Coverage Report

Created: 2025-11-28 06:57

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/grok.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_grok::llm_build_grok(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
6
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
8
9
0
    ggml_tensor * cur;
10
0
    ggml_tensor * inpL;
11
12
0
    inpL = build_inp_embd(model.tok_embd);
13
14
    // inp_pos - contains the positions
15
0
    ggml_tensor * inp_pos = build_inp_pos();
16
17
0
    auto * inp_attn = build_attn_inp_kv();
18
19
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
20
21
0
    for (int il = 0; il < n_layer; ++il) {
22
0
        ggml_tensor * inpSA = inpL;
23
24
        // norm
25
0
        cur = build_norm(inpL,
26
0
                model.layers[il].attn_norm, NULL,
27
0
                LLM_NORM_RMS, il);
28
0
        cb(cur, "attn_norm", il);
29
30
        // self-attention
31
0
        {
32
            // compute Q and K and RoPE them
33
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
34
0
            cb(Qcur, "Qcur", il);
35
0
            if (model.layers[il].bq) {
36
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
37
0
                cb(Qcur, "Qcur", il);
38
0
            }
39
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
40
0
            cb(Kcur, "Kcur", il);
41
0
            if (model.layers[il].bk) {
42
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
43
0
                cb(Kcur, "Kcur", il);
44
0
            }
45
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
46
0
            cb(Vcur, "Vcur", il);
47
0
            if (model.layers[il].bv) {
48
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
49
0
                cb(Vcur, "Vcur", il);
50
0
            }
51
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
52
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
53
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
54
55
0
            Qcur = ggml_rope_ext(
56
0
                    ctx0, Qcur, inp_pos, nullptr,
57
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
58
0
                    ext_factor, attn_factor, beta_fast, beta_slow
59
0
                    );
60
61
0
            Kcur = ggml_rope_ext(
62
0
                    ctx0, Kcur, inp_pos, nullptr,
63
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
64
0
                    ext_factor, attn_factor, beta_fast, beta_slow
65
0
                    );
66
67
0
            cb(Qcur, "Qcur", il);
68
0
            cb(Kcur, "Kcur", il);
69
0
            cb(Vcur, "Vcur", il);
70
71
0
            cur = build_attn(inp_attn,
72
0
                    model.layers[il].wo, model.layers[il].bo,
73
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
74
0
        }
75
0
        if (il == n_layer - 1 && inp_out_ids) {
76
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
77
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
78
0
        }
79
0
        cur = build_norm(cur,
80
0
                model.layers[il].attn_out_norm, NULL,
81
0
                LLM_NORM_RMS, il);
82
0
        cb(cur, "attn_out_norm", il);
83
84
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
85
0
        cb(ffn_inp, "ffn_inp", il);
86
87
        // feed-forward network
88
0
        cur = build_norm(ffn_inp,
89
0
                model.layers[il].ffn_norm, NULL,
90
0
                LLM_NORM_RMS, il);
91
0
        cb(cur, "ffn_norm", il);
92
93
        // MoE branch
94
0
        ggml_tensor * moe_out = build_moe_ffn(cur,
95
0
                model.layers[il].ffn_gate_inp,
96
0
                model.layers[il].ffn_up_exps,
97
0
                model.layers[il].ffn_gate_exps,
98
0
                model.layers[il].ffn_down_exps,
99
0
                nullptr,
100
0
                n_expert, n_expert_used,
101
0
                LLM_FFN_GELU, true,
102
0
                false, 0.0,
103
0
                LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
104
0
                il);
105
0
        cb(moe_out, "ffn_moe_out", il);
106
107
0
        if (model.layers[il].ffn_up) {
108
0
            ggml_tensor * ffn_out = build_ffn(cur,
109
0
                    model.layers[il].ffn_up,   NULL, NULL,
110
0
                    model.layers[il].ffn_gate, NULL, NULL,
111
0
                    model.layers[il].ffn_down, NULL, NULL,
112
0
                    NULL,
113
0
                    LLM_FFN_GELU, LLM_FFN_PAR, il);
114
0
            cb(ffn_out, "ffn_out", il);
115
116
0
            cur = ggml_scale(ctx0, ggml_add(ctx0, ffn_out, moe_out), std::sqrt(2) / 2);
117
0
            cb(cur, "ffn_out", il);
118
0
        } else {
119
0
            cur = moe_out;
120
0
        }
121
0
        cur = build_norm(cur,
122
0
                model.layers[il].ffn_post_norm, NULL,
123
0
                LLM_NORM_RMS, il);
124
0
        cb(cur, "ffn_post_norm", il);
125
126
0
        cur = ggml_add(ctx0, cur, ffn_inp);
127
0
        cb(cur, "ffn_out", il);
128
129
0
        cur = build_cvec(cur, il);
130
0
        cb(cur, "l_out", il);
131
132
        // input for next layer
133
0
        inpL = cur;
134
0
    }
135
0
    cur = inpL;
136
137
0
    cur = build_norm(cur,
138
0
            model.output_norm, NULL,
139
0
            LLM_NORM_RMS, -1);
140
141
0
    cb(cur, "result_norm", -1);
142
0
    res->t_embd = cur;
143
144
    // lm_head
145
0
    cur = build_lora_mm(model.output, cur);
146
147
0
    cur = ggml_scale(ctx0, cur, hparams.f_logit_scale);
148
149
    // final logit soft-capping
150
0
    if (hparams.f_final_logit_softcapping) {
151
0
        cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
152
0
        cur = ggml_tanh(ctx0, cur);
153
0
        cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
154
0
    }
155
0
    cb(cur, "result_output", -1);
156
0
    res->t_logits = cur;
157
158
0
    ggml_build_forward_expand(gf, cur);
159
0
}