/src/llama.cpp/common/common.h
Line | Count | Source |
1 | | // Various helper functions and utilities |
2 | | |
3 | | #pragma once |
4 | | |
5 | | #include "ggml-opt.h" |
6 | | #include "llama-cpp.h" |
7 | | |
8 | | #include <set> |
9 | | #include <sstream> |
10 | | #include <string> |
11 | | #include <string_view> |
12 | | #include <vector> |
13 | | #include <map> |
14 | | |
15 | | #ifdef _WIN32 |
16 | | #define DIRECTORY_SEPARATOR '\\' |
17 | | #else |
18 | 0 | #define DIRECTORY_SEPARATOR '/' |
19 | | #endif // _WIN32 |
20 | | |
21 | | #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0) |
22 | | #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0) |
23 | | |
24 | | #define print_build_info() do { \ |
25 | | fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \ |
26 | | fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \ |
27 | | } while(0) |
28 | | |
29 | | #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf" |
30 | | |
31 | | struct common_time_meas { |
32 | | common_time_meas(int64_t & t_acc, bool disable = false); |
33 | | ~common_time_meas(); |
34 | | |
35 | | const int64_t t_start_us; |
36 | | |
37 | | int64_t & t_acc; |
38 | | }; |
39 | | |
40 | | struct common_adapter_lora_info { |
41 | | std::string path; |
42 | | float scale; |
43 | | |
44 | | std::string task_name; |
45 | | std::string prompt_prefix; |
46 | | |
47 | | struct llama_adapter_lora * ptr; |
48 | | }; |
49 | | |
50 | | using llama_tokens = std::vector<llama_token>; |
51 | | |
52 | | // build info |
53 | | extern int LLAMA_BUILD_NUMBER; |
54 | | extern const char * LLAMA_COMMIT; |
55 | | extern const char * LLAMA_COMPILER; |
56 | | extern const char * LLAMA_BUILD_TARGET; |
57 | | |
58 | | struct common_control_vector_load_info; |
59 | | |
60 | | // |
61 | | // CPU utils |
62 | | // |
63 | | |
64 | | struct cpu_params { |
65 | | int n_threads = -1; |
66 | | bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask. |
67 | | bool mask_valid = false; // Default: any CPU |
68 | | enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime) |
69 | | bool strict_cpu = false; // Use strict CPU placement |
70 | | uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling) |
71 | | }; |
72 | | |
73 | | int32_t cpu_get_num_physical_cores(); |
74 | | int32_t cpu_get_num_math(); |
75 | | |
76 | | // |
77 | | // Common params |
78 | | // |
79 | | |
80 | | enum llama_example { |
81 | | LLAMA_EXAMPLE_COMMON, |
82 | | LLAMA_EXAMPLE_SPECULATIVE, |
83 | | LLAMA_EXAMPLE_MAIN, |
84 | | LLAMA_EXAMPLE_EMBEDDING, |
85 | | LLAMA_EXAMPLE_PERPLEXITY, |
86 | | LLAMA_EXAMPLE_RETRIEVAL, |
87 | | LLAMA_EXAMPLE_PASSKEY, |
88 | | LLAMA_EXAMPLE_IMATRIX, |
89 | | LLAMA_EXAMPLE_BENCH, |
90 | | LLAMA_EXAMPLE_SERVER, |
91 | | LLAMA_EXAMPLE_CVECTOR_GENERATOR, |
92 | | LLAMA_EXAMPLE_EXPORT_LORA, |
93 | | LLAMA_EXAMPLE_MTMD, |
94 | | LLAMA_EXAMPLE_LOOKUP, |
95 | | LLAMA_EXAMPLE_PARALLEL, |
96 | | LLAMA_EXAMPLE_TTS, |
97 | | LLAMA_EXAMPLE_DIFFUSION, |
98 | | LLAMA_EXAMPLE_FINETUNE, |
99 | | |
100 | | LLAMA_EXAMPLE_COUNT, |
101 | | }; |
102 | | |
103 | | enum common_sampler_type { |
104 | | COMMON_SAMPLER_TYPE_NONE = 0, |
105 | | COMMON_SAMPLER_TYPE_DRY = 1, |
106 | | COMMON_SAMPLER_TYPE_TOP_K = 2, |
107 | | COMMON_SAMPLER_TYPE_TOP_P = 3, |
108 | | COMMON_SAMPLER_TYPE_MIN_P = 4, |
109 | | //COMMON_SAMPLER_TYPE_TFS_Z = 5, |
110 | | COMMON_SAMPLER_TYPE_TYPICAL_P = 6, |
111 | | COMMON_SAMPLER_TYPE_TEMPERATURE = 7, |
112 | | COMMON_SAMPLER_TYPE_XTC = 8, |
113 | | COMMON_SAMPLER_TYPE_INFILL = 9, |
114 | | COMMON_SAMPLER_TYPE_PENALTIES = 10, |
115 | | COMMON_SAMPLER_TYPE_TOP_N_SIGMA = 11, |
116 | | }; |
117 | | |
118 | | // dimensionality reduction methods, used by cvector-generator |
119 | | enum dimre_method { |
120 | | DIMRE_METHOD_PCA, |
121 | | DIMRE_METHOD_MEAN, |
122 | | }; |
123 | | |
124 | | enum common_conversation_mode { |
125 | | COMMON_CONVERSATION_MODE_DISABLED = 0, |
126 | | COMMON_CONVERSATION_MODE_ENABLED = 1, |
127 | | COMMON_CONVERSATION_MODE_AUTO = 2, |
128 | | }; |
129 | | |
130 | | enum common_grammar_trigger_type { |
131 | | COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN, |
132 | | COMMON_GRAMMAR_TRIGGER_TYPE_WORD, |
133 | | COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN, |
134 | | COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL, |
135 | | }; |
136 | | |
137 | | struct common_grammar_trigger { |
138 | | common_grammar_trigger_type type; |
139 | | std::string value; |
140 | | llama_token token = LLAMA_TOKEN_NULL; |
