Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/qwen2vl.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_qwen2vl::llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
6
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
8
9
0
    ggml_tensor * cur;
10
0
    ggml_tensor * inpL;
11
12
0
    inpL = build_inp_embd(model.tok_embd);
13
14
    // inp_pos - contains the positions
15
0
    ggml_tensor * inp_pos = build_inp_pos();
16
17
0
    auto * inp_attn = build_attn_inp_kv();
18
19
0
    int sections[4];
20
0
    std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
21
22
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
23
24
0
    for (int il = 0; il < n_layer; ++il) {
25
0
        ggml_tensor * inpSA = inpL;
26
27
        // norm
28
0
        cur = build_norm(inpL,
29
0
                model.layers[il].attn_norm, NULL,
30
0
                LLM_NORM_RMS, il);
31
0
        cb(cur, "attn_norm", il);
32
33
        // self-attention
34
0
        {
35
            // compute Q and K and RoPE them
36
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
37
0
            Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
38
0
            cb(Qcur, "Qcur", il);
39
40
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
41
0
            Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
42
0
            cb(Kcur, "Kcur", il);
43
44
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
45
0
            Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
46
0
            cb(Vcur, "Vcur", il);
47
48
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
49
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
50
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
51
52
0
            Qcur = ggml_rope_multi(
53
0
                    ctx0, Qcur, inp_pos, nullptr,
54
0
                    n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
55
0
                    ext_factor, attn_factor, beta_fast, beta_slow
56
0
                    );
57
58
0
            Kcur = ggml_rope_multi(
59
0
                    ctx0, Kcur, inp_pos, nullptr,
60
0
                    n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
61
0
                    ext_factor, attn_factor, beta_fast, beta_slow
62
0
                    );
63
64
0
            cb(Qcur, "Qcur", il);
65
0
            cb(Kcur, "Kcur", il);
66
0
            cb(Vcur, "Vcur", il);
67
68
0
            cur = build_attn(inp_attn,
69
0
                    model.layers[il].wo, model.layers[il].bo,
70
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
71
0
        }
72
0
        if (il == n_layer - 1 && inp_out_ids) {
73
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
74
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
75
0
        }
76
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
77
0
        cb(ffn_inp, "ffn_inp", il);
78
79
        // feed-forward network
80
0
        cur = build_norm(ffn_inp,
81
0
                model.layers[il].ffn_norm, NULL,
82
0
                LLM_NORM_RMS, il);
83
0
        cb(cur, "ffn_norm", il);
84
85
0
        cur = build_ffn(cur,
86
0
                model.layers[il].ffn_up,   NULL, NULL,
87
0
                model.layers[il].ffn_gate, NULL, NULL,
88
0
                model.layers[il].ffn_down, NULL, NULL,
89
0
                NULL,
90
0
                LLM_FFN_SILU, LLM_FFN_PAR, il);
91
0
        cb(cur, "ffn_out", il);
92
93
0
        cur = ggml_add(ctx0, cur, ffn_inp);
94
95
0
        cur = build_cvec(cur, il);
96
0
        cb(cur, "l_out", il);
97
98
        // input for next layer
99
0
        inpL = cur;
100
0
    }
101
0
    cur = inpL;
102
103
0
    cur = build_norm(cur,
104
0
            model.output_norm, NULL,
105
0
            LLM_NORM_RMS, -1);
106
107
0
    cb(cur, "result_norm", -1);
108
0
    res->t_embd = cur;
109
110
    // lm_head
111
0
    cur = build_lora_mm(model.output, cur);
112
113
0
    cb(cur, "result_output", -1);
114
0
    res->t_logits = cur;
115
116
0
    ggml_build_forward_expand(gf, cur);
117
0
}