Coverage Report

Created: 2025-11-28 06:56

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/bitnet.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
0
llm_build_bitnet::llm_build_bitnet(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
6
7
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
9
0
    ggml_tensor * cur;
10
0
    ggml_tensor * inpL;
11
12
0
    inpL = build_inp_embd(model.tok_embd);
13
14
    // inp_pos - contains the positions
15
0
    ggml_tensor * inp_pos = build_inp_pos();
16
17
0
    auto * inp_attn = build_attn_inp_kv();
18
19
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
20
21
0
    for (int il = 0; il < n_layer; ++il) {
22
0
        ggml_tensor * inpSA = inpL;
23
24
0
        cur = build_norm(inpL,
25
0
                model.layers[il].attn_norm, NULL,
26
0
                LLM_NORM_RMS, il);
27
0
        cb(cur, "attn_norm", il);
28
29
        // self-attention
30
0
        {
31
            // compute Q and K and RoPE them
32
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
33
0
            if (model.layers[il].wq_scale) {
34
0
                Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
35
0
            }
36
0
            cb(Qcur, "Qcur", il);
37
0
            if (model.layers[il].bq) {
38
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
39
0
                cb(Qcur, "Qcur", il);
40
0
            }
41
42
            // B1.K
43
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
44
0
            if (model.layers[il].wk_scale) {
45
0
                Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
46
0
            }
47
0
            cb(Kcur, "Kcur", il);
48
0
            if (model.layers[il].bk) {
49
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
50
0
                cb(Kcur, "Kcur", il);
51
0
            }
52
53
            // B1.V
54
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
55
0
            if (model.layers[il].wv_scale) {
56
0
                Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
57
0
            }
58
0
            cb(Vcur, "Vcur", il);
59
0
            if (model.layers[il].bv) {
60
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
61
0
                cb(Vcur, "Vcur", il);
62
0
            }
63
64
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
65
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
66
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
67
68
0
            Qcur = ggml_rope_ext(
69
0
                    ctx0, Qcur, inp_pos, nullptr,
70
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
71
0
                    ext_factor, attn_factor, beta_fast, beta_slow
72
0
                    );
73
74
0
            Kcur = ggml_rope_ext(
75
0
                    ctx0, Kcur, inp_pos, nullptr,
76
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
77
0
                    ext_factor, attn_factor, beta_fast, beta_slow
78
0
                    );
79
80
0
            cb(Qcur, "Qcur", il);
81
0
            cb(Kcur, "Kcur", il);
82
0
            cb(Vcur, "Vcur", il);
83
84
0
            cur = build_attn(inp_attn,
85
0
                    NULL, NULL,
86
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
87
88
0
            cur = build_norm(cur,
89
0
                    model.layers[il].attn_sub_norm, NULL,
90
0
                    LLM_NORM_RMS, il);
91
0
            cb(cur, "attn_sub_norm", il);
92
93
0
            cur = build_lora_mm(model.layers[il].wo, cur);
94
0
            if (model.layers[il].wo_scale) {
95
0
                cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
96
0
            }
97
0
            if (model.layers[il].bo) {
98
0
                cur = ggml_add(ctx0, cur, model.layers[il].bo);
99
0
            }
100
0
            cb(cur, "attn_out", il);
101
0
        }
102
103
0
        if (il == n_layer - 1 && inp_out_ids) {
104
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
105
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
106
0
        }
107
108
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
109
0
        cb(ffn_inp, "ffn_inp", il);
110
111
        // feed-forward forward
112
0
        cur = build_norm(ffn_inp,
113
0
                model.layers[il].ffn_norm, NULL,
114
0
                LLM_NORM_RMS, il);
115
0
        cb(cur, "ffn_norm", il);
116
117
0
        cur = build_ffn(cur,
118
0
                model.layers[il].ffn_up,   NULL, model.layers[il].ffn_up_scale,
119
0
                model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
120
0
                NULL,                      NULL, NULL,
121
0
                NULL,
122
0
                LLM_FFN_SILU, LLM_FFN_PAR, il);
123
0
        cb(cur, "ffn_sub_out", il);
124
125
0
        cur = build_norm(cur,
126
0
                model.layers[il].ffn_sub_norm, NULL,
127
0
                LLM_NORM_RMS, il);
128
0
        cb(cur, "ffn_sub_norm", il);
129
130
0
        cur = build_lora_mm(model.layers[il].ffn_down, cur);
131
0
        if (model.layers[il].ffn_down_scale) {
132
0
            cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
133
0
        }
134
0
        cb(cur, "ffn_down", il);
135
136
0
        cur = ggml_add(ctx0, cur, ffn_inp);
137
0
        cb(cur, "l_out", il);
138
139
        // input for next layer
140
0
        inpL = cur;
141
0
    }
142
143
0
    cur = inpL;
144
145
0
    cur = build_norm(cur,
146
0
            model.output_norm, NULL,
147
0
            LLM_NORM_RMS, -1);
148
149
0
    cb(cur, "result_norm", -1);
150
0
    res->t_embd = cur;
151
152
    // lm_head
153
    // FIXME: do not use model.tok_embd directly, duplicate as model.output
154
0
    cur = build_lora_mm(model.tok_embd, cur);
155
156
0
    cb(cur, "result_output", -1);
157
0
    res->t_logits = cur;
158
159
0
    ggml_build_forward_expand(gf, cur);
160
0
}