/src/llama.cpp/src/models/minicpm3.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | 0 | llm_build_minicpm3::llm_build_minicpm3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
4 | | //TODO: if the model varies, these parameters need to be read from the model |
5 | 0 | const int64_t n_embd_base = 256; |
6 | 0 | const float scale_embd = 12.0f; |
7 | 0 | const float scale_depth = 1.4f; |
8 | 0 | const float kq_scale = 1.0f / sqrtf(float(hparams.n_embd_head_k)); |
9 | |
|
10 | 0 | const uint32_t n_embd_head_qk_rope = hparams.n_rot; |
11 | 0 | const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot; |
12 | 0 | const uint32_t kv_lora_rank = hparams.n_lora_kv; |
13 | |
|
14 | 0 | ggml_tensor * cur; |
15 | 0 | ggml_tensor * inpL; |
16 | |
|
17 | 0 | inpL = build_inp_embd(model.tok_embd); |
18 | | |
19 | | // scale the input embeddings |
20 | 0 | inpL = ggml_scale(ctx0, inpL, scale_embd); |
21 | 0 | cb(inpL, "inp_scaled", -1); |
22 | | |
23 | | // inp_pos - contains the positions |
24 | 0 | ggml_tensor * inp_pos = build_inp_pos(); |
25 | |
|
26 | 0 | auto * inp_attn = build_attn_inp_kv(); |
27 | |
|
28 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
29 | |
|
30 | 0 | for (int il = 0; il < n_layer; ++il) { |
31 | 0 | ggml_tensor * inpSA = inpL; |
32 | |
|
33 | 0 | ggml_tensor * rope_factors = model.get_rope_factors(cparams, il); |
34 | | |
35 | | // norm |
36 | 0 | cur = build_norm(inpL, |
37 | 0 | model.layers[il].attn_norm, NULL, |
38 | 0 | LLM_NORM_RMS, il); |
39 | 0 | cb(cur, "attn_norm", il); |
40 | | |
41 | | // self_attention |
42 | 0 | { |
43 | 0 | ggml_tensor * q = NULL; |
44 | | // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens} |
45 | 0 | q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur); |
46 | 0 | cb(q, "q", il); |
47 | |
|
48 | 0 | q = build_norm(q, |
49 | 0 | model.layers[il].attn_q_a_norm, NULL, |
50 | 0 | LLM_NORM_RMS, il); |
51 | 0 | cb(q, "q", il); |
52 | | |
53 | | // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens} |
54 | 0 | q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q); |
55 | 0 | cb(q, "q", il); |
56 | | |
57 | | // split into {n_head * n_embd_head_qk_nope, n_tokens} |
58 | 0 | ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens, |
59 | 0 | ggml_row_size(q->type, hparams.n_embd_head_k), |
60 | 0 | ggml_row_size(q->type, hparams.n_embd_head_k * n_head), |
61 | 0 | 0); |
62 | 0 | cb(q_nope, "q_nope", il); |
63 | | |
64 | | // and {n_head * n_embd_head_qk_rope, n_tokens} |
65 | 0 | ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens, |
66 | 0 | ggml_row_size(q->type, hparams.n_embd_head_k), |
67 | 0 | ggml_row_size(q->type, hparams.n_embd_head_k * n_head), |
68 | 0 | ggml_row_size(q->type, n_embd_head_qk_nope)); |
69 | 0 | cb(q_pe, "q_pe", il); |
70 | | |
71 | | // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens} |
72 | 0 | ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur); |
73 | 0 | cb(kv_pe_compresseed, "kv_pe_compresseed", il); |
74 | | |
75 | | // split into {kv_lora_rank, n_tokens} |
76 | 0 | ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens, |
77 | 0 | kv_pe_compresseed->nb[1], |
78 | 0 | 0); |
79 | 0 | cb(kv_compressed, "kv_compressed", il); |
80 | | |
81 | | // and {n_embd_head_qk_rope, n_tokens} |
82 | 0 | ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens, |
83 | 0 | kv_pe_compresseed->nb[1], |
84 | 0 | kv_pe_compresseed->nb[1], |
85 | 0 | ggml_row_size(kv_pe_compresseed->type, kv_lora_rank)); |
86 | 0 | cb(k_pe, "k_pe", il); |
87 | |
|
88 | 0 | kv_compressed = build_norm(kv_compressed, |
89 | 0 | model.layers[il].attn_kv_a_norm, NULL, |
90 | 0 | LLM_NORM_RMS, il); |
91 | 0 | cb(kv_compressed, "kv_compressed", il); |
92 | | |
93 | | // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens} |
94 | 0 | ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed); |
95 | 0 | cb(kv, "kv", il); |
96 | | |