141 | | }; |
142 | | |
143 | | enum common_params_sampling_config : uint64_t { |
144 | | COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS = 1 << 0, |
145 | | COMMON_PARAMS_SAMPLING_CONFIG_TOP_K = 1 << 1, |
146 | | COMMON_PARAMS_SAMPLING_CONFIG_TOP_P = 1 << 2, |
147 | | COMMON_PARAMS_SAMPLING_CONFIG_MIN_P = 1 << 3, |
148 | | COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY = 1 << 4, |
149 | | COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD = 1 << 5, |
150 | | COMMON_PARAMS_SAMPLING_CONFIG_TEMP = 1 << 6, |
151 | | COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N = 1 << 7, |
152 | | COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT = 1 << 8, |
153 | | COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT = 1 << 9, |
154 | | COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU = 1 << 10, |
155 | | COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA = 1 << 11, |
156 | | }; |
157 | | |
158 | | |
159 | | // sampling parameters |
160 | | struct common_params_sampling { |
161 | | uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler |
162 | | |
163 | | int32_t n_prev = 64; // number of previous tokens to remember |
164 | | int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. |
165 | | int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens |
166 | | int32_t top_k = 40; // <= 0 to use vocab size |
167 | | float top_p = 0.95f; // 1.0 = disabled |
168 | | float min_p = 0.05f; // 0.0 = disabled |
169 | | float xtc_probability = 0.00f; // 0.0 = disabled |
170 | | float xtc_threshold = 0.10f; // > 0.5 disables XTC |
171 | | float typ_p = 1.00f; // typical_p, 1.0 = disabled |
172 | | float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities |
173 | | float dynatemp_range = 0.00f; // 0.0 = disabled |
174 | | float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler |
175 | | int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) |
176 | | float penalty_repeat = 1.00f; // 1.0 = disabled |
177 | | float penalty_freq = 0.00f; // 0.0 = disabled |
178 | | float penalty_present = 0.00f; // 0.0 = disabled |
179 | | float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition: |
180 | | float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length) |
181 | | int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty |
182 | | int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size) |
183 | | int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 |
184 | | float top_n_sigma = -1.00f;// -1.0 = disabled |
185 | | float mirostat_tau = 5.00f; // target entropy |
186 | | float mirostat_eta = 0.10f; // learning rate |
187 | | bool ignore_eos = false; |
188 | | bool no_perf = false; // disable performance metrics |
189 | | bool timing_per_token = false; |
190 | | |
191 | | uint64_t user_sampling_config = 0; // bitfield to track user-specified samplers |
192 | | |
193 | | std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY |
194 | | |
195 | | |
196 | | std::vector<enum common_sampler_type> samplers = { |
197 | | COMMON_SAMPLER_TYPE_PENALTIES, |
198 | | COMMON_SAMPLER_TYPE_DRY, |
199 | | COMMON_SAMPLER_TYPE_TOP_N_SIGMA, |
200 | | COMMON_SAMPLER_TYPE_TOP_K, |
201 | | COMMON_SAMPLER_TYPE_TYPICAL_P, |
202 | | COMMON_SAMPLER_TYPE_TOP_P, |
203 | | COMMON_SAMPLER_TYPE_MIN_P, |
204 | | COMMON_SAMPLER_TYPE_XTC, |
205 | | COMMON_SAMPLER_TYPE_TEMPERATURE, |
206 | | }; |
207 | | |
208 | | std::string grammar; // optional BNF-like grammar to constrain sampling |
209 | | bool grammar_lazy = false; |
210 | | std::vector<common_grammar_trigger> grammar_triggers; // optional triggers (for lazy grammars) |
211 | | std::set<llama_token> preserved_tokens; |
212 | | |
213 | | std::vector<llama_logit_bias> logit_bias; // logit biases to apply |
214 | | std::vector<llama_logit_bias> logit_bias_eog; // pre-calculated logit biases for EOG tokens |
215 | | |
216 | | // print the parameters into a string |
217 | | std::string print() const; |
218 | | }; |
219 | | |
220 | | struct common_params_model { |
221 | | std::string path = ""; // model local path // NOLINT |
222 | | std::string url = ""; // model url to download // NOLINT |
223 | | std::string hf_repo = ""; // HF repo // NOLINT |
224 | | std::string hf_file = ""; // HF file // NOLINT |
225 | | std::string docker_repo = ""; // Docker repo // NOLINT |
226 | | }; |
227 | | |
228 | | struct common_params_speculative { |
229 | | std::vector<ggml_backend_dev_t> devices; // devices to use for offloading |
