Coverage Report

Created: 2025-11-28 06:56

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/llama.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_llama::llm_build_llama(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
6
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
8
9
0
    ggml_tensor * cur;
10
0
    ggml_tensor * inpL;
11
12
0
    inpL = build_inp_embd(model.tok_embd);
13
14
    // inp_pos - contains the positions
15
0
    ggml_tensor * inp_pos = build_inp_pos();
16
17
0
    auto * inp_attn = build_attn_inp_kv();
18
19
0
    const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
20
21
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
22
23
0
    for (int il = 0; il < n_layer; ++il) {
24
0
        ggml_tensor * inpSA = inpL;
25
26
        // norm
27
0
        cur = build_norm(inpL,
28
0
                model.layers[il].attn_norm, NULL,
29
0
                LLM_NORM_RMS, il);
30
0
        cb(cur, "attn_norm", il);
31
32
        // self-attention
33
0
        {
34
            // rope freq factors for llama3; may return nullptr for llama2 and other models
35
0
            ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
36
37
            // compute Q and K and RoPE them
38
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
39
0
            cb(Qcur, "Qcur", il);
40
0
            if (model.layers[il].bq) {
41
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
42
0
                cb(Qcur, "Qcur", il);
43
0
            }
44
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
45
0
            cb(Kcur, "Kcur", il);
46
0
            if (model.layers[il].bk) {
47
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
48
0
                cb(Kcur, "Kcur", il);
49
0
            }
50
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
51
0
            cb(Vcur, "Vcur", il);
52
0
            if (model.layers[il].bv) {
53
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
54
0
                cb(Vcur, "Vcur", il);
55
0
            }
56
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
57
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
58
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
59
60
0
            Qcur = ggml_rope_ext(
61
0
                    ctx0, Qcur, inp_pos, rope_factors,
62
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
63
0
                    ext_factor, attn_factor, beta_fast, beta_slow
64
0
                    );
65
66
0
            Kcur = ggml_rope_ext(
67
0
                    ctx0, Kcur, inp_pos, rope_factors,
68
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
69
0
                    ext_factor, attn_factor, beta_fast, beta_slow
70
0
                    );
71
72
0
            cb(Qcur, "Qcur", il);
73
0
            cb(Kcur, "Kcur", il);
74
0
            cb(Vcur, "Vcur", il);
75
76
0
            if (hparams.use_kq_norm) {
77
                // Llama4TextL2Norm
78
0
                Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
79
0
                Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
80
0
                cb(Qcur, "Qcur_normed", il);
81
0
                cb(Kcur, "Kcur_normed", il);
82
0
            }
83
0
            cur = build_attn(inp_attn,
84
0
                    model.layers[il].wo, model.layers[il].bo,
85
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
86
0
            cb(cur, "attn_out", il);
87
0
        }
88
0
        if (il == n_layer - 1 && inp_out_ids) {
89
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
90
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
91
0
        }
92
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
93
0
        cb(ffn_inp, "ffn_inp", il);
94
95
        // feed-forward network (non-MoE)
96
0
        if (model.layers[il].ffn_gate_inp == nullptr) {
97
98
0
            cur = build_norm(ffn_inp,
99
0
                    model.layers[il].ffn_norm, NULL,
100
0
                    LLM_NORM_RMS, il);
101
0
            cb(cur, "ffn_norm", il);
102
103
0
            cur = build_ffn(cur,
104
0
                    model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
105
0
                    model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
106
0
                    model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
107
0
                    NULL,
108
0
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
109
0
            cb(cur, "ffn_out", il);
110
0
        } else {
111
            // MoE branch
112
0
            cur = build_norm(ffn_inp,
113
0
                    model.layers[il].ffn_norm, NULL,
114
0
                    LLM_NORM_RMS, il);
115
0
            cb(cur, "ffn_norm", il);
116
117
0
            cur = build_moe_ffn(cur,
118
0
                    model.layers[il].ffn_gate_inp,
119
0
                    model.layers[il].ffn_up_exps,
120
0
                    model.layers[il].ffn_gate_exps,
121
0
                    model.layers[il].ffn_down_exps,
122
0
                    nullptr,
123
0
                    n_expert, n_expert_used,
124
0
                    LLM_FFN_SILU, true,
125
0
                    false, 0.0,
126
0
                    LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
127
0
                    il);
128
0
            cb(cur, "ffn_moe_out", il);
129
0
        }
130
0
        cur = ggml_add(ctx0, cur, ffn_inp);
131
0
        cb(cur, "ffn_out", il);
132
133
0
        cur = build_cvec(cur, il);
134
0
        cb(cur, "l_out", il);
135
136
        // input for next layer
137
0
        inpL = cur;
138
0
    }
139
0
    cur = inpL;
140
141
0
    cur = build_norm(cur,
142
0
            model.output_norm, NULL,
143
0
            LLM_NORM_RMS, -1);
144
145
0
    cb(cur, "result_norm", -1);
146
0
    res->t_embd = cur;
147
148
    // lm_head
149
0
    cur = build_lora_mm(model.output, cur);
150
151
0
    cb(cur, "result_output", -1);
152
0
    res->t_logits = cur;
153
154
0
    ggml_build_forward_expand(gf, cur);
155
0
}