/src/llama.cpp/ggml/src/gguf.cpp
Line | Count | Source |
1 | | #include "ggml.h" |
2 | | #include "ggml-backend.h" |
3 | | #include "ggml-impl.h" |
4 | | #include "gguf.h" |
5 | | |
6 | | #include <cinttypes> |
7 | | #include <cstddef> |
8 | | #include <cstdint> |
9 | | #include <cstdio> |
10 | | #include <cstdlib> |
11 | | #include <cstring> |
12 | | #include <map> |
13 | | #include <new> |
14 | | #include <stdexcept> |
15 | | #include <string> |
16 | | #include <vector> |
17 | | |
18 | | template <typename T> |
19 | | struct type_to_gguf_type; |
20 | | |
21 | | template <> |
22 | | struct type_to_gguf_type<uint8_t> { |
23 | | static constexpr enum gguf_type value = GGUF_TYPE_UINT8; |
24 | | }; |
25 | | |
26 | | template <> |
27 | | struct type_to_gguf_type<int8_t> { |
28 | | static constexpr enum gguf_type value = GGUF_TYPE_INT8; |
29 | | }; |
30 | | |
31 | | template <> |
32 | | struct type_to_gguf_type<uint16_t> { |
33 | | static constexpr enum gguf_type value = GGUF_TYPE_UINT16; |
34 | | }; |
35 | | |
36 | | template <> |
37 | | struct type_to_gguf_type<int16_t> { |
38 | | static constexpr enum gguf_type value = GGUF_TYPE_INT16; |
39 | | }; |
40 | | |
41 | | template <> |
42 | | struct type_to_gguf_type<uint32_t> { |
43 | | static constexpr enum gguf_type value = GGUF_TYPE_UINT32; |
44 | | }; |
45 | | |
46 | | template <> |
47 | | struct type_to_gguf_type<int32_t> { |
48 | | static constexpr enum gguf_type value = GGUF_TYPE_INT32; |
49 | | }; |
50 | | |
51 | | template <> |
52 | | struct type_to_gguf_type<float> { |
53 | | static constexpr enum gguf_type value = GGUF_TYPE_FLOAT32; |
54 | | }; |
55 | | |
56 | | template <> |
57 | | struct type_to_gguf_type<bool> { |
58 | | static constexpr enum gguf_type value = GGUF_TYPE_BOOL; |
59 | | }; |
60 | | |
61 | | template <> |
62 | | struct type_to_gguf_type<std::string> { |
63 | | static constexpr enum gguf_type value = GGUF_TYPE_STRING; |
64 | | }; |
65 | | |
66 | | template <> |
67 | | struct type_to_gguf_type<uint64_t> { |
68 | | static constexpr enum gguf_type value = GGUF_TYPE_UINT64; |
69 | | }; |
70 | | |
71 | | template <> |
72 | | struct type_to_gguf_type<int64_t> { |
73 | | static constexpr enum gguf_type value = GGUF_TYPE_INT64; |
74 | | }; |
75 | | |
76 | | template <> |
77 | | struct type_to_gguf_type<double> { |
78 | | static constexpr enum gguf_type value = GGUF_TYPE_FLOAT64; |
79 | | }; |
80 | | |
81 | | static const std::map<gguf_type, size_t> GGUF_TYPE_SIZE = { |
82 | | {GGUF_TYPE_UINT8, sizeof(uint8_t)}, |
83 | | {GGUF_TYPE_INT8, sizeof(int8_t)}, |
84 | | {GGUF_TYPE_UINT16, sizeof(uint16_t)}, |
85 | | {GGUF_TYPE_INT16, sizeof(int16_t)}, |
86 | | {GGUF_TYPE_UINT32, sizeof(uint32_t)}, |
87 | | {GGUF_TYPE_INT32, sizeof(int32_t)}, |
88 | | {GGUF_TYPE_FLOAT32, sizeof(float)}, |
89 | | {GGUF_TYPE_BOOL, sizeof(int8_t)}, |
90 | | {GGUF_TYPE_STRING, 0}, // undefined |
91 | | {GGUF_TYPE_ARRAY, 0}, // undefined |
92 | | {GGUF_TYPE_UINT64, sizeof(uint64_t)}, |
93 | | {GGUF_TYPE_INT64, sizeof(int64_t)}, |
94 | | {GGUF_TYPE_FLOAT64, sizeof(double)}, |
95 | | }; |
96 | | static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13"); |
97 | | |
98 | | static const std::map<gguf_type, const char *> GGUF_TYPE_NAME = { |
99 | | {GGUF_TYPE_UINT8, "u8"}, |
100 | | {GGUF_TYPE_INT8, "i8"}, |
101 | | {GGUF_TYPE_UINT16, "u16"}, |
102 | | {GGUF_TYPE_INT16, "i16"}, |
103 | | {GGUF_TYPE_UINT32, "u32"}, |
104 | | {GGUF_TYPE_INT32, "i32"}, |
105 | | {GGUF_TYPE_FLOAT32, "f32"}, |
106 | | {GGUF_TYPE_BOOL, "bool"}, |
107 | | {GGUF_TYPE_STRING, "str"}, |
108 | | {GGUF_TYPE_ARRAY, "arr"}, |
109 | | {GGUF_TYPE_UINT64, "u64"}, |
110 | | {GGUF_TYPE_INT64, "i64"}, |
111 | | {GGUF_TYPE_FLOAT64, "f64"}, |
112 | | }; |
113 | | static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13"); |
114 | | |
115 | 0 | size_t gguf_type_size(enum gguf_type type) { |
116 | 0 | auto it = GGUF_TYPE_SIZE.find(type); |
117 | 0 | return it == GGUF_TYPE_SIZE.end() ? 0 : it->second; |
118 | 0 | } |
119 | | |
120 | | struct gguf_kv { |
121 | | std::string key; |
122 | | |
123 | | bool is_array; |
124 | | enum gguf_type type; |
125 | | |
126 | | std::vector<int8_t> data; |
127 | | std::vector<std::string> data_string; |
128 | | |
129 | | template <typename T> |
130 | | gguf_kv(const std::string & key, const T value) |
131 | 0 | : key(key), is_array(false), type(type_to_gguf_type<T>::value) { |
132 | 0 | GGML_ASSERT(!key.empty()); |
133 | 0 | data.resize(sizeof(T)); |
134 | 0 | memcpy(data.data(), &value, sizeof(T)); |
135 | 0 | } Unexecuted instantiation: gguf_kv::gguf_kv<unsigned char>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, unsigned char) Unexecuted instantiation: gguf_kv::gguf_kv<signed char>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, signed char) Unexecuted instantiation: gguf_kv::gguf_kv<unsigned short>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, unsigned short) Unexecuted instantiation: gguf_kv::gguf_kv<short>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, short) Unexecuted instantiation: gguf_kv::gguf_kv<unsigned int>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, unsigned int) Unexecuted instantiation: gguf_kv::gguf_kv<int>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, int) Unexecuted instantiation: gguf_kv::gguf_kv<float>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, float) Unexecuted instantiation: gguf_kv::gguf_kv<bool>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, bool) Unexecuted instantiation: gguf_kv::gguf_kv<unsigned long>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, unsigned long) Unexecuted instantiation: gguf_kv::gguf_kv<long>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, long) Unexecuted instantiation: gguf_kv::gguf_kv<double>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, double) |
136 | | |
137 | | template <typename T> |
138 | | gguf_kv(const std::string & key, const std::vector<T> & value) |
139 | 0 | : key(key), is_array(true), type(type_to_gguf_type<T>::value) { |
140 | 0 | GGML_ASSERT(!key.empty()); |
141 | 0 | data.resize(value.size()*sizeof(T)); |
142 | 0 | for (size_t i = 0; i < value.size(); ++i) { |
143 | 0 | const T tmp = value[i]; |
144 | 0 | memcpy(data.data() + i*sizeof(T), &tmp, sizeof(T)); |
145 | 0 | } |
146 | 0 | } Unexecuted instantiation: gguf_kv::gguf_kv<unsigned char>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::vector<unsigned char, std::__1::allocator<unsigned char> > const&) Unexecuted instantiation: gguf_kv::gguf_kv<signed char>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::vector<signed char, std::__1::allocator<signed char> > const&) Unexecuted instantiation: gguf_kv::gguf_kv<unsigned short>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::vector<unsigned short, std::__1::allocator<unsigned short> > const&) Unexecuted instantiation: gguf_kv::gguf_kv<short>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::vector<short, std::__1::allocator<short> > const&) Unexecuted instantiation: gguf_kv::gguf_kv<unsigned int>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::vector<unsigned int, std::__1::allocator<unsigned int> > const&) Unexecuted instantiation: gguf_kv::gguf_kv<int>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::vector<int, std::__1::allocator<int> > const&) Unexecuted instantiation: gguf_kv::gguf_kv<float>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::vector<float, std::__1::allocator<float> > const&) Unexecuted instantiation: gguf_kv::gguf_kv<bool>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::vector<bool, std::__1::allocator<bool> > const&) Unexecuted instantiation: gguf_kv::gguf_kv<unsigned long>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::vector<unsigned long, std::__1::allocator<unsigned long> > const&) Unexecuted instantiation: gguf_kv::gguf_kv<long>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::vector<long, std::__1::allocator<long> > const&) Unexecuted instantiation: gguf_kv::gguf_kv<double>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::vector<double, std::__1::allocator<double> > const&) |
147 | | |
148 | | gguf_kv(const std::string & key, const std::string & value) |
149 | 0 | : key(key), is_array(false), type(GGUF_TYPE_STRING) { |
150 | 0 | GGML_ASSERT(!key.empty()); |
151 | 0 | data_string.push_back(value); |
152 | 0 | } |
153 | | |
154 | | gguf_kv(const std::string & key, const std::vector<std::string> & value) |
155 | 0 | : key(key), is_array(true), type(GGUF_TYPE_STRING) { |