230 | | |
231 | | int32_t n_ctx = 0; // draft context size |
232 | | int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding |
233 | | int32_t n_min = 0; // minimum number of draft tokens to use for speculative decoding |
234 | | int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default) |
235 | | float p_split = 0.1f; // speculative decoding split probability |
236 | | float p_min = 0.75f; // minimum speculative decoding probability (greedy) |
237 | | std::vector<std::pair<std::string, std::string>> replacements; // main to speculative model replacements |
238 | | std::vector<llama_model_tensor_buft_override> tensor_buft_overrides; |
239 | | |
240 | | ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K |
241 | | ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V |
242 | | |
243 | | struct cpu_params cpuparams; |
244 | | struct cpu_params cpuparams_batch; |
245 | | |
246 | | struct common_params_model model; |
247 | | }; |
248 | | |
249 | | struct common_params_vocoder { |
250 | | struct common_params_model model; |
251 | | |
252 | | std::string speaker_file = ""; // speaker file path // NOLINT |
253 | | |
254 | | bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT |
255 | | }; |
256 | | |
257 | | struct common_params_diffusion { |
258 | | int32_t steps = 128; |
259 | | bool visual_mode = false; |
260 | | |
261 | | float eps = 0; // epsilon for timesteps |
262 | | int32_t block_length = 0; // block length for generation |
263 | | |
264 | | int32_t algorithm = 4; // default algorithm: low-confidence |
265 | | float alg_temp = 0.0f; // algorithm temperature |
266 | | |
267 | | float cfg_scale = 0; // classifier-free guidance scale |
268 | | bool add_gumbel_noise = false; // add gumbel noise to the logits if temp > 0.0 |
269 | | }; |
270 | | |
271 | | // reasoning API response format (not to be confused as chat template's reasoning format) |
272 | | enum common_reasoning_format { |
273 | | COMMON_REASONING_FORMAT_NONE, |
274 | | COMMON_REASONING_FORMAT_AUTO, // Same as deepseek, using `message.reasoning_content` |
275 | | COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY, // Extract thinking tag contents and return as `message.reasoning_content`, or leave inline in <think> tags in stream mode |
276 | | COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas. |
277 | | // do not extend this enum unless you absolutely have to |
278 | | // in most cases, use COMMON_REASONING_FORMAT_AUTO |
279 | | // see: https://github.com/ggml-org/llama.cpp/pull/15408 |
280 | | }; |
281 | | |
282 | | |
283 | | struct lr_opt { |
284 | | float lr0 = 1e-5; // learning rate at first epoch |
285 | | float lr_min = -1; |
286 | | float decay_epochs = -1; // if >0, the learning rate starts at lr0 and decays to lr_min after this many epochs |
287 | | float scale_epoch = 0; |
288 | | float wd = 0; |
289 | | unsigned epochs = 2; |
290 | | |
291 | | unsigned epoch; // set by optimizer outer (epochs) loop |
292 | | // learning rate decay - constant LR per epoch only for now |
293 | | float get_lr(float e) const; |
294 | 0 | float get_lr() const { return get_lr(epoch); } |
295 | | // must call after arg parse, before get_lr |
296 | | void init(); |
297 | | }; |
298 | | |
299 | | struct ggml_opt_optimizer_params common_opt_lr_pars(void * userdata); |
300 | | |
301 | | struct common_params { |
302 | | int32_t n_predict = -1; // new tokens to predict |
303 | | int32_t n_ctx = 4096; // context size |
304 | | int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS) |
305 | | int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS) |
306 | | int32_t n_keep = 0; // number of tokens to keep from initial prompt |
307 | | int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) |
308 | | int32_t n_parallel = 1; // number of parallel sequences to decode |
309 | | int32_t n_sequences = 1; // number of sequences to decode |
310 | | int32_t grp_attn_n = 1; // group-attention factor |
311 | | int32_t grp_attn_w = 512; // group-attention width |
312 | | int32_t n_print = -1; // print token count every n tokens (-1 = disabled) |
313 | | float rope_freq_base = 0.0f; // RoPE base frequency |
314 | | float rope_freq_scale = 0.0f; // RoPE frequency scaling factor |
315 | | float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor |
316 | | float yarn_attn_factor = -1.0f; // YaRN magnitude scaling factor |
317 | | float yarn_beta_fast = -1.0f; // YaRN low correction dim |
