Coverage Report

Created: 2025-11-28 06:57

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/deci.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
5
0
llm_build_deci::llm_build_deci(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
6
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
7
8
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
9
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
10
11
0
    ggml_tensor * cur;
12
0
    ggml_tensor * inpL;
13
14
0
    inpL = build_inp_embd(model.tok_embd);
15
16
    // inp_pos - contains the positions
17
0
    ggml_tensor * inp_pos = build_inp_pos();
18
19
0
    auto * inp_attn = build_attn_inp_kv();
20
21
0
    const float kq_scale =
22
0
        hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
23
24
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
25
26
0
    for (int il = 0; il < n_layer; ++il) {
27
0
        ggml_tensor * inpSA     = inpL;
28
0
        const int64_t n_head_kv = hparams.n_head_kv(il);
29
0
        const int64_t n_head    = hparams.n_head(il);
30
0
        const int64_t n_ff      = hparams.n_ff(il);
31
32
0
        if (n_head == 0) {
33
            // attention-free layer of Llama-3_1-Nemotron-51B
34
0
            cur = inpL;
35
0
        } else {
36
            // norm
37
0
            cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
38
0
            cb(cur, "attn_norm", il);
39
0
        }
40
0
        if (n_head > 0 && n_head_kv == 0) {
41
            // "linear attention" of Llama-3_1-Nemotron-51B
42
0
            cur = build_lora_mm(model.layers[il].wo, cur);
43
0
            cb(cur, "wo", il);
44
0
        } else if (n_head > 0) {
45
            // self-attention
46
            // rope freq factors for llama3; may return nullptr for llama2 and other models
47
0
            ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
48
49
            // compute Q and K and RoPE them
50
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
51
0
            cb(Qcur, "Qcur", il);
52
0
            if (model.layers[il].bq) {
53
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
54
0
                cb(Qcur, "Qcur", il);
55
0
            }
56
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
57
0
            cb(Kcur, "Kcur", il);
58
0
            if (model.layers[il].bk) {
59
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
60
0
                cb(Kcur, "Kcur", il);
61
0
            }
62
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
63
0
            cb(Vcur, "Vcur", il);
64
0
            if (model.layers[il].bv) {
65
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
66
0
                cb(Vcur, "Vcur", il);
67
0
            }
68
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
69
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
70
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
71
72
0
            Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
73
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
74
75
0
            Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
76
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
77
78
0
            cb(Qcur, "Qcur", il);
79
0
            cb(Kcur, "Kcur", il);
80
0
            cb(Vcur, "Vcur", il);
81
82
0
            cur = build_attn(inp_attn,
83
0
                    model.layers[il].wo, model.layers[il].bo,
84
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
85
0
        }
86
0
        if (il == n_layer - 1 && inp_out_ids) {
87
0
            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
88
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
89
0
        }
90
        // FFN-free layer of Llama-3_1-Nemotron-Ultra-253B
91
0
        if (n_ff == 0) {
92
0
            continue;
93
0
        }
94
        // modified to support attention-free layer of Llama-3_1-Nemotron-51B
95
0
        ggml_tensor * ffn_inp = cur;
96
0
        if (n_head > 0) {
97
0
            ffn_inp = ggml_add(ctx0, cur, inpSA);
98
0
            cb(ffn_inp, "ffn_inp", il);
99
0
        }
100
        // feed-forward network
101
0
        if (model.layers[il].ffn_gate_inp == nullptr) {
102
0
            cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
103
0
            cb(cur, "ffn_norm", il);
104
105
0
            cur = build_ffn(cur,
106
0
                model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
107
0
                model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
108
0
                model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
109
0
                NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
110
0
            cb(cur, "ffn_out", il);
111
0
        }
112
0
        cur = ggml_add(ctx0, cur, ffn_inp);
113
0
        cb(cur, "ffn_out", il);
114
115
0
        cur = build_cvec(cur, il);
116
0
        cb(cur, "l_out", il);
117
118
        // input for next layer
119
0
        inpL = cur;
120
0
    }
121
0
    cur = inpL;
122
123
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
124
125
0
    cb(cur, "result_norm", -1);
126
0
    res->t_embd = cur;
127
128
    // lm_head
129
0
    cur = build_lora_mm(model.output, cur);
130
131
0
    cb(cur, "result_output", -1);
132
0
    res->t_logits = cur;
133
134
0
    ggml_build_forward_expand(gf, cur);
135
0
}