156 | 0 | GGML_ASSERT(!key.empty()); |
157 | 0 | data_string = value; |
158 | 0 | } |
159 | | |
160 | 0 | const std::string & get_key() const { |
161 | 0 | return key; |
162 | 0 | } |
163 | | |
164 | 0 | const enum gguf_type & get_type() const { |
165 | 0 | return type; |
166 | 0 | } |
167 | | |
168 | 0 | size_t get_ne() const { |
169 | 0 | if (type == GGUF_TYPE_STRING) { |
170 | 0 | const size_t ne = data_string.size(); |
171 | 0 | GGML_ASSERT(is_array || ne == 1); |
172 | 0 | return ne; |
173 | 0 | } |
174 | 0 | const size_t type_size = gguf_type_size(type); |
175 | 0 | GGML_ASSERT(data.size() % type_size == 0); |
176 | 0 | const size_t ne = data.size() / type_size; |
177 | 0 | GGML_ASSERT(is_array || ne == 1); |
178 | 0 | return ne; |
179 | 0 | } |
180 | | |
181 | | template <typename T> |
182 | 0 | const T & get_val(const size_t i = 0) const { |
183 | 0 | GGML_ASSERT(type_to_gguf_type<T>::value == type); |
184 | 0 | if constexpr (std::is_same<T, std::string>::value) { |
185 | 0 | GGML_ASSERT(data_string.size() >= i+1); |
186 | 0 | return data_string[i]; |
187 | 0 | } |
188 | 0 | const size_t type_size = gguf_type_size(type); |
189 | 0 | GGML_ASSERT(data.size() % type_size == 0); |
190 | 0 | GGML_ASSERT(data.size() >= (i+1)*type_size); |
191 | 0 | return reinterpret_cast<const T *>(data.data())[i]; |
192 | 0 | } Unexecuted instantiation: unsigned char const& gguf_kv::get_val<unsigned char>(unsigned long) const Unexecuted instantiation: signed char const& gguf_kv::get_val<signed char>(unsigned long) const Unexecuted instantiation: unsigned short const& gguf_kv::get_val<unsigned short>(unsigned long) const Unexecuted instantiation: short const& gguf_kv::get_val<short>(unsigned long) const Unexecuted instantiation: unsigned int const& gguf_kv::get_val<unsigned int>(unsigned long) const Unexecuted instantiation: int const& gguf_kv::get_val<int>(unsigned long) const Unexecuted instantiation: float const& gguf_kv::get_val<float>(unsigned long) const Unexecuted instantiation: unsigned long const& gguf_kv::get_val<unsigned long>(unsigned long) const Unexecuted instantiation: long const& gguf_kv::get_val<long>(unsigned long) const Unexecuted instantiation: double const& gguf_kv::get_val<double>(unsigned long) const Unexecuted instantiation: bool const& gguf_kv::get_val<bool>(unsigned long) const Unexecuted instantiation: std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const& gguf_kv::get_val<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(unsigned long) const |
193 | | |
194 | 0 | void cast(const enum gguf_type new_type) { |
195 | 0 | const size_t new_type_size = gguf_type_size(new_type); |
196 | 0 | GGML_ASSERT(data.size() % new_type_size == 0); |
197 | 0 | type = new_type; |
198 | 0 | } |
199 | | }; |
200 | | |
201 | | struct gguf_tensor_info { |
202 | | struct ggml_tensor t; // for holding the equivalent info |
203 | | uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT` |
204 | | }; |
205 | | |
206 | | struct gguf_context { |
207 | | uint32_t version = GGUF_VERSION; |
208 | | |
209 | | std::vector<struct gguf_kv> kv; |
210 | | std::vector<struct gguf_tensor_info> info; |
211 | | |
212 | | size_t alignment = GGUF_DEFAULT_ALIGNMENT; |
213 | | size_t offset = 0; // offset of `data` from beginning of file |
214 | | size_t size = 0; // size of `data` in bytes |
215 | | |
216 | | void * data = nullptr; |
217 | | }; |
218 | | |
219 | | struct gguf_reader { |
220 | | FILE * file; |
221 | | |
222 | 0 | gguf_reader(FILE * file) : file(file) {} |
223 | | |
224 | | template <typename T> |
225 | 0 | bool read(T & dst) const { |
226 | 0 | return fread(&dst, 1, sizeof(dst), file) == sizeof(dst); |
227 | 0 | } Unexecuted instantiation: bool gguf_reader::read<int>(int&) const Unexecuted instantiation: bool gguf_reader::read<unsigned long>(unsigned long&) const Unexecuted instantiation: bool gguf_reader::read<char>(char&) const Unexecuted instantiation: bool gguf_reader::read<unsigned int>(unsigned int&) const Unexecuted instantiation: bool gguf_reader::read<long>(long&) const Unexecuted instantiation: bool gguf_reader::read<unsigned char>(unsigned char&) const Unexecuted instantiation: bool gguf_reader::read<signed char>(signed char&) const Unexecuted instantiation: bool gguf_reader::read<unsigned short>(unsigned short&) const Unexecuted instantiation: bool gguf_reader::read<short>(short&) const Unexecuted instantiation: bool gguf_reader::read<float>(float&) const Unexecuted instantiation: bool gguf_reader::read<double>(double&) const |
228 | | |
229 | | template <typename T> |
230 | 0 | bool read(std::vector<T> & dst, const size_t n) const { |
231 | 0 | dst.resize(n); |
232 | 0 | for (size_t i = 0; i < dst.size(); ++i) { |
233 | 0 | if constexpr (std::is_same<T, bool>::value) { |
234 | 0 | bool tmp; |
235 | 0 | if (!read(tmp)) { |
236 | 0 | return false; |
237 | 0 | } |
238 | 0 | dst[i] = tmp; |
239 | 0 | } else { |
240 | 0 | if (!read(dst[i])) { |
241 | 0 | return false; |
242 | 0 | } |
243 | 0 | } |
244 | 0 | } |
245 | 0 | return true; |
246 | 0 | } Unexecuted instantiation: bool gguf_reader::read<char>(std::__1::vector<char, std::__1::allocator<char> >&, unsigned long) const Unexecuted instantiation: bool gguf_reader::read<unsigned char>(std::__1::vector<unsigned char, std::__1::allocator<unsigned char> >&, unsigned long) const Unexecuted instantiation: bool gguf_reader::read<signed char>(std::__1::vector<signed char, std::__1::allocator<signed char> >&, unsigned long) const Unexecuted instantiation: bool gguf_reader::read<unsigned short>(std::__1::vector<unsigned short, std::__1::allocator<unsigned short> >&, unsigned long) const Unexecuted instantiation: bool gguf_reader::read<short>(std::__1::vector<short, std::__1::allocator<short> >&, unsigned long) const Unexecuted instantiation: bool gguf_reader::read<unsigned int>(std::__1::vector<unsigned int, std::__1::allocator<unsigned int> >&, unsigned long) const Unexecuted instantiation: bool gguf_reader::read<int>(std::__1::vector<int, std::__1::allocator<int> >&, unsigned long) const Unexecuted instantiation: bool gguf_reader::read<float>(std::__1::vector<float, std::__1::allocator<float> >&, unsigned long) const Unexecuted instantiation: bool gguf_reader::read<bool>(std::__1::vector<bool, std::__1::allocator<bool> >&, unsigned long) const Unexecuted instantiation: bool gguf_reader::read<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > >&, unsigned long) const Unexecuted instantiation: bool gguf_reader::read<unsigned long>(std::__1::vector<unsigned long, std::__1::allocator<unsigned long> >&, unsigned long) const Unexecuted instantiation: bool gguf_reader::read<long>(std::__1::vector<long, std::__1::allocator<long> >&, unsigned long) const Unexecuted instantiation: bool gguf_reader::read<double>(std::__1::vector<double, std::__1::allocator<double> >&, unsigned long) const |
247 | | |
248 | 0 | bool read(bool & dst) const { |
249 | 0 | int8_t tmp = -1; |
250 | 0 | if (!read(tmp)) { |
251 | 0 | return false; |
252 | 0 | } |
253 | 0 | dst = tmp != 0; |
254 | 0 | return true; |
255 | 0 | } |
256 | | |
257 | 0 | bool read(enum ggml_type & dst) const { |
258 | 0 | int32_t tmp = -1; |
259 | 0 | if (!read(tmp)) { |
260 | 0 | return false; |
261 | 0 | } |
262 | 0 | dst = ggml_type(tmp); |
263 | 0 | return true; |
264 | 0 | } |
265 | | |
266 | 0 | bool read(enum gguf_type & dst) const { |
267 | 0 | int32_t tmp = -1; |
268 | 0 | if (!read(tmp)) { |
269 | 0 | return false; |
270 | 0 | } |
271 | 0 | dst = gguf_type(tmp); |
272 | 0 | return true; |
273 | 0 | } |
274 | | |
275 | 0 | bool read(std::string & dst) const { |
276 | 0 | uint64_t size = 0; |
277 | 0 | if (!read(size)) { |
278 | 0 | return false; |
279 | 0 | } |
280 | 0 | dst.resize(size); |
281 | 0 | return fread(dst.data(), 1, dst.length(), file) == dst.length(); |
282 | 0 | } |
283 | | |
284 | 0 | bool read(void * dst, const size_t size) const { |
285 | 0 | return fread(dst, 1, size, file) == size; |
286 | 0 | } |
287 | | }; |
288 | | |
289 | 0 | struct gguf_context * gguf_init_empty(void) { |
290 | 0 | return new gguf_context; |
291 | 0 | } |
292 | | |
293 | | template<typename T> |
294 | 0 | bool gguf_read_emplace_helper(const struct gguf_reader & gr, std::vector<struct gguf_kv> & kv, const std::string & key, const bool is_array, const size_t n) { |
295 | 0 | if (is_array) { |
296 | 0 | std::vector<T> value; |
297 | 0 | try { |
298 | 0 | if (!gr.read(value, n)) { |
299 | 0 | return false; |
300 | 0 | } |