318 | | float yarn_beta_slow = -1.0f; // YaRN high correction dim |
319 | | int32_t yarn_orig_ctx = 0; // YaRN original context length |
320 | | |
321 | | // offload params |
322 | | std::vector<ggml_backend_dev_t> devices; // devices to use for offloading |
323 | | |
324 | | int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) |
325 | | int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors |
326 | | float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs |
327 | | |
328 | | enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs |
329 | | |
330 | | struct cpu_params cpuparams; |
331 | | struct cpu_params cpuparams_batch; |
332 | | |
333 | | ggml_backend_sched_eval_callback cb_eval = nullptr; |
334 | | void * cb_eval_user_data = nullptr; |
335 | | |
336 | | ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED; |
337 | | |
338 | | enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; |
339 | | enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings |
340 | | enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings |
341 | | enum llama_flash_attn_type flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO; // whether to use Flash Attention |
342 | | |
343 | | struct common_params_sampling sampling; |
344 | | struct common_params_speculative speculative; |
345 | | struct common_params_vocoder vocoder; |
346 | | struct common_params_diffusion diffusion; |
347 | | |
348 | | struct common_params_model model; |
349 | | |
350 | | std::string model_alias = ""; // model alias // NOLINT |
351 | | std::string hf_token = ""; // HF token // NOLINT |
352 | | std::string prompt = ""; // NOLINT |
353 | | std::string system_prompt = ""; // NOLINT |
354 | | std::string prompt_file = ""; // store the external prompt file name // NOLINT |
355 | | std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT |
356 | | std::string input_prefix = ""; // string to prefix user inputs with // NOLINT |
357 | | std::string input_suffix = ""; // string to suffix user inputs with // NOLINT |
358 | | std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT |
359 | | std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT |
360 | | std::string logits_file = ""; // file for saving *all* logits // NOLINT |
361 | | |
362 | | std::vector<std::string> in_files; // all input files |
363 | | std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts) |
364 | | std::vector<llama_model_kv_override> kv_overrides; |
365 | | std::vector<llama_model_tensor_buft_override> tensor_buft_overrides; |
366 | | |
367 | | bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply) |
368 | | std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale |
369 | | |
370 | | std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale |
371 | | |
372 | | int32_t verbosity = 0; |
373 | | int32_t control_vector_layer_start = -1; // layer range for control vector |
374 | | int32_t control_vector_layer_end = -1; // layer range for control vector |
375 | | bool offline = false; |
376 | | |
377 | | int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used. |
378 | | int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line |
379 | | // (which is more convenient to use for plotting) |
380 | | // |
381 | | bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt |
382 | | size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score |
383 | | |
384 | | bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt |
385 | | size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed |
386 | | |
387 | | bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt |
388 | | size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed |
389 | | |
390 | | bool kl_divergence = false; // compute KL divergence |
391 | | |
392 | | bool usage = false; // print usage |
393 | | bool completion = false; // print source-able completion script |
394 | | bool use_color = false; // use color to distinguish generations and inputs |
395 | | bool special = false; // enable special token output |
396 | | bool interactive = false; // interactive mode |
397 | | bool interactive_first = false; // wait for user input immediately |
398 | | bool prompt_cache_all = false; // save user input and generations to prompt cache |
399 | | bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it |
400 | | |
401 | | bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\" |
402 | | bool multiline_input = false; // reverse the usage of `\` |
