/src/llama.cpp/src/models/bitnet.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | | |
4 | 0 | llm_build_bitnet::llm_build_bitnet(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
5 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
6 | |
|
7 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
8 | |
|
9 | 0 | ggml_tensor * cur; |
10 | 0 | ggml_tensor * inpL; |
11 | |
|
12 | 0 | inpL = build_inp_embd(model.tok_embd); |
13 | | |
14 | | // inp_pos - contains the positions |
15 | 0 | ggml_tensor * inp_pos = build_inp_pos(); |
16 | |
|
17 | 0 | auto * inp_attn = build_attn_inp_kv(); |
18 | |
|
19 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
20 | |
|
21 | 0 | for (int il = 0; il < n_layer; ++il) { |
22 | 0 | ggml_tensor * inpSA = inpL; |
23 | |
|
24 | 0 | cur = build_norm(inpL, |
25 | 0 | model.layers[il].attn_norm, NULL, |
26 | 0 | LLM_NORM_RMS, il); |
27 | 0 | cb(cur, "attn_norm", il); |
28 | | |
29 | | // self-attention |
30 | 0 | { |
31 | | // compute Q and K and RoPE them |
32 | 0 | ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); |
33 | 0 | if (model.layers[il].wq_scale) { |
34 | 0 | Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale); |
35 | 0 | } |
36 | 0 | cb(Qcur, "Qcur", il); |
37 | 0 | if (model.layers[il].bq) { |
38 | 0 | Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); |
39 | 0 | cb(Qcur, "Qcur", il); |
40 | 0 | } |
41 | | |
42 | | // B1.K |
43 | 0 | ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); |
44 | 0 | if (model.layers[il].wk_scale) { |
45 | 0 | Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale); |
46 | 0 | } |
47 | 0 | cb(Kcur, "Kcur", il); |
48 | 0 | if (model.layers[il].bk) { |
49 | 0 | Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); |
50 | 0 | cb(Kcur, "Kcur", il); |
51 | 0 | } |
52 | | |
53 | | // B1.V |
54 | 0 | ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); |
55 | 0 | if (model.layers[il].wv_scale) { |
56 | 0 | Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale); |
57 | 0 | } |
58 | 0 | cb(Vcur, "Vcur", il); |
59 | 0 | if (model.layers[il].bv) { |
60 | 0 | Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); |
61 | 0 | cb(Vcur, "Vcur", il); |
62 | 0 | } |
63 | |
|
64 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
65 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); |
66 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); |
67 | |
|
68 | 0 | Qcur = ggml_rope_ext( |
69 | 0 | ctx0, Qcur, inp_pos, nullptr, |
70 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
71 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
72 | 0 | ); |
73 | |
|
74 | 0 | Kcur = ggml_rope_ext( |
75 | 0 | ctx0, Kcur, inp_pos, nullptr, |
76 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
77 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
78 | 0 | ); |
79 | |
|
80 | 0 | cb(Qcur, "Qcur", il); |
81 | 0 | cb(Kcur, "Kcur", il); |
82 | 0 | cb(Vcur, "Vcur", il); |
83 | |
|
84 | 0 | cur = build_attn(inp_attn, |
85 | 0 | NULL, NULL, |
86 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); |
87 | |
|
88 | 0 | cur = build_norm(cur, |
89 | 0 | model.layers[il].attn_sub_norm, NULL, |
90 | 0 | LLM_NORM_RMS, il); |
91 | 0 | cb(cur, "attn_sub_norm", il); |
92 | |
|
93 | 0 | cur = build_lora_mm(model.layers[il].wo, cur); |
94 | 0 | if (model.layers[il].wo_scale) { |
95 | 0 | cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale); |
96 | 0 | } |
97 | 0 | if (model.layers[il].bo) { |
98 | 0 | cur = ggml_add(ctx0, cur, model.layers[il].bo); |
99 | 0 | } |
100 | 0 | cb(cur, "attn_out", il); |
101 | 0 | } |
102 | |
|
103 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
104 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
105 | 0 | inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); |
106 | 0 | } |
107 | |
|
108 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); |
109 | 0 | cb(ffn_inp, "ffn_inp", il); |
110 | | |
111 | | // feed-forward forward |
112 | 0 | cur = build_norm(ffn_inp, |
113 | 0 | model.layers[il].ffn_norm, NULL, |
114 | 0 | LLM_NORM_RMS, il); |
115 | 0 | cb(cur, "ffn_norm", il); |
116 | |
|
117 | 0 | cur = build_ffn(cur, |
118 | 0 | model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale, |
119 | 0 | model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale, |
120 | 0 | NULL, NULL, NULL, |
121 | 0 | NULL, |
122 | 0 | LLM_FFN_SILU, LLM_FFN_PAR, il); |
123 | 0 | cb(cur, "ffn_sub_out", il); |
124 | |
|
125 | 0 | cur = build_norm(cur, |
126 | 0 | model.layers[il].ffn_sub_norm, NULL, |
127 | 0 | LLM_NORM_RMS, il); |
128 | 0 | cb(cur, "ffn_sub_norm", il); |
129 | |
|
130 | 0 | cur = build_lora_mm(model.layers[il].ffn_down, cur); |
131 | 0 | if (model.layers[il].ffn_down_scale) { |
132 | 0 | cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale); |
133 | 0 | } |
134 | 0 | cb(cur, "ffn_down", il); |
135 | |
|
136 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
137 | 0 | cb(cur, "l_out", il); |
138 | | |
139 | | // input for next layer |
140 | 0 | inpL = cur; |
141 | 0 | } |
142 | |
|
143 | 0 | cur = inpL; |
144 | |
|
145 | 0 | cur = build_norm(cur, |
146 | 0 | model.output_norm, NULL, |
147 | 0 | LLM_NORM_RMS, -1); |
148 | |
|
149 | 0 | cb(cur, "result_norm", -1); |
150 | 0 | res->t_embd = cur; |
151 | | |
152 | | // lm_head |
153 | | // FIXME: do not use model.tok_embd directly, duplicate as model.output |
154 | 0 | cur = build_lora_mm(model.tok_embd, cur); |
155 | |
|
156 | 0 | cb(cur, "result_output", -1); |
157 | 0 | res->t_logits = cur; |
158 | |
|
159 | 0 | ggml_build_forward_expand(gf, cur); |
160 | 0 | } |