Coverage Report

Created: 2025-11-28 06:57

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/nemotron-h.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
5
llm_build_nemotron_h::llm_build_nemotron_h(const llama_model & model, const llm_graph_params & params) :
6
0
    llm_graph_context_mamba(params) {
7
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
8
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
9
10
0
    ggml_tensor * cur;
11
0
    ggml_tensor * inpL;
12
13
0
    inpL = build_inp_embd(model.tok_embd);
14
0
    ggml_build_forward_expand(gf, inpL);
15
16
0
    auto * inp = build_inp_mem_hybrid();
17
18
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
19
20
0
    for (int il = 0; il < n_layer; ++il) {
21
0
        struct ggml_tensor * inpSA = inpL;
22
23
        // norm
24
0
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
25
0
        cb(cur, "attn_norm", il);
26
27
0
        if (hparams.is_recurrent(il)) {
28
            // ssm layer //
29
0
            cur = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il);
30
0
        } else if (hparams.n_ff(il) == 0) {
31
            // attention layer //
32
0
            cur = build_attention_layer(cur, inp->get_attn(), model, n_embd_head, il);
33
0
        } else {
34
0
            cur = build_ffn_layer(cur, model, il);
35
0
        }
36
37
0
        if (il == n_layer - 1 && inp_out_ids) {
38
0
            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
39
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
40
0
        }
41
42
        // add residual
43
0
        cur = ggml_add(ctx0, cur, inpSA);
44
0
        cb(cur, "nemotron_h_block_out", il);
45
46
        // input for next layer
47
0
        inpL = cur;
48
0
    }
49
50
0
    cur = inpL;
51
52
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
53
54
0
    cb(cur, "result_norm", -1);
55
0
    res->t_embd = cur;
56
57
    // lm_head
58
0
    cur = build_lora_mm(model.output, cur);
59
0
    cb(cur, "result_output", -1);
60
0
    res->t_logits = cur;
61
62
0
    ggml_build_forward_expand(gf, cur);
63
0
}
64
65
ggml_tensor * llm_build_nemotron_h::build_attention_layer(ggml_tensor *             cur,
66
                                                          llm_graph_input_attn_kv * inp_attn,
67
                                                          const llama_model &       model,
68
                                                          const int64_t             n_embd_head,
69
0
                                                          const int                 il) {
70
    // compute Q and K and (optionally) RoPE them
71
0
    ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
72
0
    cb(Qcur, "Qcur", il);
73
0
    if (model.layers[il].bq) {
74
0
        Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
75
0
        cb(Qcur, "Qcur", il);
76
0
    }
77
78
0
    ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
79
0
    cb(Kcur, "Kcur", il);
80
0
    if (model.layers[il].bk) {
81
0
        Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
82
0
        cb(Kcur, "Kcur", il);
83
0
    }
84
85
0
    ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
86
0
    cb(Vcur, "Vcur", il);
87
0
    if (model.layers[il].bv) {
88
0
        Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
89
0
        cb(Vcur, "Vcur", il);
90
0
    }
91
92
0
    Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens);
93
0
    Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
94
0
    Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
95
96
0
    cb(Qcur, "Qcur", il);
97
0
    cb(Kcur, "Kcur", il);
98
0
    cb(Vcur, "Vcur", il);
99
100
0
    const float kq_scale =
101
0
        hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
102
0
    cur = build_attn(inp_attn,
103
0
            model.layers[il].wo, model.layers[il].bo,
104
0
            Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
105
0
    cb(cur, "attn_out", il);
106
0
    return cur;
107
0
}
108
109
0
ggml_tensor * llm_build_nemotron_h::build_ffn_layer(ggml_tensor * cur, const llama_model & model, const int il) {
110
0
    cur = build_ffn(cur,
111
0
            model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
112
0
            NULL, NULL, NULL,
113
0
            model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
114
0
            NULL, LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
115
0
    cb(cur, "ffn_out", il);
116
117
0
    cur = build_cvec(cur, il);
118
0
    cb(cur, "l_out", il);
119
120
0
    return cur;
121
0
}