403 | | bool simple_io = false; // improves compatibility with subprocesses and limited consoles |
404 | | bool cont_batching = true; // insert new sequences for decoding on-the-fly |
405 | | bool no_perf = false; // disable performance metrics |
406 | | bool ctx_shift = false; // context shift on infinite text generation |
407 | | bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055) |
408 | | bool kv_unified = false; // enable unified KV cache |
409 | | |
410 | | bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix |
411 | | bool use_mmap = true; // use mmap for faster loads |
412 | | bool use_mlock = false; // use mlock to keep model in memory |
413 | | bool verbose_prompt = false; // print prompt tokens before generation |
414 | | bool display_prompt = true; // print prompt before generation |
415 | | bool no_kv_offload = false; // disable KV offloading |
416 | | bool warmup = true; // warmup run |
417 | | bool check_tensors = false; // validate tensor data |
418 | | bool no_op_offload = false; // globally disable offload host tensor operations to device |
419 | | bool no_extra_bufts = false; // disable extra buffer types (used for weight repacking) |
420 | | bool no_host = false; // bypass host buffer allowing extra buffers to be used |
421 | | |
422 | | bool single_turn = false; // single turn chat conversation |
423 | | |
424 | | ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K |
425 | | ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V |
426 | | |
427 | | common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO; |
428 | | |
429 | | // multimodal models (see tools/mtmd) |
430 | | struct common_params_model mmproj; |
431 | | bool mmproj_use_gpu = true; // use GPU for multimodal model |
432 | | bool no_mmproj = false; // explicitly disable multimodal model |
433 | | std::vector<std::string> image; // path to image file(s) |
434 | | int image_min_tokens = -1; |
435 | | int image_max_tokens = -1; |
436 | | |
437 | | // finetune |
438 | | struct lr_opt lr; |
439 | | enum ggml_opt_optimizer_type optimizer = GGML_OPT_OPTIMIZER_TYPE_ADAMW; |
440 | | float val_split = 0.05f; // fraction of the data used for the validation set |
441 | | |
442 | | // embedding |
443 | | bool embedding = false; // get only sentence embedding |
444 | | int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm) |
445 | | std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix |
446 | | std::string embd_sep = "\n"; // separator of embeddings |
447 | | std::string cls_sep = "\t"; // separator of classification sequences |
448 | | |
449 | | // server params |
450 | | int32_t port = 8080; // server listens on this network port |
451 | | int32_t timeout_read = 600; // http read timeout in seconds |
452 | | int32_t timeout_write = timeout_read; // http write timeout in seconds |
453 | | int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool) |
454 | | int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting |
455 | | int32_t n_ctx_checkpoints = 8; // max number of context checkpoints per slot |
456 | | int32_t cache_ram_mib = 8192; // -1 = no limit, 0 - disable, 1 = 1 MiB, etc. |
457 | | |
458 | | std::string hostname = "127.0.0.1"; |
459 | | std::string public_path = ""; // NOLINT |
460 | | std::string api_prefix = ""; // NOLINT |
461 | | std::string chat_template = ""; // NOLINT |
462 | | bool use_jinja = false; // NOLINT |
463 | | bool enable_chat_template = true; |
464 | | common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; |
465 | | int reasoning_budget = -1; |
466 | | bool prefill_assistant = true; // if true, any trailing assistant message will be prefilled into the response |
467 | | |
468 | | std::vector<std::string> api_keys; |
469 | | |
470 | | std::string ssl_file_key = ""; // NOLINT |
471 | | std::string ssl_file_cert = ""; // NOLINT |
472 | | |
473 | | std::map<std::string, std::string> default_template_kwargs; |
474 | | |
475 | | // "advanced" endpoints are disabled by default for better security |
476 | | bool webui = true; |
477 | | bool endpoint_slots = true; |
478 | | bool endpoint_props = false; // only control POST requests, not GET |
479 | | bool endpoint_metrics = false; |
480 | | |
481 | | bool log_json = false; |
482 | | |
483 | | std::string slot_save_path; |
484 | | |
485 | | float slot_prompt_similarity = 0.1f; |
486 | | |
487 | | // batched-bench params |
488 | | bool is_pp_shared = false; |
489 | | bool is_tg_separate = false; |
490 | | |
491 | | std::vector<int32_t> n_pp; |
