Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/starcoder.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_starcoder::llm_build_starcoder(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
0
    const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
6
7
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
9
0
    ggml_tensor * cur;
10
0
    ggml_tensor * inpL;
11
12
0
    inpL = build_inp_embd(model.tok_embd);
13
14
    // inp_pos - contains the positions
15
0
    ggml_tensor * inp_pos = build_inp_pos();
16
17
0
    auto * inp_attn = build_attn_inp_kv();
18
19
0
    ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
20
0
    cb(pos, "pos_embd", -1);
21
22
0
    inpL = ggml_add(ctx0, inpL, pos);
23
0
    cb(inpL, "inpL", -1);
24
25
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
26
27
0
    for (int il = 0; il < n_layer; ++il) {
28
0
        cur = build_norm(inpL,
29
0
                model.layers[il].attn_norm,
30
0
                model.layers[il].attn_norm_b,
31
0
                LLM_NORM, il);
32
0
        cb(cur, "attn_norm", il);
33
34
        // self-attention
35
0
        {
36
0
            cur = build_lora_mm(model.layers[il].wqkv, cur);
37
0
            cb(cur, "wqkv", il);
38
39
0
            cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
40
0
            cb(cur, "bqkv", il);
41
42
0
            ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head,    n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
43
0
            ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
44
0
            ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
45
46
0
            cb(Qcur, "Qcur", il);
47
0
            cb(Kcur, "Kcur", il);
48
0
            cb(Vcur, "Vcur", il);
49
50
0
            cur = build_attn(inp_attn,
51
0
                    model.layers[il].wo, model.layers[il].bo,
52
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
53
0
        }
54
0
        if (il == n_layer - 1 && inp_out_ids) {
55
0
            cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
56
0
            inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
57
0
        }
58
        // add the input
59
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
60
0
        cb(ffn_inp, "ffn_inp", il);
61
62
        // FF
63
0
        {
64
0
            cur = build_norm(ffn_inp,
65
0
                    model.layers[il].ffn_norm,
66
0
                    model.layers[il].ffn_norm_b,
67
0
                    LLM_NORM, il);
68
0
            cb(cur, "ffn_norm", il);
69
70
0
            cur = build_ffn(cur,
71
0
                    model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
72
0
                    NULL,                      NULL,                        NULL,
73
0
                    model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
74
0
                    NULL,
75
0
                    LLM_FFN_GELU, LLM_FFN_SEQ, il);
76
0
            cb(cur, "ffn_out", il);
77
0
        }
78
0
        cur = ggml_add(ctx0, cur, ffn_inp);
79
80
0
        cur = build_cvec(cur, il);
81
0
        cb(cur, "l_out", il);
82
83
        // input for next layer
84
0
        inpL = cur;
85
0
    }
86
0
    cur = build_norm(inpL,
87
0
            model.output_norm,
88
0
            model.output_norm_b,
89
0
            LLM_NORM, -1);
90
91
0
    cb(cur, "result_norm", -1);
92
0
    res->t_embd = cur;
93
94
0
    cur = build_lora_mm(model.output, cur);
95
96
0
    cb(cur, "result_output", -1);
97
0
    res->t_logits = cur;
98
99
0
    ggml_build_forward_expand(gf, cur);
100
0
}