301 | 0 | } catch (std::length_error &) { |
302 | 0 | GGML_LOG_ERROR("%s: encountered length_error while reading value for key '%s'\n", __func__, key.c_str()); |
303 | 0 | return false; |
304 | 0 | } catch (std::bad_alloc &) { |
305 | 0 | GGML_LOG_ERROR("%s: encountered bad_alloc error while reading value for key '%s'\n", __func__, key.c_str()); |
306 | 0 | return false; |
307 | 0 | } |
308 | 0 | kv.emplace_back(key, value); |
309 | 0 | } else { |
310 | 0 | T value; |
311 | 0 | if (!gr.read(value)) { |
312 | 0 | return false; |
313 | 0 | } |
314 | 0 | kv.emplace_back(key, value); |
315 | 0 | } |
316 | 0 | return true; |
317 | 0 | } Unexecuted instantiation: bool gguf_read_emplace_helper<unsigned char>(gguf_reader const&, std::__1::vector<gguf_kv, std::__1::allocator<gguf_kv> >&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, bool, unsigned long) Unexecuted instantiation: bool gguf_read_emplace_helper<signed char>(gguf_reader const&, std::__1::vector<gguf_kv, std::__1::allocator<gguf_kv> >&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, bool, unsigned long) Unexecuted instantiation: bool gguf_read_emplace_helper<unsigned short>(gguf_reader const&, std::__1::vector<gguf_kv, std::__1::allocator<gguf_kv> >&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, bool, unsigned long) Unexecuted instantiation: bool gguf_read_emplace_helper<short>(gguf_reader const&, std::__1::vector<gguf_kv, std::__1::allocator<gguf_kv> >&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, bool, unsigned long) Unexecuted instantiation: bool gguf_read_emplace_helper<unsigned int>(gguf_reader const&, std::__1::vector<gguf_kv, std::__1::allocator<gguf_kv> >&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, bool, unsigned long) Unexecuted instantiation: bool gguf_read_emplace_helper<int>(gguf_reader const&, std::__1::vector<gguf_kv, std::__1::allocator<gguf_kv> >&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, bool, unsigned long) Unexecuted instantiation: bool gguf_read_emplace_helper<float>(gguf_reader const&, std::__1::vector<gguf_kv, std::__1::allocator<gguf_kv> >&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, bool, unsigned long) Unexecuted instantiation: bool gguf_read_emplace_helper<bool>(gguf_reader const&, std::__1::vector<gguf_kv, std::__1::allocator<gguf_kv> >&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, bool, unsigned long) Unexecuted instantiation: bool gguf_read_emplace_helper<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(gguf_reader const&, std::__1::vector<gguf_kv, std::__1::allocator<gguf_kv> >&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, bool, unsigned long) Unexecuted instantiation: bool gguf_read_emplace_helper<unsigned long>(gguf_reader const&, std::__1::vector<gguf_kv, std::__1::allocator<gguf_kv> >&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, bool, unsigned long) Unexecuted instantiation: bool gguf_read_emplace_helper<long>(gguf_reader const&, std::__1::vector<gguf_kv, std::__1::allocator<gguf_kv> >&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, bool, unsigned long) Unexecuted instantiation: bool gguf_read_emplace_helper<double>(gguf_reader const&, std::__1::vector<gguf_kv, std::__1::allocator<gguf_kv> >&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, bool, unsigned long) |
318 | | |
319 | 0 | struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params) { |
320 | 0 | const struct gguf_reader gr(file); |
321 | 0 | struct gguf_context * ctx = new gguf_context; |
322 | |
|
323 | 0 | bool ok = true; |
324 | | |
325 | | // file magic |
326 | 0 | { |
327 | 0 | std::vector<char> magic; |
328 | 0 | ok = ok && gr.read(magic, 4); |
329 | |
|
330 | 0 | if (!ok) { |
331 | 0 | GGML_LOG_ERROR("%s: failed to read magic\n", __func__); |
332 | 0 | gguf_free(ctx); |
333 | 0 | return nullptr; |
334 | 0 | } |
335 | | |
336 | 0 | for (uint32_t i = 0; i < magic.size(); i++) { |
337 | 0 | if (magic[i] != GGUF_MAGIC[i]) { |
338 | 0 | char c0 = isprint(magic[0]) ? magic[0] : '?'; |
339 | 0 | char c1 = isprint(magic[1]) ? magic[1] : '?'; |
340 | 0 | char c2 = isprint(magic[2]) ? magic[2] : '?'; |
341 | 0 | char c3 = isprint(magic[3]) ? magic[3] : '?'; |
342 | 0 | GGML_LOG_ERROR("%s: invalid magic characters: '%c%c%c%c', expected 'GGUF'\n", __func__, c0, c1, c2, c3); |
343 | 0 | gguf_free(ctx); |
344 | 0 | return nullptr; |
345 | 0 | } |
346 | 0 | } |
347 | 0 | } |
348 | | |
349 | | // header |
350 | 0 | int64_t n_kv = 0; |
351 | 0 | int64_t n_tensors = 0; |
352 | |
|
353 | 0 | if (ok && gr.read(ctx->version)) { |
354 | 0 | if (ok && ctx->version == 0) { |
355 | 0 | GGML_LOG_ERROR("%s: bad GGUF version: %" PRIu32 "\n", __func__, ctx->version); |
356 | 0 | ok = false; |
357 | 0 | } |
358 | | |
359 | | /* |
360 | | * bit layout is different when reading non-native endian models. |
361 | | * assuming that the GGUF version is 3, the non-native endian model |
362 | | * would read it as 0x30000000. we can use the AND operation against |
363 | | * the last 4 hexadecimal digits to check if the model is the same |
364 | | * endianness as the host system. |
365 | | */ |
366 | 0 | if (ok && (ctx->version & 0x0000FFFF) == 0x00000000) { |
367 | 0 | GGML_LOG_ERROR("%s: failed to load model: this GGUF file version %" PRIu32 " is extremely large, is there a mismatch between the host and model endianness?\n", __func__, ctx->version); |
368 | 0 | ok = false; |
369 | 0 | } |
370 | |
|
371 | 0 | if (ok && ctx->version == 1) { |
372 | 0 | GGML_LOG_ERROR("%s: GGUFv1 is no longer supported, please use a more up-to-date version\n", __func__); |
373 | 0 | ok = false; |
374 | 0 | } |
375 | 0 | if (ok && ctx->version > GGUF_VERSION) { |
376 | 0 | GGML_LOG_ERROR("%s: this GGUF file is version %" PRIu32 " but this software only supports up to version %d\n", |
377 | 0 | __func__, ctx->version, GGUF_VERSION); |
378 | 0 | ok = false; |
379 | 0 | } |
380 | 0 | } else { |
381 | 0 | ok = false; |
382 | 0 | } |
383 | |
|
384 | 0 | if (ok && gr.read(n_tensors)) { |
385 | 0 | static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing"); |
386 | 0 | if (n_tensors < 0 || n_tensors > int64_t(SIZE_MAX/sizeof(gguf_tensor_info))) { |
387 | 0 | GGML_LOG_ERROR("%s: number of tensors is %" PRIi64 " but must be in [0, %zu]\n", |
388 | 0 | __func__, n_tensors, SIZE_MAX/sizeof(gguf_tensor_info)); |
389 | 0 | ok = false; |
390 | 0 | } |
391 | 0 | } else { |
392 | 0 | ok = false; |
393 | 0 | } |
394 | |
|
395 | 0 | if (ok && gr.read(n_kv)) { |
396 | 0 | static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing"); |
397 | 0 | if (n_kv < 0 || n_kv > int64_t(SIZE_MAX/sizeof(gguf_kv))) { |
398 | 0 | GGML_LOG_ERROR("%s: number of key value pairs is %" PRIi64 " but must be in [0, %zu]\n", |
399 | 0 | __func__, n_kv, SIZE_MAX/sizeof(gguf_kv)); |
400 | 0 | ok = false; |
401 | 0 | } |
402 | 0 | } else { |
403 | 0 | ok = false; |
404 | 0 | } |
405 | |
|
406 | 0 | if (!ok) { |
407 | 0 | GGML_LOG_ERROR("%s: failed to read header\n", __func__); |
408 | 0 | gguf_free(ctx); |
409 | 0 | return nullptr; |
410 | 0 | } |
411 | | |
412 | | // KV pairs |
413 | 0 | { |
414 | 0 | for (int64_t i = 0; ok && i < n_kv; ++i) { |
415 | 0 | std::string key; |
416 | 0 | gguf_type type = gguf_type(-1); |
417 | 0 | bool is_array = false; |
418 | 0 | uint64_t n = 1; |
419 | |
|
420 | 0 | try { |
421 | 0 | ok = ok && gr.read(key); |
422 | 0 | } catch (std::length_error &) { |
423 | 0 | GGML_LOG_ERROR("%s: encountered length_error while reading key %" PRIi64 "\n", __func__, i); |
424 | 0 | ok = false; |
425 | 0 | } catch (std::bad_alloc &) { |
426 | 0 | GGML_LOG_ERROR("%s: encountered bad_alloc error while reading key %" PRIi64 "\n", __func__, i); |
427 | 0 | ok = false; |
428 | 0 | } |
429 | 0 | for (size_t j = 0; ok && j < ctx->kv.size(); ++j) { |
430 | 0 | if (key == ctx->kv[j].key) { |
431 | 0 | GGML_LOG_ERROR("%s: duplicate key '%s' for tensors %zu and %" PRIi64 " \n", __func__, key.c_str(), j, i); |
432 | 0 | ok = false; |
433 | 0 | } |
434 | 0 | } |
435 | 0 | if (!ok) { |
436 | 0 | break; |
437 | 0 | } |
438 | | |
439 | 0 | ok = ok && gr.read(type); |
440 | 0 | if (type == GGUF_TYPE_ARRAY) { |
441 | 0 | is_array = true; |
442 | 0 | ok = ok && gr.read(type); |
443 | 0 | ok = ok && gr.read(n); |
444 | 0 | } |
445 | 0 | if (!ok) { |
446 | 0 | break; |
447 | 0 | } |
448 | | |
449 | 0 | switch (type) { |
450 | 0 | case GGUF_TYPE_UINT8: ok = ok && gguf_read_emplace_helper<uint8_t> (gr, ctx->kv, key, is_array, n); break; |