492 | | std::vector<int32_t> n_tg; |
493 | | std::vector<int32_t> n_pl; |
494 | | |
495 | | // retrieval params |
496 | | std::vector<std::string> context_files; // context files to embed |
497 | | |
498 | | int32_t chunk_size = 64; // chunk size for context embedding |
499 | | |
500 | | std::string chunk_separator = "\n"; // chunk separator for context embedding |
501 | | |
502 | | // passkey params |
503 | | int32_t n_junk = 250; // number of times to repeat the junk text |
504 | | int32_t i_pos = -1; // position of the passkey in the junk text |
505 | | |
506 | | // imatrix params |
507 | | int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations |
508 | | int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations |
509 | | int32_t i_chunk = 0; // start processing from this chunk |
510 | | int8_t imat_dat = 0; // whether the legacy imatrix.dat format should be output (gguf <= 0 < dat) |
511 | | |
512 | | bool process_output = false; // collect data for the output tensor |
513 | | bool compute_ppl = true; // whether to compute perplexity |
514 | | bool show_statistics = false; // show imatrix statistics per tensor |
515 | | bool parse_special = false; // whether to parse special tokens during imatrix tokenization |
516 | | |
517 | | // cvector-generator params |
518 | | int n_pca_batch = 100; |
519 | | int n_pca_iterations = 1000; |
520 | | dimre_method cvector_dimre_method = DIMRE_METHOD_PCA; |
521 | | std::string cvector_positive_file = "tools/cvector-generator/positive.txt"; |
522 | | std::string cvector_negative_file = "tools/cvector-generator/negative.txt"; |
523 | | |
524 | | bool spm_infill = false; // suffix/prefix/middle pattern for infill |
525 | | |
526 | | // batched-bench params |
527 | | bool batched_bench_output_jsonl = false; |
528 | | |
529 | | // common params |
530 | | std::string out_file; // output filename for all example programs |
531 | | // optional callback for model loading progress and cancellation: |
532 | | // called with a progress value between 0.0 and 1.0. |
533 | | // return false from callback to abort model loading or true to continue |
534 | | llama_progress_callback load_progress_callback = NULL; |
535 | | void * load_progress_callback_user_data = NULL; |
536 | | |
537 | 0 | bool has_speculative() const { |
538 | 0 | return !speculative.model.path.empty() || !speculative.model.hf_repo.empty(); |
539 | 0 | } |
540 | | }; |
541 | | |
542 | | // call once at the start of a program if it uses libcommon |
543 | | // initializes the logging system and prints info about the build |
544 | | void common_init(); |
545 | | |
546 | | std::string common_params_get_system_info(const common_params & params); |
547 | | |
548 | | bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]); |
549 | | bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]); |
550 | | void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr); |
551 | | bool set_process_priority(enum ggml_sched_priority prio); |
552 | | |
553 | | // |
554 | | // String utils |
555 | | // |
556 | | |
557 | | #ifdef __GNUC__ |
558 | | # if defined(__MINGW32__) && !defined(__clang__) |
559 | | # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__))) |
560 | | # else |
561 | | # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__))) |
562 | | # endif |
563 | | #else |
564 | | # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) |
565 | | #endif |
566 | | |
567 | | LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2) |
568 | | std::string string_format(const char * fmt, ...); |
569 | | |
570 | | std::string string_strip(const std::string & str); |
571 | | std::string string_get_sortable_timestamp(); |
572 | | |
573 | | std::string string_join(const std::vector<std::string> & values, const std::string & separator); |
574 | | std::vector<std::string> string_split(const std::string & str, const std::string & delimiter); |
575 | | std::string string_repeat(const std::string & str, size_t n); |
576 | | |
577 | | void string_replace_all(std::string & s, const std::string & search, const std::string & replace); |
578 | | |
579 | | std::string regex_escape(const std::string & s); |
580 | | |
581 | | template<class T> |
582 | | static std::vector<T> string_split(const std::string & str, char delim) { |
583 | | static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string"); |
584 | | std::vector<T> values; |
585 | | std::istringstream str_stream(str); |
586 | | std::string token; |