97 | | // split into {n_head * n_embd_head_qk_nope, n_tokens} |
98 | 0 | ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens, |
99 | 0 | ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v), |
100 | 0 | ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)), |
101 | 0 | 0); |
102 | 0 | cb(k_nope, "k_nope", il); |
103 | | |
104 | | // and {n_head * n_embd_head_v, n_tokens} |
105 | 0 | ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens, |
106 | 0 | ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)), |
107 | 0 | ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head), |
108 | 0 | ggml_row_size(kv->type, (n_embd_head_qk_nope))); |
109 | 0 | cb(v_states, "v_states", il); |
110 | |
|
111 | 0 | v_states = ggml_cont(ctx0, v_states); |
112 | 0 | cb(v_states, "v_states", il); |
113 | |
|
114 | 0 | q_pe = ggml_rope_ext( |
115 | 0 | ctx0, q_pe, inp_pos, rope_factors, |
116 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
117 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
118 | 0 | ); |
119 | 0 | cb(q_pe, "q_pe", il); |
120 | | |
121 | | // shared RoPE key |
122 | 0 | k_pe = ggml_rope_ext( |
123 | 0 | ctx0, k_pe, inp_pos, rope_factors, |
124 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
125 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
126 | 0 | ); |
127 | 0 | cb(k_pe, "k_pe", il); |
128 | |
|
129 | 0 | ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0); |
130 | 0 | cb(q_states, "q_states", il); |
131 | |
|
132 | 0 | ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0); |
133 | 0 | cb(k_states, "k_states", il); |
134 | |
|
135 | 0 | cur = build_attn(inp_attn, |
136 | 0 | model.layers[il].wo, NULL, |
137 | 0 | q_states, k_states, v_states, nullptr, nullptr, nullptr, kq_scale, il); |
138 | 0 | } |
139 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
140 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
141 | 0 | inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); |
142 | 0 | } |
143 | | // scale_res - scale the hidden states for residual connection |
144 | 0 | const float scale_res = scale_depth/sqrtf(float(n_layer)); // TODO: is this correct? |
145 | 0 | cur = ggml_scale(ctx0, cur, scale_res); |
146 | 0 | cb(cur, "hidden_scaled", il); |
147 | |
|
148 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); |
149 | 0 | cb(ffn_inp, "ffn_inp", il); |
150 | | |
151 | | // feed-forward network |
152 | 0 | { |
153 | 0 | cur = build_norm(ffn_inp, |
154 | 0 | model.layers[il].ffn_norm, NULL, |
155 | 0 | LLM_NORM_RMS, il); |
156 | 0 | cb(cur, "ffn_norm", il); |
157 | |
|
158 | 0 | cur = build_ffn(cur, |
159 | 0 | model.layers[il].ffn_up, NULL, NULL, |
160 | 0 | model.layers[il].ffn_gate, NULL, NULL, |
161 | 0 | model.layers[il].ffn_down, NULL, NULL, |
162 | 0 | NULL, |
163 | 0 | LLM_FFN_SILU, LLM_FFN_PAR, il); |
164 | 0 | cb(cur, "ffn_out", il); |
165 | 0 | } |
166 | | // scale the hidden states for residual connection |
167 | 0 | cur = ggml_scale(ctx0, cur, scale_res); |
168 | 0 | cb(cur, "hidden_scaled_ffn", il); |
169 | |
|
170 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
171 | |
|
172 | 0 | cur = build_cvec(cur, il); |
173 | 0 | cb(cur, "l_out", il); |
174 | | |
175 | | // input for next layer |
176 | 0 | inpL = cur; |
177 | 0 | } |
178 | 0 | cur = inpL; |
179 | |
|
180 | 0 | cur = build_norm(cur, |
181 | 0 | model.output_norm, NULL, |
182 | 0 | LLM_NORM_RMS, -1); |
183 | |
|
184 | 0 | cb(cur, "result_norm", -1); |
185 | 0 | res->t_embd = cur; |
186 | | |
187 | | // lm_head scaling |
188 | 0 | const float scale_lmhead = float(n_embd_base)/float(n_embd); |
189 | 0 | cur = ggml_scale(ctx0, cur, scale_lmhead); |
190 | 0 | cb(cur, "lmhead_scaling", -1); |
191 | | |
192 | | // lm_head |
193 | 0 | cur = build_lora_mm(model.output, cur); |
194 | |
|
195 | 0 | cb(cur, "result_output", -1); |
196 | 0 | res->t_logits = cur; |
197 | |
|
198 | 0 | ggml_build_forward_expand(gf, cur); |
199 | 0 | } |