |
103 | 0 | { |
104 | 0 | ggml_tensor * cur_gate_inp = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur); |
105 | 0 | cb(cur_gate_inp, "ffn_shexp_gate_inp", il); |
106 | | |
107 | | // sigmoid |
108 | 0 | ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp); |
109 | 0 | cb(cur_gate, "ffn_shexp_gate", il); |
110 | |
|
111 | 0 | ggml_tensor * cur_ffn = build_ffn(cur, |
112 | 0 | model.layers[il].ffn_up_shexp, NULL, NULL, |
113 | 0 | model.layers[il].ffn_gate_shexp, NULL, NULL, |
114 | 0 | model.layers[il].ffn_down_shexp, NULL, NULL, |
115 | 0 | NULL, |
116 | 0 | LLM_FFN_SILU, LLM_FFN_PAR, il); |
117 | 0 | cb(cur_ffn, "ffn_shexp", il); |
118 | |
|
119 | 0 | ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate); |
120 | 0 | cb(ffn_shexp_out, "ffn_shexp_out", il); |
121 | |
|
122 | 0 | moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out); |
123 | 0 | cb(moe_out, "ffn_out", il); |
124 | |
|
125 | 0 | cur = moe_out; |
126 | 0 | } |
127 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
128 | |
|
129 | 0 | cur = build_cvec(cur, il); |
130 | 0 | cb(cur, "l_out", il); |
131 | | |
132 | | // input for next layer |
133 | 0 | inpL = cur; |
134 | 0 | } |
135 | 0 | cur = inpL; |
136 | |
|
137 | 0 | cur = build_norm(cur, |
138 | 0 | model.output_norm, NULL, |
139 | 0 | LLM_NORM_RMS, -1); |
140 | |
|
141 | 0 | cb(cur, "result_norm", -1); |
142 | 0 | res->t_embd = cur; |
143 | | |
144 | | // lm_head |
145 | 0 | cur = build_lora_mm(model.output, cur); |
146 | |
|
147 | 0 | cb(cur, "result_output", -1); |
148 | 0 | res->t_logits = cur; |
149 | |
|
150 | 0 | ggml_build_forward_expand(gf, cur); |
151 | 0 | } |