451 | 0 | case GGUF_TYPE_INT8: ok = ok && gguf_read_emplace_helper<int8_t> (gr, ctx->kv, key, is_array, n); break; |
452 | 0 | case GGUF_TYPE_UINT16: ok = ok && gguf_read_emplace_helper<uint16_t> (gr, ctx->kv, key, is_array, n); break; |
453 | 0 | case GGUF_TYPE_INT16: ok = ok && gguf_read_emplace_helper<int16_t> (gr, ctx->kv, key, is_array, n); break; |
454 | 0 | case GGUF_TYPE_UINT32: ok = ok && gguf_read_emplace_helper<uint32_t> (gr, ctx->kv, key, is_array, n); break; |
455 | 0 | case GGUF_TYPE_INT32: ok = ok && gguf_read_emplace_helper<int32_t> (gr, ctx->kv, key, is_array, n); break; |
456 | 0 | case GGUF_TYPE_FLOAT32: ok = ok && gguf_read_emplace_helper<float> (gr, ctx->kv, key, is_array, n); break; |
457 | 0 | case GGUF_TYPE_BOOL: ok = ok && gguf_read_emplace_helper<bool> (gr, ctx->kv, key, is_array, n); break; |
458 | 0 | case GGUF_TYPE_STRING: ok = ok && gguf_read_emplace_helper<std::string>(gr, ctx->kv, key, is_array, n); break; |
459 | 0 | case GGUF_TYPE_UINT64: ok = ok && gguf_read_emplace_helper<uint64_t> (gr, ctx->kv, key, is_array, n); break; |
460 | 0 | case GGUF_TYPE_INT64: ok = ok && gguf_read_emplace_helper<int64_t> (gr, ctx->kv, key, is_array, n); break; |
461 | 0 | case GGUF_TYPE_FLOAT64: ok = ok && gguf_read_emplace_helper<double> (gr, ctx->kv, key, is_array, n); break; |
462 | 0 | case GGUF_TYPE_ARRAY: |
463 | 0 | default: |
464 | 0 | { |
465 | 0 | GGML_LOG_ERROR("%s: key '%s' has invalid GGUF type %d\n", __func__, key.c_str(), type); |
466 | 0 | ok = false; |
467 | 0 | } break; |
468 | 0 | } |
469 | 0 | } |
470 | | |
471 | 0 | if (!ok) { |
472 | 0 | GGML_LOG_ERROR("%s: failed to read key-value pairs\n", __func__); |
473 | 0 | gguf_free(ctx); |
474 | 0 | return nullptr; |
475 | 0 | } |
476 | 0 | GGML_ASSERT(int64_t(ctx->kv.size()) == n_kv); |
477 | |
|
478 | 0 | const int alignment_idx = gguf_find_key(ctx, GGUF_KEY_GENERAL_ALIGNMENT); |
479 | 0 | ctx->alignment = alignment_idx == -1 ? GGUF_DEFAULT_ALIGNMENT : gguf_get_val_u32(ctx, alignment_idx); |
480 | |
|
481 | 0 | if (ctx->alignment == 0 || (ctx->alignment & (ctx->alignment - 1)) != 0) { |
482 | 0 | GGML_LOG_ERROR("%s: alignment %zu is not a power of 2\n", __func__, ctx->alignment); |
483 | 0 | gguf_free(ctx); |
484 | 0 | return nullptr; |
485 | 0 | } |
486 | 0 | } |
487 | | |
488 | | // read the tensor info |
489 | 0 | for (int64_t i = 0; ok && i < n_tensors; ++i) { |
490 | 0 | struct gguf_tensor_info info; |
491 | | |
492 | | // tensor name |
493 | 0 | { |
494 | 0 | std::string name; |
495 | 0 | try { |
496 | 0 | ok = ok && gr.read(name); |
497 | 0 | } catch (std::length_error &) { |
498 | 0 | GGML_LOG_ERROR("%s: encountered length_error while reading tensor name %" PRIi64 "\n", __func__, i); |
499 | 0 | ok = false; |
500 | 0 | } catch (std::bad_alloc &) { |
501 | 0 | GGML_LOG_ERROR("%s: encountered bad_alloc error while reading tensor name %" PRIi64 "\n", __func__, i); |
502 | 0 | ok = false; |
503 | 0 | } |
504 | 0 | if (name.length() >= GGML_MAX_NAME) { |
505 | 0 | GGML_LOG_ERROR("%s: tensor name %" PRIi64 " is too long: %zu >= %d\n", __func__, i, name.length(), GGML_MAX_NAME); |
506 | 0 | ok = false; |
507 | 0 | break; |
508 | 0 | } |
509 | 0 | ggml_set_name(&info.t, name.c_str()); |
510 | | |
511 | | // make sure there are no duplicate tensor names |
512 | 0 | for (int64_t j = 0; ok && j < i; ++j) { |
513 | 0 | if (strcmp(info.t.name, ctx->info[j].t.name) == 0) { |
514 | 0 | GGML_LOG_ERROR("%s: duplicate tensor name '%s' for tensors %" PRIi64 " and %" PRIi64 "\n", __func__, info.t.name, j, i); |
515 | 0 | ok = false; |
516 | 0 | break; |
517 | 0 | } |
518 | 0 | } |
519 | 0 | } |
520 | 0 | if (!ok) { |
521 | 0 | break; |
522 | 0 | } |
523 | | |
524 | | // tensor shape |
525 | 0 | { |
526 | 0 | uint32_t n_dims = 0; |
527 | 0 | ok = ok && gr.read(n_dims); |
528 | 0 | if (n_dims > GGML_MAX_DIMS) { |
529 | 0 | GGML_LOG_ERROR("%s: tensor '%s' has invalid number of dimensions: %" PRIu32 " > %" PRIu32 "\n", |
530 | 0 | __func__, info.t.name, n_dims, GGML_MAX_DIMS); |
531 | 0 | ok = false; |
532 | 0 | break; |
533 | 0 | } |
534 | 0 | for (uint32_t j = 0; ok && j < GGML_MAX_DIMS; ++j) { |
535 | 0 | info.t.ne[j] = 1; |
536 | 0 | if (j < n_dims) { |
537 | 0 | ok = ok && gr.read(info.t.ne[j]); |
538 | 0 | } |
539 | | |
540 | | // check that all ne are non-negative |
541 | 0 | if (info.t.ne[j] < 0) { |
542 | 0 | GGML_LOG_ERROR("%s: tensor '%s' dimension %" PRIu32 " has invalid number of elements: %" PRIi64 " < 0\n", |
543 | 0 | __func__, info.t.name, j, info.t.ne[j]); |
544 | 0 | ok = false; |
545 | 0 | break; |
546 | 0 | } |
547 | 0 | } |
548 | | |
549 | | // check that the total number of elements is representable |
550 | 0 | if (ok && ((INT64_MAX/info.t.ne[1] <= info.t.ne[0]) || |
551 | 0 | (INT64_MAX/info.t.ne[2] <= info.t.ne[0]*info.t.ne[1]) || |
552 | 0 | (INT64_MAX/info.t.ne[3] <= info.t.ne[0]*info.t.ne[1]*info.t.ne[2]))) { |
553 | |
|
554 | 0 | GGML_LOG_ERROR("%s: total number of elements in tensor '%s' with shape " |
555 | 0 | "(%" PRIi64 ", %" PRIi64 ", %" PRIi64 ", %" PRIi64 ") is >= %" PRIi64 "\n", |
556 | 0 | __func__, info.t.name, info.t.ne[0], info.t.ne[1], info.t.ne[2], info.t.ne[3], INT64_MAX); |
557 | 0 | ok = false; |
558 | 0 | break; |
559 | 0 | } |
560 | 0 | } |
561 | 0 | if (!ok) { |
562 | 0 | break; |
563 | 0 | } |
564 | | |
565 | | // tensor type |
566 | 0 | { |
567 | 0 | ok = ok && gr.read(info.t.type); |
568 | | |
569 | | // check that tensor type is within defined range |
570 | 0 | if (info.t.type < 0 || info.t.type >= GGML_TYPE_COUNT) { |
571 | 0 | GGML_LOG_ERROR("%s: tensor '%s' has invalid ggml type %d (%s)\n", |
572 | 0 | __func__, info.t.name, info.t.type, ggml_type_name(info.t.type)); |
573 | 0 | ok = false; |
574 | 0 | break; |
575 | 0 | } |
576 | 0 | const size_t type_size = ggml_type_size(info.t.type); |
577 | 0 | const int64_t blck_size = ggml_blck_size(info.t.type); |
578 | | |
579 | | // check that row size is divisible by block size |
580 | 0 | if (blck_size == 0 || info.t.ne[0] % blck_size != 0) { |
581 | 0 | GGML_LOG_ERROR("%s: tensor '%s' of type %d (%s) has %" PRId64 " elements per row, " |
582 | 0 | "not a multiple of block size (%" PRId64 ")\n", |
583 | 0 | __func__, info.t.name, (int) info.t.type, ggml_type_name(info.t.type), info.t.ne[0], blck_size); |
584 | 0 | ok = false; |
585 | 0 | break; |
586 | 0 | } |
587 | | |
588 | | // calculate byte offsets given the tensor shape and type |
589 | 0 | info.t.nb[0] = type_size; |
590 | 0 | info.t.nb[1] = info.t.nb[0]*(info.t.ne[0]/blck_size); |
591 | 0 | for (int j = 2; j < GGML_MAX_DIMS; ++j) { |
592 | 0 | info.t.nb[j] = info.t.nb[j - 1]*info.t.ne[j - 1]; |
593 | 0 | } |
594 | 0 | } |
595 | 0 | if (!ok) { |
596 | 0 | break; |
597 | 0 | } |
598 | | |
599 | | // tensor data offset within buffer |
600 | 0 | ok = ok && gr.read(info.offset); |
601 | |
|
602 | 0 | ctx->info.push_back(info); |
603 | 0 | } |
604 | | |
605 | 0 | if (!ok) { |
606 | 0 | GGML_LOG_ERROR("%s: failed to read tensor info\n", __func__); |
607 | 0 | gguf_free(ctx); |
608 | 0 | return nullptr; |
609 | 0 | } |
610 | 0 | GGML_ASSERT(int64_t(ctx->info.size()) == n_tensors); |
611 | | |
612 | | // we require the data section to be aligned, so take into account any padding |
613 | 0 | if (fseek(file, GGML_PAD(ftell(file), ctx->alignment), SEEK_SET) != 0) { |
614 | 0 | GGML_LOG_ERROR("%s: failed to seek to beginning of data section\n", __func__); |
615 | 0 | gguf_free(ctx); |
616 | 0 | return nullptr; |
617 | 0 | } |
618 | | |
619 | | // store the current file offset - this is where the data section starts |
620 | 0 | ctx->offset = ftell(file); |
621 | | |
622 | | // compute the total size of the data section, taking into account the alignment |
623 | 0 | { |
624 | 0 | ctx->size = 0; |
625 | 0 | for (size_t i = 0; i < ctx->info.size(); ++i) { |
626 | 0 | const gguf_tensor_info & ti = ctx->info[i]; |
627 | 0 | if (ti.offset != ctx->size) { |
628 | 0 | GGML_LOG_ERROR("%s: tensor '%s' has offset %" PRIu64 ", expected %zu\n", |
629 | 0 | __func__, ti.t.name, ti.offset, ctx->size); |
630 | 0 | GGML_LOG_ERROR("%s: failed to read tensor data\n", __func__); |
631 | 0 | gguf_free(ctx); |
632 | 0 | return nullptr; |
633 | 0 | } |
634 | 0 | size_t padded_size = GGML_PAD(ggml_nbytes(&ti.t), ctx->alignment); |
635 | 0 | if (SIZE_MAX - ctx->size < padded_size) { |
636 | 0 | GGML_LOG_ERROR("%s: tensor '%s' size overflow, cannot accumulate size %zu + %zu\n", |
637 | 0 | __func__, ti.t.name, ctx->size, padded_size); |
638 | 0 | gguf_free(ctx); |