587 | | while (std::getline(str_stream, token, delim)) { |
588 | | T value; |
589 | | std::istringstream token_stream(token); |
590 | | token_stream >> value; |
591 | | values.push_back(value); |
592 | | } |
593 | | return values; |
594 | | } |
595 | | |
596 | | template<> |
597 | | std::vector<std::string> string_split<std::string>(const std::string & input, char separator) |
598 | 0 | { |
599 | 0 | std::vector<std::string> parts; |
600 | 0 | size_t begin_pos = 0; |
601 | 0 | size_t separator_pos = input.find(separator); |
602 | 0 | while (separator_pos != std::string::npos) { |
603 | 0 | std::string part = input.substr(begin_pos, separator_pos - begin_pos); |
604 | 0 | parts.emplace_back(part); |
605 | 0 | begin_pos = separator_pos + 1; |
606 | 0 | separator_pos = input.find(separator, begin_pos); |
607 | 0 | } |
608 | 0 | parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos)); |
609 | 0 | return parts; |
610 | 0 | } Unexecuted instantiation: fuzz_inference.cpp:std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > string_split<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char) Unexecuted instantiation: common.cpp:std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > string_split<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char) Unexecuted instantiation: sampling.cpp:std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > string_split<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char) |
611 | | |
612 | | static bool string_starts_with(const std::string & str, |
613 | 0 | const std::string & prefix) { // While we wait for C++20's std::string::starts_with... |
614 | 0 | return str.rfind(prefix, 0) == 0; |
615 | 0 | } Unexecuted instantiation: fuzz_inference.cpp:string_starts_with(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&) Unexecuted instantiation: common.cpp:string_starts_with(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&) Unexecuted instantiation: sampling.cpp:string_starts_with(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&) |
616 | | |
617 | | // While we wait for C++20's std::string::ends_with... |
618 | | bool string_ends_with(const std::string_view & str, const std::string_view & suffix); |
619 | | bool string_remove_suffix(std::string & str, const std::string_view & suffix); |
620 | | size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop); |
621 | | |
622 | | bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides); |
623 | | void string_process_escapes(std::string & input); |
624 | | |
625 | | std::string string_from(bool value); |
626 | | std::string string_from(const std::vector<int> & values); |
627 | | std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens); |
628 | | std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch); |
629 | | |
630 | | // |
631 | | // Filesystem utils |
632 | | // |
633 | | |
634 | | bool fs_validate_filename(const std::string & filename); |
635 | | bool fs_create_directory_with_parents(const std::string & path); |
636 | | |
637 | | std::string fs_get_cache_directory(); |
638 | | std::string fs_get_cache_file(const std::string & filename); |
639 | | |
640 | | struct common_file_info { |
641 | | std::string path; |
642 | | std::string name; |
643 | | size_t size = 0; // in bytes |
644 | | }; |
645 | | std::vector<common_file_info> fs_list_files(const std::string & path); |
646 | | |
647 | | // |
648 | | // Model utils |
649 | | // |
650 | | |
651 | | // note: defines object's lifetime |
652 | | struct common_init_result { |
653 | | llama_model_ptr model; |
654 | | llama_context_ptr context; |
655 | | |
656 | | std::vector<llama_adapter_lora_ptr> lora; |
657 | | }; |
658 | | |
659 | | struct common_init_result common_init_from_params(common_params & params); |
660 | | |
661 | | struct llama_model_params common_model_params_to_llama ( common_params & params); |
662 | | struct llama_context_params common_context_params_to_llama(const common_params & params); |
663 | | struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params); |
664 | | |
665 | | // clear LoRA adapters from context, then apply new list of adapters |
666 | | void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora); |
667 | | |
668 | | std::string get_model_endpoint(); |
669 | | |
670 | | // |
671 | | // Batch utils |
672 | | // |
673 | | |
674 | | void common_batch_clear(struct llama_batch & batch); |
675 | | |
676 | | void common_batch_add( |
677 | | struct llama_batch & batch, |
678 | | llama_token id, |
