/src/llama.cpp/src/models/nemotron-h.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | | |
4 | | |
5 | | llm_build_nemotron_h::llm_build_nemotron_h(const llama_model & model, const llm_graph_params & params) : |
6 | 0 | llm_graph_context_mamba(params) { |
7 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
8 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
9 | |
|
10 | 0 | ggml_tensor * cur; |
11 | 0 | ggml_tensor * inpL; |
12 | |
|
13 | 0 | inpL = build_inp_embd(model.tok_embd); |
14 | 0 | ggml_build_forward_expand(gf, inpL); |
15 | |
|
16 | 0 | auto * inp = build_inp_mem_hybrid(); |
17 | |
|
18 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
19 | |
|
20 | 0 | for (int il = 0; il < n_layer; ++il) { |
21 | 0 | struct ggml_tensor * inpSA = inpL; |
22 | | |
23 | | // norm |
24 | 0 | cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); |
25 | 0 | cb(cur, "attn_norm", il); |
26 | |
|
27 | 0 | if (hparams.is_recurrent(il)) { |
28 | | // ssm layer // |
29 | 0 | cur = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il); |
30 | 0 | } else if (hparams.n_ff(il) == 0) { |
31 | | // attention layer // |
32 | 0 | cur = build_attention_layer(cur, inp->get_attn(), model, n_embd_head, il); |
33 | 0 | } else { |
34 | 0 | cur = build_ffn_layer(cur, model, il); |
35 | 0 | } |
36 | |
|
37 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
38 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
39 | 0 | inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); |
40 | 0 | } |
41 | | |
42 | | // add residual |
43 | 0 | cur = ggml_add(ctx0, cur, inpSA); |
44 | 0 | cb(cur, "nemotron_h_block_out", il); |
45 | | |
46 | | // input for next layer |
47 | 0 | inpL = cur; |
48 | 0 | } |
49 | |
|
50 | 0 | cur = inpL; |
51 | |
|
52 | 0 | cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); |
53 | |
|
54 | 0 | cb(cur, "result_norm", -1); |
55 | 0 | res->t_embd = cur; |
56 | | |
57 | | // lm_head |
58 | 0 | cur = build_lora_mm(model.output, cur); |
59 | 0 | cb(cur, "result_output", -1); |
60 | 0 | res->t_logits = cur; |
61 | |
|
62 | 0 | ggml_build_forward_expand(gf, cur); |
63 | 0 | } |
64 | | |
65 | | ggml_tensor * llm_build_nemotron_h::build_attention_layer(ggml_tensor * cur, |
66 | | llm_graph_input_attn_kv * inp_attn, |
67 | | const llama_model & model, |
68 | | const int64_t n_embd_head, |
69 | 0 | const int il) { |
70 | | // compute Q and K and (optionally) RoPE them |
71 | 0 | ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); |
72 | 0 | cb(Qcur, "Qcur", il); |
73 | 0 | if (model.layers[il].bq) { |
74 | 0 | Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); |
75 | 0 | cb(Qcur, "Qcur", il); |
76 | 0 | } |
77 | |
|
78 | 0 | ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); |
79 | 0 | cb(Kcur, "Kcur", il); |
80 | 0 | if (model.layers[il].bk) { |
81 | 0 | Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); |
82 | 0 | cb(Kcur, "Kcur", il); |
83 | 0 | } |
84 | |
|
85 | 0 | ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); |
86 | 0 | cb(Vcur, "Vcur", il); |
87 | 0 | if (model.layers[il].bv) { |
88 | 0 | Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); |
89 | 0 | cb(Vcur, "Vcur", il); |
90 | 0 | } |
91 | |
|
92 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens); |
93 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens); |
94 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens); |
95 | |
|
96 | 0 | cb(Qcur, "Qcur", il); |
97 | 0 | cb(Kcur, "Kcur", il); |
98 | 0 | cb(Vcur, "Vcur", il); |
99 | |
|
100 | 0 | const float kq_scale = |
101 | 0 | hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale; |
102 | 0 | cur = build_attn(inp_attn, |
103 | 0 | model.layers[il].wo, model.layers[il].bo, |
104 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il); |
105 | 0 | cb(cur, "attn_out", il); |
106 | 0 | return cur; |
107 | 0 | } |
108 | | |
109 | 0 | ggml_tensor * llm_build_nemotron_h::build_ffn_layer(ggml_tensor * cur, const llama_model & model, const int il) { |
110 | 0 | cur = build_ffn(cur, |
111 | 0 | model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, |
112 | 0 | NULL, NULL, NULL, |
113 | 0 | model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, |
114 | 0 | NULL, LLM_FFN_RELU_SQR, LLM_FFN_PAR, il); |
115 | 0 | cb(cur, "ffn_out", il); |
116 | |
|
117 | 0 | cur = build_cvec(cur, il); |
118 | 0 | cb(cur, "l_out", il); |
119 | |
|
120 | 0 | return cur; |
121 | 0 | } |