639 | 0 | return nullptr; |
640 | 0 | } |
641 | 0 | ctx->size += padded_size; |
642 | 0 | } |
643 | 0 | } |
644 | | |
645 | | // load the tensor data only if requested |
646 | 0 | if (params.ctx != nullptr) { |
647 | | // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob |
648 | | // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of |
649 | | // the ggml_tensor structs to the appropriate locations in the binary blob |
650 | | |
651 | | // compute the exact size needed for the new ggml_context |
652 | 0 | const size_t mem_size = |
653 | 0 | params.no_alloc ? |
654 | 0 | (n_tensors )*ggml_tensor_overhead() : |
655 | 0 | (n_tensors + 1)*ggml_tensor_overhead() + ctx->size; |
656 | |
|
657 | 0 | struct ggml_init_params pdata = { |
658 | 0 | /*mem_size =*/ mem_size, |
659 | 0 | /*mem_buffer =*/ nullptr, |
660 | 0 | /*no_alloc =*/ params.no_alloc, |
661 | 0 | }; |
662 | |
|
663 | 0 | *params.ctx = ggml_init(pdata); |
664 | 0 | if (*params.ctx == nullptr) { |
665 | 0 | GGML_LOG_ERROR("%s: failed to initialize ggml context for storing tensors\n", __func__); |
666 | 0 | gguf_free(ctx); |
667 | 0 | return nullptr; |
668 | 0 | } |
669 | | |
670 | 0 | struct ggml_context * ctx_data = *params.ctx; |
671 | |
|
672 | 0 | struct ggml_tensor * data = nullptr; |
673 | |
|
674 | 0 | if (!params.no_alloc) { |
675 | 0 | data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size); |
676 | |
|
677 | 0 | ok = ok && data != nullptr; |
678 | |
|
679 | 0 | if (ok) { |
680 | 0 | ggml_set_name(data, "GGUF tensor data binary blob"); |
681 | 0 | } |
682 | | |
683 | | // read the binary blob with the tensor data |
684 | 0 | ok = ok && gr.read(data->data, ctx->size); |
685 | |
|
686 | 0 | if (!ok) { |
687 | 0 | GGML_LOG_ERROR("%s: failed to read tensor data binary blob\n", __func__); |
688 | 0 | ggml_free(ctx_data); |
689 | 0 | *params.ctx = nullptr; |
690 | 0 | gguf_free(ctx); |
691 | 0 | return nullptr; |
692 | 0 | } |
693 | | |
694 | 0 | ctx->data = data->data; |
695 | 0 | } |
696 | | |
697 | 0 | ggml_set_no_alloc(ctx_data, true); |
698 | | |
699 | | // create the tensors |
700 | 0 | for (size_t i = 0; i < ctx->info.size(); ++i) { |
701 | 0 | const struct gguf_tensor_info & info = ctx->info[i]; |
702 | |
|
703 | 0 | struct ggml_tensor * cur = ggml_new_tensor(ctx_data, info.t.type, GGML_MAX_DIMS, info.t.ne); |
704 | |
|
705 | 0 | ok = ok && cur != nullptr; |
706 | |
|
707 | 0 | if (!ok) { |
708 | 0 | break; |
709 | 0 | } |
710 | | |
711 | 0 | ggml_set_name(cur, info.t.name); |
712 | | |
713 | | // point the data member to the appropriate location in the binary blob using the tensor info |
714 | 0 | if (!params.no_alloc) { |
715 | 0 | cur->data = (char *) data->data + info.offset; |
716 | 0 | } |
717 | 0 | } |
718 | |
|
719 | 0 | if (!ok) { |
720 | 0 | GGML_LOG_ERROR("%s: failed to create tensors\n", __func__); |
721 | 0 | ggml_free(ctx_data); |
722 | 0 | *params.ctx = nullptr; |
723 | 0 | gguf_free(ctx); |
724 | 0 | return nullptr; |
725 | 0 | } |
726 | | |
727 | 0 | ggml_set_no_alloc(ctx_data, params.no_alloc); |
728 | 0 | } |
729 | | |
730 | 0 | return ctx; |
731 | 0 | } |
732 | | |
733 | 0 | struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) { |
734 | 0 | FILE * file = ggml_fopen(fname, "rb"); |
735 | |
|
736 | 0 | if (!file) { |
737 | 0 | GGML_LOG_ERROR("%s: failed to open GGUF file '%s'\n", __func__, fname); |
738 | 0 | return nullptr; |
739 | 0 | } |
740 | | |
741 | 0 | struct gguf_context * result = gguf_init_from_file_impl(file, params); |
742 | 0 | fclose(file); |
743 | 0 | return result; |
744 | 0 | } |
745 | | |
746 | 0 | void gguf_free(struct gguf_context * ctx) { |
747 | 0 | if (ctx == nullptr) { |
748 | 0 | return; |
749 | 0 | } |
750 | 0 | delete ctx; |
751 | 0 | } |
752 | | |
753 | 0 | const char * gguf_type_name(enum gguf_type type) { |
754 | 0 | auto it = GGUF_TYPE_NAME.find(type); |
755 | 0 | return it == GGUF_TYPE_NAME.end() ? nullptr : it->second; |
756 | 0 | } |
757 | | |
758 | 0 | uint32_t gguf_get_version(const struct gguf_context * ctx) { |
759 | 0 | return ctx->version; |
760 | 0 | } |
761 | | |
762 | 0 | size_t gguf_get_alignment(const struct gguf_context * ctx) { |
763 | 0 | return ctx->alignment; |
764 | 0 | } |
765 | | |
766 | 0 | size_t gguf_get_data_offset(const struct gguf_context * ctx) { |
767 | 0 | return ctx->offset; |
768 | 0 | } |
769 | | |
770 | 0 | int64_t gguf_get_n_kv(const struct gguf_context * ctx) { |
771 | 0 | return ctx->kv.size(); |
772 | 0 | } |
773 | | |
774 | 0 | int64_t gguf_find_key(const struct gguf_context * ctx, const char * key) { |
775 | | // return -1 if key not found |
776 | 0 | int64_t keyfound = -1; |
777 | |
|
778 | 0 | const int64_t n_kv = gguf_get_n_kv(ctx); |
779 | |
|
780 | 0 | for (int64_t i = 0; i < n_kv; ++i) { |
781 | 0 | if (strcmp(key, gguf_get_key(ctx, i)) == 0) { |
782 | 0 | keyfound = i; |
783 | 0 | break; |
784 | 0 | } |
785 | 0 | } |
786 | |
|
787 | 0 | return keyfound; |
788 | 0 | } |
789 | | |
790 | 0 | const char * gguf_get_key(const struct gguf_context * ctx, int64_t key_id) { |
791 | 0 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
792 | 0 | return ctx->kv[key_id].get_key().c_str(); |
793 | 0 | } |
794 | | |
795 | 0 | enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int64_t key_id) { |
796 | 0 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
797 | 0 | return ctx->kv[key_id].is_array ? GGUF_TYPE_ARRAY : ctx->kv[key_id].get_type(); |
798 | 0 | } |
799 | | |
800 | 0 | enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id) { |
801 | 0 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
802 | 0 | GGML_ASSERT(ctx->kv[key_id].is_array); |
803 | 0 | return ctx->kv[key_id].get_type(); |
804 | 0 | } |
805 | | |
806 | 0 | const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) { |
807 | 0 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
808 | 0 | GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING); |
809 | 0 | return ctx->kv[key_id].data.data(); |
810 | 0 | } |
811 | | |
812 | 0 | const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) { |
813 | 0 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
814 | 0 | GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING); |
815 | 0 | return ctx->kv[key_id].data_string[i].c_str(); |
816 | 0 | } |
817 | | |
818 | 0 | size_t gguf_get_arr_n(const struct gguf_context * ctx, int64_t key_id) { |
819 | 0 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
820 | |
|
821 | 0 | if (ctx->kv[key_id].type == GGUF_TYPE_STRING) { |
822 | 0 | return ctx->kv[key_id].data_string.size(); |
823 | 0 | } |
824 | | |
825 | 0 | const size_t type_size = gguf_type_size(ctx->kv[key_id].type); |
826 | 0 | GGML_ASSERT(ctx->kv[key_id].data.size() % type_size == 0); |
827 | 0 | return ctx->kv[key_id].data.size() / type_size; |
828 | 0 | } |
829 | | |
830 | 0 | uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int64_t key_id) { |
831 | 0 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
832 | 0 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
833 | 0 | return ctx->kv[key_id].get_val<uint8_t>(); |
834 | 0 | } |
835 | | |
836 | 0 | int8_t gguf_get_val_i8(const struct gguf_context * ctx, int64_t key_id) { |
837 | 0 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
838 | 0 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
839 | 0 | return ctx->kv[key_id].get_val<int8_t>(); |
840 | 0 | } |
841 | | |
842 | 0 | uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int64_t key_id) { |
843 | 0 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
844 | 0 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
845 | 0 | return ctx->kv[key_id].get_val<uint16_t>(); |
846 | 0 | } |
847 | | |
848 | 0 | int16_t gguf_get_val_i16(const struct gguf_context * ctx, int64_t key_id) { |
849 | 0 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
850 | 0 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
851 | 0 | return ctx->kv[key_id].get_val<int16_t>(); |
852 | 0 | } |
853 | | |
854 | 0 | uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int64_t key_id) { |
855 | 0 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
856 | 0 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
857 | 0 | return ctx->kv[key_id].get_val<uint32_t>(); |
858 | 0 | } |
859 | | |
860 | 0 | int32_t gguf_get_val_i32(const struct gguf_context * ctx, int64_t key_id) { |
861 | 0 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
862 | 0 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
863 | 0 | return ctx->kv[key_id].get_val<int32_t>(); |