679 | | llama_pos pos, |
680 | | const std::vector<llama_seq_id> & seq_ids, |
681 | | bool logits); |
682 | | |
683 | | // |
684 | | // Token utils |
685 | | // |
686 | | |
687 | | // longest common prefix |
688 | | size_t common_lcp(const llama_tokens & a, const llama_tokens & b); |
689 | | |
690 | | // longet common subsequence |
691 | | size_t common_lcs(const llama_tokens & a, const llama_tokens & b); |
692 | | |
693 | | // |
694 | | // Vocab utils |
695 | | // |
696 | | |
697 | | // tokenizes a string into a vector of tokens |
698 | | // should work similar to Python's `tokenizer.encode` |
699 | | std::vector<llama_token> common_tokenize( |
700 | | const struct llama_context * ctx, |
701 | | const std::string & text, |
702 | | bool add_special, |
703 | | bool parse_special = false); |
704 | | |
705 | | std::vector<llama_token> common_tokenize( |
706 | | const struct llama_vocab * vocab, |
707 | | const std::string & text, |
708 | | bool add_special, |
709 | | bool parse_special = false); |
710 | | |
711 | | // tokenizes a token into a piece, optionally renders special/control tokens |
712 | | // should work similar to Python's `tokenizer.id_to_piece` |
713 | | std::string common_token_to_piece( |
714 | | const struct llama_context * ctx, |
715 | | llama_token token, |
716 | | bool special = true); |
717 | | |
718 | | std::string common_token_to_piece( |
719 | | const struct llama_vocab * vocab, |
720 | | llama_token token, |
721 | | bool special = true); |
722 | | |
723 | | // detokenizes a vector of tokens into a string |
724 | | // should work similar to Python's `tokenizer.decode` |
725 | | // optionally renders special/control tokens |
726 | | std::string common_detokenize( |
727 | | const struct llama_context * ctx, |
728 | | const std::vector<llama_token> & tokens, |
729 | | bool special = true); |
730 | | |
731 | | std::string common_detokenize( |
732 | | const struct llama_vocab * vocab, |
733 | | const std::vector<llama_token> & tokens, |
734 | | bool special = true); |
735 | | |
736 | | // |
737 | | // Embedding utils |
738 | | // |
739 | | |
740 | | // TODO: repace embd_norm with an enum |
741 | | void common_embd_normalize(const float * inp, float * out, int n, int embd_norm); |
742 | | |
743 | | float common_embd_similarity_cos(const float * embd1, const float * embd2, int n); |
744 | | |
745 | | // |
746 | | // Control vector utils |
747 | | // |
748 | | |
749 | | struct common_control_vector_data { |
750 | | int n_embd; |
751 | | |
752 | | // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd |
753 | | std::vector<float> data; |
754 | | }; |
755 | | |
756 | | struct common_control_vector_load_info { |
757 | | float strength; |
758 | | |
759 | | std::string fname; |
760 | | }; |
761 | | |
762 | | // Load control vectors, scale each by strength, and add them together. |
763 | | // On error, returns {-1, empty} |
764 | | common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos); |
765 | | |
766 | | // |
767 | | // Split utils |
768 | | // |
769 | | |
770 | | namespace { |
771 | | |
772 | | const char * const LLM_KV_SPLIT_NO = "split.no"; |
773 | | const char * const LLM_KV_SPLIT_COUNT = "split.count"; |
774 | | const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"; |
775 | | |
776 | | } |
777 | | |
778 | | // |
779 | | // MoE utils |
780 | | // |
781 | | |
782 | | const char * const LLM_FFN_EXPS_REGEX = "\\.ffn_(up|down|gate)_(ch|)exps"; |
783 | | |
784 | 0 | static std::string llm_ffn_exps_block_regex(int idx) { |
785 | 0 | return string_format("blk\\.%d%s", idx, LLM_FFN_EXPS_REGEX); |
786 | 0 | } Unexecuted instantiation: fuzz_inference.cpp:llm_ffn_exps_block_regex(int) Unexecuted instantiation: common.cpp:llm_ffn_exps_block_regex(int) Unexecuted instantiation: sampling.cpp:llm_ffn_exps_block_regex(int) |
787 | | |
788 | 0 | static llama_model_tensor_buft_override llm_ffn_exps_cpu_override() { |
789 | 0 | return { LLM_FFN_EXPS_REGEX, ggml_backend_cpu_buffer_type() }; |
790 | 0 | } Unexecuted instantiation: fuzz_inference.cpp:llm_ffn_exps_cpu_override() Unexecuted instantiation: common.cpp:llm_ffn_exps_cpu_override() Unexecuted instantiation: sampling.cpp:llm_ffn_exps_cpu_override() |
791 | | |
792 | | // |
793 | | // training utils |
794 | | // |
795 | | |
796 | | ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride); |
797 | | |
798 | | // "adamw" or "sgd" (case insensitive) |
799 | | enum ggml_opt_optimizer_type common_opt_get_optimizer(const char *); |