864 | 0 | } |
865 | | |
866 | 0 | float gguf_get_val_f32(const struct gguf_context * ctx, int64_t key_id) { |
867 | 0 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
868 | 0 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
869 | 0 | return ctx->kv[key_id].get_val<float>(); |
870 | 0 | } |
871 | | |
872 | 0 | uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int64_t key_id) { |
873 | 0 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
874 | 0 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
875 | 0 | return ctx->kv[key_id].get_val<uint64_t>(); |
876 | 0 | } |
877 | | |
878 | 0 | int64_t gguf_get_val_i64(const struct gguf_context * ctx, int64_t key_id) { |
879 | 0 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
880 | 0 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
881 | 0 | return ctx->kv[key_id].get_val<int64_t>(); |
882 | 0 | } |
883 | | |
884 | 0 | double gguf_get_val_f64(const struct gguf_context * ctx, int64_t key_id) { |
885 | 0 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
886 | 0 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
887 | 0 | return ctx->kv[key_id].get_val<double>(); |
888 | 0 | } |
889 | | |
890 | 0 | bool gguf_get_val_bool(const struct gguf_context * ctx, int64_t key_id) { |
891 | 0 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
892 | 0 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
893 | 0 | return ctx->kv[key_id].get_val<bool>(); |
894 | 0 | } |
895 | | |
896 | 0 | const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) { |
897 | 0 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
898 | 0 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
899 | 0 | return ctx->kv[key_id].get_val<std::string>().c_str(); |
900 | 0 | } |
901 | | |
902 | 0 | const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) { |
903 | 0 | GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); |
904 | 0 | GGML_ASSERT(ctx->kv[key_id].get_ne() == 1); |
905 | 0 | GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING); |
906 | 0 | return ctx->kv[key_id].data.data(); |
907 | 0 | } |
908 | | |
909 | 0 | int64_t gguf_get_n_tensors(const struct gguf_context * ctx) { |
910 | 0 | return ctx->info.size(); |
911 | 0 | } |
912 | | |
913 | 0 | int64_t gguf_find_tensor(const struct gguf_context * ctx, const char * name) { |
914 | | // return -1 if tensor not found |
915 | 0 | int64_t tensor_id = -1; |
916 | |
|
917 | 0 | const int64_t n_tensors = gguf_get_n_tensors(ctx); |
918 | |
|
919 | 0 | for (int64_t i = 0; i < n_tensors; ++i) { |
920 | 0 | if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) { |
921 | 0 | tensor_id = i; |
922 | 0 | break; |
923 | 0 | } |
924 | 0 | } |
925 | |
|
926 | 0 | return tensor_id; |
927 | 0 | } |
928 | | |
929 | 0 | size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int64_t tensor_id) { |
930 | 0 | GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); |
931 | 0 | return ctx->info[tensor_id].offset; |
932 | 0 | } |
933 | | |
934 | 0 | const char * gguf_get_tensor_name(const struct gguf_context * ctx, int64_t tensor_id) { |
935 | 0 | GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); |
936 | 0 | return ctx->info[tensor_id].t.name; |
937 | 0 | } |
938 | | |
939 | 0 | enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int64_t tensor_id) { |
940 | 0 | GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); |
941 | 0 | return ctx->info[tensor_id].t.type; |
942 | 0 | } |
943 | | |
944 | 0 | size_t gguf_get_tensor_size(const struct gguf_context * ctx, int64_t tensor_id) { |
945 | 0 | GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx)); |
946 | 0 | return ggml_nbytes(&ctx->info[tensor_id].t); |
947 | 0 | } |
948 | | |
949 | 0 | int64_t gguf_remove_key(struct gguf_context * ctx, const char * key) { |
950 | 0 | const int64_t key_id = gguf_find_key(ctx, key); |
951 | 0 | if (key_id >= 0) { |
952 | 0 | ctx->kv.erase(ctx->kv.begin() + key_id); |
953 | 0 | } |
954 | 0 | return key_id; |
955 | 0 | } |
956 | | |
957 | | template<typename T> |
958 | 0 | static void gguf_check_reserved_keys(const std::string & key, const T val) { |
959 | 0 | if (key == GGUF_KEY_GENERAL_ALIGNMENT) { |
960 | 0 | if constexpr (std::is_same<T, uint32_t>::value) { |
961 | 0 | GGML_ASSERT(val > 0 && (val & (val - 1)) == 0 && GGUF_KEY_GENERAL_ALIGNMENT " must be power of 2"); |
962 | 0 | } else { |
963 | 0 | GGML_UNUSED(val); |
964 | 0 | GGML_ABORT(GGUF_KEY_GENERAL_ALIGNMENT " must be type u32"); |
965 | 0 | } |
966 | 0 | } |
967 | 0 | } Unexecuted instantiation: gguf.cpp:void gguf_check_reserved_keys<unsigned char>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, unsigned char) Unexecuted instantiation: gguf.cpp:void gguf_check_reserved_keys<signed char>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, signed char) Unexecuted instantiation: gguf.cpp:void gguf_check_reserved_keys<unsigned short>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, unsigned short) Unexecuted instantiation: gguf.cpp:void gguf_check_reserved_keys<short>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, short) Unexecuted instantiation: gguf.cpp:void gguf_check_reserved_keys<unsigned int>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, unsigned int) Unexecuted instantiation: gguf.cpp:void gguf_check_reserved_keys<int>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, int) Unexecuted instantiation: gguf.cpp:void gguf_check_reserved_keys<float>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, float) Unexecuted instantiation: gguf.cpp:void gguf_check_reserved_keys<unsigned long>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, unsigned long) Unexecuted instantiation: gguf.cpp:void gguf_check_reserved_keys<long>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, long) Unexecuted instantiation: gguf.cpp:void gguf_check_reserved_keys<double>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, double) Unexecuted instantiation: gguf.cpp:void gguf_check_reserved_keys<bool>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, bool) Unexecuted instantiation: gguf.cpp:void gguf_check_reserved_keys<char const*>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char const*) Unexecuted instantiation: gguf.cpp:void gguf_check_reserved_keys<void const*>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, void const*) Unexecuted instantiation: gguf.cpp:void gguf_check_reserved_keys<char const**>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char const**) |
968 | | |
969 | 0 | void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) { |
970 | 0 | gguf_check_reserved_keys(key, val); |
971 | 0 | gguf_remove_key(ctx, key); |
972 | 0 | ctx->kv.emplace_back(key, val); |
973 | 0 | } |
974 | | |
975 | 0 | void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) { |
976 | 0 | gguf_check_reserved_keys(key, val); |
977 | 0 | gguf_remove_key(ctx, key); |
978 | 0 | ctx->kv.emplace_back(key, val); |
979 | 0 | } |
980 | | |
981 | 0 | void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) { |
982 | 0 | gguf_check_reserved_keys(key, val); |
983 | 0 | gguf_remove_key(ctx, key); |
984 | 0 | ctx->kv.emplace_back(key, val); |
985 | 0 | } |
986 | | |
987 | 0 | void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) { |
988 | 0 | gguf_check_reserved_keys(key, val); |
989 | 0 | gguf_remove_key(ctx, key); |
990 | 0 | ctx->kv.emplace_back(key, val); |
991 | 0 | } |
992 | | |
993 | 0 | void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) { |
994 | 0 | gguf_check_reserved_keys(key, val); |
995 | 0 | gguf_remove_key(ctx, key); |
996 | 0 | ctx->kv.emplace_back(key, val); |
997 | 0 | } |
998 | | |
999 | 0 | void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) { |
1000 | 0 | gguf_check_reserved_keys(key, val); |
1001 | 0 | gguf_remove_key(ctx, key); |
1002 | 0 | ctx->kv.emplace_back(key, val); |
1003 | 0 | } |
1004 | | |
1005 | 0 | void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) { |
1006 | 0 | gguf_check_reserved_keys(key, val); |
1007 | 0 | gguf_remove_key(ctx, key); |
1008 | 0 | ctx->kv.emplace_back(key, val); |
1009 | 0 | } |
1010 | | |
1011 | 0 | void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) { |
1012 | 0 | gguf_check_reserved_keys(key, val); |
1013 | 0 | gguf_remove_key(ctx, key); |
1014 | 0 | ctx->kv.emplace_back(key, val); |
1015 | 0 | } |
1016 | | |
1017 | 0 | void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) { |
1018 | 0 | gguf_check_reserved_keys(key, val); |
1019 | 0 | gguf_remove_key(ctx, key); |
1020 | 0 | ctx->kv.emplace_back(key, val); |
1021 | 0 | } |
1022 | | |
1023 | 0 | void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) { |
1024 | 0 | gguf_check_reserved_keys(key, val); |
1025 | 0 | gguf_remove_key(ctx, key); |
1026 | 0 | ctx->kv.emplace_back(key, val); |
1027 | 0 | } |
1028 | | |
1029 | 0 | void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) { |
1030 | 0 | gguf_check_reserved_keys(key, val); |
1031 | 0 | gguf_remove_key(ctx, key); |
1032 | 0 | ctx->kv.emplace_back(key, val); |
1033 | 0 | } |
1034 | | |
1035 | 0 | void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) { |
1036 | 0 | gguf_check_reserved_keys(key, val); |
1037 | 0 | gguf_remove_key(ctx, key); |
1038 | 0 | ctx->kv.emplace_back(key, std::string(val)); |
1039 | 0 | } |
1040 | | |
1041 | 0 | void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, size_t n) { |
1042 | 0 | gguf_check_reserved_keys(key, data); |
1043 | 0 | gguf_remove_key(ctx, key); |
1044 | |
|
1045 | 0 | const size_t nbytes = n*gguf_type_size(type); |
1046 | 0 | std::vector<int8_t> tmp(nbytes); |
1047 | 0 | if (!tmp.empty()) { |
1048 | 0 | memcpy(tmp.data(), data, nbytes); |
1049 | 0 | } |
1050 | 0 | ctx->kv.emplace_back(key, tmp); |
1051 | 0 | ctx->kv.back().cast(type); |
1052 | 0 | } |
1053 | | |
1054 | 0 | void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, size_t n) { |
1055 | 0 | gguf_check_reserved_keys(key, data); |
1056 | 0 | gguf_remove_key(ctx, key); |
1057 | |
|
1058 | 0 | std::vector<std::string> tmp(n); |
1059 | 0 | for (size_t i = 0; i < n; ++i) { |
1060 | 0 | tmp[i] = data[i]; |
1061 | 0 | } |
1062 | 0 | ctx->kv.emplace_back(key, tmp); |
1063 | 0 | } |
1064 | | |
1065 | | // set or add KV pairs from another context |
1066 | 0 | void gguf_set_kv(struct gguf_context * ctx, const struct gguf_context * src) { |
1067 | 0 | const int64_t n_kv = gguf_get_n_kv(src); |
1068 | 0 | for (int64_t i = 0; i < n_kv; ++i) { |
1069 | 0 | const struct gguf_kv & kv = src->kv[i]; |
1070 | |
|
1071 | 0 | if (!kv.is_array) { |
1072 | 0 | switch (kv.get_type()) { |
1073 | 0 | case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, kv.get_key().c_str(), kv.get_val<uint8_t>()); break; |
1074 | 0 | case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, kv.get_key().c_str(), kv.get_val<int8_t>()); break; |
1075 | 0 | case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, kv.get_key().c_str(), kv.get_val<uint16_t>()); break; |
1076 | 0 | case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, kv.get_key().c_str(), kv.get_val<int16_t>()); break; |
1077 | 0 | case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, kv.get_key().c_str(), kv.get_val<uint32_t>()); break; |
1078 | 0 | case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, kv.get_key().c_str(), kv.get_val<int32_t>()); break; |
1079 | 0 | case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, kv.get_key().c_str(), kv.get_val<float>()); break; |
1080 | 0 | case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, kv.get_key().c_str(), kv.get_val<uint64_t>()); break; |
1081 | 0 | case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, kv.get_key().c_str(), kv.get_val<int64_t>()); break; |
1082 | 0 | case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, kv.get_key().c_str(), kv.get_val<double>()); break; |
1083 | 0 | case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, kv.get_key().c_str(), kv.get_val<bool>()); break; |
1084 | 0 | case GGUF_TYPE_STRING: gguf_set_val_str (ctx, kv.get_key().c_str(), kv.get_val<std::string>().c_str()); break; |
1085 | 0 | case GGUF_TYPE_ARRAY: |
1086 | 0 | default: GGML_ABORT("invalid type"); |
1087 | 0 | } |
1088 | 0 | continue; |
1089 | 0 | } |
1090 | | |
1091 | 0 | const size_t ne = kv.get_ne(); |
1092 | |
|
1093 | 0 | switch (kv.get_type()) { |
1094 | 0 | case GGUF_TYPE_UINT8: |
1095 | 0 | case GGUF_TYPE_INT8: |
1096 | 0 | case GGUF_TYPE_UINT16: |
1097 | 0 | case GGUF_TYPE_INT16: |
1098 | 0 | case GGUF_TYPE_UINT32: |
1099 | 0 | case GGUF_TYPE_INT32: |
1100 | 0 | case GGUF_TYPE_FLOAT32: |
1101 | 0 | case GGUF_TYPE_UINT64: |
1102 | 0 | case GGUF_TYPE_INT64: |
1103 | 0 | case GGUF_TYPE_FLOAT64: |
1104 | 0 | case GGUF_TYPE_BOOL: { |
1105 | 0 | gguf_set_arr_data(ctx, kv.get_key().c_str(), kv.get_type(), kv.data.data(), ne); |
1106 | 0 | } break; |
1107 | 0 | case GGUF_TYPE_STRING: { |
1108 | 0 | std::vector<const char *> tmp(ne); |
1109 | 0 | for (size_t j = 0; j < ne; ++j) { |
1110 | 0 | tmp[j] = kv.data_string[j].c_str(); |
1111 | 0 | } |
1112 | 0 | gguf_set_arr_str(ctx, kv.get_key().c_str(), tmp.data(), ne); |
1113 | 0 | } break; |
1114 | 0 | case GGUF_TYPE_ARRAY: |
1115 | 0 | default: GGML_ABORT("invalid type"); |
1116 | 0 | } |
1117 | 0 | } |
1118 | 0 | } |
1119 | | |
1120 | | void gguf_add_tensor( |
1121 | | struct gguf_context * ctx, |
1122 | 0 | const struct ggml_tensor * tensor) { |
1123 | 0 | GGML_ASSERT(tensor); |
1124 | 0 | if (gguf_find_tensor(ctx, tensor->name) != -1) { |
1125 | 0 | GGML_ABORT("duplicate tensor name: %s", tensor->name); |
1126 | 0 | } |
1127 | |
|
1128 | 0 | struct gguf_tensor_info ti; |
1129 | 0 | ti.t = *tensor; |
1130 | 0 | ti.offset = ctx->info.empty() ? 0 : |
1131 | 0 | ctx->info.back().offset + GGML_PAD(ggml_nbytes(&ctx->info.back().t), ctx->alignment); |
1132 | 0 | ctx->info.push_back(ti); |
1133 | 0 | } |
1134 | | |
1135 | 0 | void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) { |
1136 | 0 | const int64_t tensor_id = gguf_find_tensor(ctx, name); |
1137 | 0 | if (tensor_id < 0) { |
1138 | 0 | GGML_ABORT("tensor not found: %s", name); |
1139 | 0 | } |
1140 | 0 | struct ggml_tensor * tensor = &ctx->info[tensor_id].t; |
1141 | 0 | const size_t type_size = ggml_type_size(type); |
1142 | 0 | const int64_t blck_size = ggml_blck_size(type); |
1143 | |
|
1144 | 0 | tensor->type = type; |
1145 | 0 | GGML_ASSERT(tensor->ne[0] % blck_size == 0 && "tensor row size not divisible by block size of new type"); |
1146 | |
|
1147 | 0 | tensor->nb[0] = type_size; |
1148 | 0 | tensor->nb[1] = tensor->nb[0]*(tensor->ne[0]/blck_size); |
1149 | 0 | for (int i = 2; i < GGML_MAX_DIMS; i++) { |
1150 | 0 | tensor->nb[i] = tensor->nb[i - 1]*tensor->ne[i - 1]; |
1151 | 0 | } |
1152 | | |
1153 | | // update offsets |
1154 | 0 | const int64_t n_tensors = gguf_get_n_tensors(ctx); |
1155 | 0 | for (int64_t i = tensor_id + 1; i < n_tensors; ++i) { |
1156 | 0 | ctx->info[i].offset = ctx->info[i - 1].offset + GGML_PAD(ggml_nbytes(&ctx->info[i - 1].t), ctx->alignment); |
1157 | 0 | } |
1158 | 0 | } |
1159 | | |
1160 | 0 | void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data) { |
1161 | 0 | const int64_t tensor_id = gguf_find_tensor(ctx, name); |
1162 | 0 | if (tensor_id < 0) { |
1163 | 0 | GGML_ABORT("tensor not found: %s", name); |
1164 | 0 | } |
1165 | |
|
1166 | 0 | ctx->info[tensor_id].t.data = (void *)(uintptr_t)data; // double cast suppresses warning about casting away const |
1167 | 0 | } |
1168 | | |
1169 | | struct gguf_writer_base { |
1170 | | size_t written_bytes {0u}; |
1171 | | |
1172 | 0 | ~gguf_writer_base(void) {} |
1173 | | |
1174 | | // we bet on devirtualization |
1175 | | virtual void write(int8_t val) = 0; |
1176 | | virtual void write(const std::vector<int8_t> & val) = 0; |
1177 | | virtual void write_tensor_data(const struct gguf_tensor_info & info, size_t offset_data, size_t alignment) = 0; |
1178 | | |
1179 | | template <typename T> |
1180 | 0 | void write(const T & val) { |
1181 | 0 | for (size_t i = 0; i < sizeof(val); ++i) { |
1182 | 0 | write(reinterpret_cast<const int8_t *>(&val)[i]); |
1183 | 0 | } |
1184 | 0 | } Unexecuted instantiation: void gguf_writer_base::write<char>(char const&) Unexecuted instantiation: void gguf_writer_base::write<unsigned int>(unsigned int const&) Unexecuted instantiation: void gguf_writer_base::write<long>(long const&) Unexecuted instantiation: void gguf_writer_base::write<int>(int const&) Unexecuted instantiation: void gguf_writer_base::write<unsigned long>(unsigned long const&) |
1185 | | |
1186 | 0 | void write(const bool & val) { |
1187 | 0 | const int8_t val8 = val ? 1 : 0; |
1188 | 0 | write(val8); |
1189 | 0 | } |
1190 | | |
1191 | 0 | void write(const std::string & val) { |
1192 | 0 | { |
1193 | 0 | const uint64_t n = val.length(); |
1194 | 0 | write(n); |
1195 | 0 | } |
1196 | 0 | for (size_t i = 0; i < val.length(); ++i) { |
1197 | 0 | write((val.data())[i]); |
1198 | 0 | } |
1199 | 0 | } |
1200 | | |
1201 | 0 | void write(const char * val) { |
1202 | 0 | write(std::string(val)); |
1203 | 0 | } |
1204 | | |
1205 | 0 | void write(const enum ggml_type & val) { |
1206 | 0 | write(int32_t(val)); |
1207 | 0 | } |
1208 | | |
1209 | 0 | void write(const enum gguf_type & val) { |
1210 | 0 | write(int32_t(val)); |
1211 | 0 | } |
1212 | | |
1213 | 0 | void write(const struct gguf_kv & kv) { |
1214 | 0 | const uint64_t ne = kv.get_ne(); |
1215 | |
|
1216 | 0 | write(kv.get_key()); |
1217 | |
|
1218 | 0 | if (kv.is_array) { |
1219 | 0 | write(GGUF_TYPE_ARRAY); |
1220 | 0 | write(kv.get_type()); |
1221 | 0 | write(ne); |
1222 | 0 | } else { |
1223 | 0 | write(kv.get_type()); |
1224 | 0 | } |
1225 | |
|
1226 | 0 | switch (kv.get_type()) { |
1227 | 0 | case GGUF_TYPE_UINT8: |
1228 | 0 | case GGUF_TYPE_INT8: |
1229 | 0 | case GGUF_TYPE_UINT16: |
1230 | 0 | case GGUF_TYPE_INT16: |
1231 | 0 | case GGUF_TYPE_UINT32: |
1232 | 0 | case GGUF_TYPE_INT32: |
1233 | 0 | case GGUF_TYPE_FLOAT32: |
1234 | 0 | case GGUF_TYPE_UINT64: |
1235 | 0 | case GGUF_TYPE_INT64: |
1236 | 0 | case GGUF_TYPE_FLOAT64: { |
1237 | 0 | write(kv.data); |
1238 | 0 | } break; |
1239 | 0 | case GGUF_TYPE_BOOL: { |
1240 | 0 | for (size_t i = 0; i < ne; ++i) { |
1241 | 0 | write(kv.get_val<bool>(i)); |
1242 | 0 | } |
1243 | 0 | } break; |
1244 | 0 | case GGUF_TYPE_STRING: { |
1245 | 0 | for (size_t i = 0; i < ne; ++i) { |
1246 | 0 | write(kv.get_val<std::string>(i)); |
1247 | 0 | } |
1248 | 0 | } break; |
1249 | 0 | case GGUF_TYPE_ARRAY: |
1250 | 0 | default: GGML_ABORT("invalid type"); |
1251 | 0 | } |
1252 | 0 | } |
1253 | | |
1254 | 0 | void write_tensor_meta(const struct gguf_tensor_info & info) { |
1255 | 0 | write(info.t.name); |
1256 | |
|
1257 | 0 | const uint32_t n_dims = ggml_n_dims(&info.t); |
1258 | 0 | write(n_dims); |
1259 | |
|
1260 | 0 | for (uint32_t j = 0; j < n_dims; ++j) { |
1261 | 0 | write(info.t.ne[j]); |
1262 | 0 | } |
1263 | 0 | write(info.t.type); |
1264 | 0 | write(info.offset); |
1265 | 0 | } |
1266 | | |
1267 | 0 | void pad(const size_t alignment) { |
1268 | 0 | while (written_bytes % alignment != 0) { |
1269 | 0 | const int8_t zero = 0; |
1270 | 0 | write(zero); |
1271 | 0 | } |
1272 | 0 | } |
1273 | | }; |
1274 | | |
1275 | | // vector buffer based writer |
1276 | | struct gguf_writer_buf final : public gguf_writer_base { |
1277 | | std::vector<int8_t> & buf; |
1278 | | |
1279 | 0 | gguf_writer_buf(std::vector<int8_t> & buf) : buf(buf) {} |
1280 | | |
1281 | | using gguf_writer_base::write; |
1282 | | |
1283 | 0 | void write(const int8_t val) override { |
1284 | 0 | buf.push_back(val); |
1285 | 0 | written_bytes++; |
1286 | 0 | } |
1287 | | |
1288 | 0 | void write(const std::vector<int8_t> & val) override { |
1289 | 0 | buf.insert(buf.end(), val.begin(), val.end()); |
1290 | 0 | written_bytes += val.size(); |
1291 | 0 | } |
1292 | | |
1293 | 0 | void write_tensor_data(const struct gguf_tensor_info & info, const size_t offset_data, const size_t alignment) override { |
1294 | 0 | GGML_ASSERT(buf.size() - offset_data == info.offset); |
1295 | |
|
1296 | 0 | GGML_ASSERT(ggml_is_contiguous(&info.t)); |
1297 | 0 | const size_t offset = buf.size(); |
1298 | 0 | const size_t nbytes = ggml_nbytes(&info.t); |
1299 | |
|
1300 | 0 | buf.resize(offset + nbytes); |
1301 | 0 | if (info.t.buffer) { |
1302 | 0 | ggml_backend_tensor_get(&info.t, buf.data() + offset, 0, nbytes); |
1303 | 0 | } else { |
1304 | 0 | GGML_ASSERT(info.t.data); |
1305 | 0 | memcpy(buf.data() + offset, info.t.data, nbytes); |
1306 | 0 | } |
1307 | 0 | written_bytes += nbytes; |
1308 | |
|
1309 | 0 | pad(alignment); |
1310 | 0 | } |
1311 | | }; |
1312 | | |
1313 | | // file based writer |
1314 | | struct gguf_writer_file final : public gguf_writer_base { |
1315 | | FILE * file; |
1316 | | |
1317 | 0 | gguf_writer_file(FILE* file) : file(file) {} |
1318 | | |
1319 | | using gguf_writer_base::write; |
1320 | | |
1321 | 0 | void write(const int8_t val) override { |
1322 | 0 | const auto real_val = static_cast<uint8_t>(val); |
1323 | 0 | const auto ret = fputc(real_val, file); |
1324 | 0 | written_bytes++; |
1325 | 0 | if (ret != real_val) { |
1326 | 0 | throw std::runtime_error("unexpected fputc result '" + std::to_string(ret) + "' instead of '" + std::to_string((int)real_val) + "'"); |
1327 | 0 | } |
1328 | 0 | } |
1329 | | |
1330 | 0 | void write(const std::vector<int8_t> & val) override { |
1331 | 0 | const auto ret = fwrite(val.data(), 1, val.size(), file); |
1332 | 0 | written_bytes += val.size(); |
1333 | 0 | if (ret != val.size()) { |
1334 | 0 | throw std::runtime_error("unexpected fwrite number of bytes written, '" + std::to_string(ret) + "' instead of '" + std::to_string(val.size()) + "'"); |
1335 | 0 | } |
1336 | 0 | } |
1337 | | |
1338 | 0 | void write_tensor_data(const struct gguf_tensor_info & info, const size_t offset_data, const size_t alignment) override { |
1339 | 0 | GGML_ASSERT(written_bytes - offset_data == info.offset); |
1340 | |
|
1341 | 0 | GGML_ASSERT(ggml_is_contiguous(&info.t)); |
1342 | 0 | const size_t nbytes = ggml_nbytes(&info.t); |
1343 | |
|
1344 | 0 | std::vector<int8_t> buf(nbytes); |
1345 | 0 | if (info.t.buffer) { |
1346 | 0 | ggml_backend_tensor_get(&info.t, buf.data(), 0, nbytes); |
1347 | 0 | } else { |
1348 | 0 | GGML_ASSERT(info.t.data); |
1349 | 0 | memcpy(buf.data(), info.t.data, nbytes); |
1350 | 0 | } |
1351 | 0 | write(buf); |
1352 | |
|
1353 | 0 | pad(alignment); |
1354 | 0 | } |
1355 | | }; |
1356 | | |
1357 | | template <typename writer_t> |
1358 | 0 | static void gguf_write_out(const struct gguf_context * ctx, writer_t & gw, bool only_meta) { |
1359 | 0 | const int64_t n_kv = gguf_get_n_kv(ctx); |
1360 | 0 | const int64_t n_tensors = gguf_get_n_tensors(ctx); |
1361 | | |
1362 | | // write header |
1363 | 0 | gw.write(GGUF_MAGIC[0]); |
1364 | 0 | gw.write(GGUF_MAGIC[1]); |
1365 | 0 | gw.write(GGUF_MAGIC[2]); |
1366 | 0 | gw.write(GGUF_MAGIC[3]); |
1367 | 0 | gw.write(ctx->version); |
1368 | 0 | gw.write(n_tensors); |
1369 | 0 | gw.write(n_kv); |
1370 | | |
1371 | | // write key-value pairs |
1372 | 0 | for (int64_t i = 0; i < n_kv; ++i) { |
1373 | 0 | gw.write(ctx->kv[i]); |
1374 | 0 | } |
1375 | | |
1376 | | // write tensor info |
1377 | 0 | for (int64_t i = 0; i < n_tensors; ++i) { |
1378 | 0 | gw.write_tensor_meta(ctx->info[i]); |
1379 | 0 | } |
1380 | | |
1381 | | // we require the data section to be aligned |
1382 | 0 | gw.pad(ctx->alignment); |
1383 | |
|
1384 | 0 | if (only_meta) { |
1385 | 0 | return; |
1386 | 0 | } |
1387 | | |
1388 | 0 | const size_t offset_data = gw.written_bytes; |
1389 | | |
1390 | | // write tensor data |
1391 | 0 | for (int64_t i = 0; i < n_tensors; ++i) { |
1392 | 0 | gw.write_tensor_data(ctx->info[i], offset_data, ctx->alignment); |
1393 | 0 | } |
1394 | 0 | } Unexecuted instantiation: gguf.cpp:void gguf_write_out<gguf_writer_buf>(gguf_context const*, gguf_writer_buf&, bool) Unexecuted instantiation: gguf.cpp:void gguf_write_out<gguf_writer_file>(gguf_context const*, gguf_writer_file&, bool) |
1395 | | |
1396 | 0 | void gguf_write_to_buf(const struct gguf_context * ctx, std::vector<int8_t> & buf, bool only_meta) { |
1397 | 0 | gguf_writer_buf gw(buf); |
1398 | 0 | gguf_write_out(ctx, gw, only_meta); |
1399 | 0 | } |
1400 | | |
1401 | 0 | bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) { |
1402 | 0 | FILE * file = ggml_fopen(fname, "wb"); |
1403 | |
|
1404 | 0 | if (!file) { |
1405 | 0 | GGML_LOG_ERROR("%s: failed to open file '%s' for writing GGUF data\n", __func__, fname); |
1406 | 0 | return false; |
1407 | 0 | } |
1408 | | |
1409 | 0 | try { |
1410 | 0 | gguf_writer_file gw(file); |
1411 | 0 | gguf_write_out(ctx, gw, only_meta); |
1412 | 0 | } catch (const std::runtime_error& ex) { |
1413 | 0 | GGML_LOG_ERROR("%s: failed to write GGUF data into '%s': %s\n", __func__, fname, ex.what()); |
1414 | 0 | fclose(file); |
1415 | 0 | return false; |
1416 | 0 | } |
1417 | | |
1418 | 0 | fclose(file); |
1419 | 0 | return true; |
1420 | 0 | } |
1421 | | |
1422 | 0 | size_t gguf_get_meta_size(const struct gguf_context * ctx) { |
1423 | | // only return size |
1424 | 0 | std::vector<int8_t> buf; |
1425 | 0 | gguf_write_to_buf(ctx, buf, /*only_meta =*/ true); |
1426 | 0 | return buf.size(); |
1427 | 0 | } |
1428 | | |
1429 | 0 | void gguf_get_meta_data(const struct gguf_context * ctx, void * data) { |
1430 | 0 | std::vector<int8_t> buf; |
1431 | 0 | gguf_write_to_buf(ctx, buf, /*only_meta =*/ true); |
1432 | 0 | memcpy(data, buf.data(), buf.size()); |
1433 | 0 | } |