Coverage Report

Created: 2025-11-28 06:56

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/deepseek2.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
5
llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_graph_params & params) :
6
0
    llm_graph_context(params) {
7
    // lite variants include DeepSeek-V2-Lite, GigaChat3-10B-A1.8B
8
0
    bool is_lite = (hparams.n_layer == 27 || hparams.n_layer == 26);
9
10
0
    const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
11
12
    // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
13
0
    const int64_t n_embd_head_k = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
14
0
    const int64_t n_embd_head_v = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
15
16
0
    const int64_t n_embd_head_qk_rope = hparams.n_rot;
17
0
    const int64_t n_embd_head_qk_nope = n_embd_head_k - n_embd_head_qk_rope;
18
19
0
    const uint32_t kv_lora_rank = hparams.n_lora_kv;
20
21
    // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
22
    // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
23
0
    const float mscale      = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
24
0
    const float kq_scale    = 1.0f * mscale * mscale / sqrtf(float(n_embd_head_k));
25
0
    const float attn_factor = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
26
27
0
    ggml_tensor * cur;
28
0
    ggml_tensor * inpL;
29
30
    // {n_embd, n_tokens}
31
0
    inpL = build_inp_embd(model.tok_embd);
32
33
    // inp_pos - contains the positions
34
0
    ggml_tensor * inp_pos = build_inp_pos();
35
36
0
    auto * inp_attn = build_attn_inp_kv();
37
38
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
39
40
0
    for (int il = 0; il < n_layer; ++il) {
41
0
        ggml_tensor * inpSA = inpL;
42
43
        // norm
44
0
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
45
0
        cb(cur, "attn_norm", il);
46
47
        // self_attention
48
0
        {
49
0
            ggml_tensor * q = NULL;
50
0
            if (!is_lite) {
51
0
                q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
52
0
                cb(q, "q", il);
53
54
0
                q = build_norm(q, model.layers[il].attn_q_a_norm, nullptr, LLM_NORM_RMS, il);
55
0
                cb(q, "q", il);
56
57
0
                q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
58
0
                cb(q, "q", il);
59
0
            } else {
60
0
                q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
61
0
                cb(q, "q", il);
62
0
            }
63
            // split into {n_embd_head_qk_nope, n_head, n_tokens}
64
0
            ggml_tensor * q_nope =
65
0
                ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens, ggml_row_size(q->type, n_embd_head_k),
66
0
                             ggml_row_size(q->type, n_embd_head_k) * n_head, 0);
67
0
            cb(q_nope, "q_nope", il);
68
69
            // and {n_embd_head_qk_rope, n_head, n_tokens}
70
0
            ggml_tensor * q_pe = ggml_view_3d(
71
0
                ctx0, q, n_embd_head_qk_rope, n_head, n_tokens, ggml_row_size(q->type, n_embd_head_k),
72
0
                ggml_row_size(q->type, n_embd_head_k) * n_head, ggml_row_size(q->type, n_embd_head_qk_nope));
73
0
            cb(q_pe, "q_pe", il);
74
75
0
            ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
76
0
            cb(kv_cmpr_pe, "kv_cmpr_pe", il);
77
78
            // split into {kv_lora_rank, n_tokens}
79
0
            ggml_tensor * kv_cmpr =
80
0
                ggml_view_2d(ctx0, kv_cmpr_pe, kv_lora_rank, n_tokens,
81
0
                             ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope), 0);
82
0
            cb(kv_cmpr, "kv_cmpr", il);
83
84
            // and {n_embd_head_qk_rope, 1, n_tokens}
85
0
            ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe, n_embd_head_qk_rope, 1, n_tokens,
86
0
                                              ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
87
0
                                              ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
88
0
                                              ggml_row_size(kv_cmpr_pe->type, kv_lora_rank));
89
0
            cb(k_pe, "k_pe", il);
90
91
0
            q_pe = ggml_rope_ext(ctx0, q_pe, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
92
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
93
0
            cb(q_pe, "q_pe", il);
94
95
0
            k_pe = ggml_rope_ext(ctx0, k_pe, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
96
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
97
0
            cb(k_pe, "k_pe", il);
98
99
0
            kv_cmpr = build_norm(kv_cmpr, model.layers[il].attn_kv_a_norm, nullptr, LLM_NORM_RMS, il);
100
0
            cb(kv_cmpr, "kv_cmpr", il);
101
102
0
            if (is_mla) {
103
                // {n_embd_head_qk_nope, n_tokens, n_head}
104
0
                q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3);
105
0
                cb(q_nope, "q_nope_perm", il);
106
107
                // {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head}
108
0
                ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, model.layers[il].wk_b, q_nope);
109
0
                cb(q_nope_absorbed, "q_nope_absorbed", il);
110
111
                // {kv_lora_rank, n_head, n_tokens}
112
0
                q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3);
113
0
                cb(q_nope_absorbed, "q_nope_absorbed_perm", il);
114
115
                // {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens}
116
                // note: rope must go first for in-place context shifting in build_rope_shift()
117
0
                ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope_absorbed, 0);
118
0
                cb(Qcur, "Qcur", il);
119
120
0
                kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens);
121
0
                cb(kv_cmpr, "kv_cmpr_reshape", il);
122
123
                // {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens}
124
0
                ggml_tensor * Kcur = ggml_concat(ctx0, k_pe, kv_cmpr, 0);
125
0
                cb(Kcur, "Kcur", il);
126
127
                // {kv_lora_rank, 1, n_tokens}
128
0
                ggml_tensor * Vcur = kv_cmpr;
129
0
                cb(Vcur, "Vcur", il);
130
131
                // note: MLA with the absorption optimzation converts into MQA (ie: GQA with 1 group)
132
0
                cur = build_attn(inp_attn,
133
0
                        model.layers[il].wo, NULL,
134
0
                        Qcur, Kcur, Vcur, nullptr, nullptr, model.layers[il].wv_b, kq_scale, il);
135
0
            } else {
136
0
                ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_cmpr);
137
0
                cb(kv, "kv", il);
138
139
                // split into {n_embd_head_qk_nope, n_head, n_tokens}
140
0
                ggml_tensor * k_nope =
141
0
                    ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
142
0
                                 ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
143
0
                                 ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head, 0);
144
0
                cb(k_nope, "k_nope_view", il);
145
146
                // and {n_embd_head_v, n_head, n_tokens}
147
0
                ggml_tensor * Vcur = ggml_view_3d(ctx0, kv, n_embd_head_v, n_head, n_tokens,
148
0
                                                  ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
149
0
                                                  ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
150
0
                                                  ggml_row_size(kv->type, n_embd_head_qk_nope));
151
0
                cb(Vcur, "Vcur_view", il);
152
153
0
                Vcur = ggml_cont(ctx0, Vcur);
154
0
                cb(Vcur, "Vcur_cont", il);
155
156
                // note: rope must go first for in-place context shifting in build_rope_shift()
157
0
                ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope, 0);
158
0
                cb(Qcur, "Qcur", il);
159
160
0
                ggml_tensor * Kcur = ggml_concat(ctx0, ggml_repeat(ctx0, k_pe, q_pe), k_nope, 0);
161
0
                cb(Kcur, "Kcur", il);
162
163
                // note: MLA without the absorption optimization converts into MHA (ie: GQA with full n_head groups)
164
0
                cur = build_attn(inp_attn,
165
0
                            model.layers[il].wo, NULL,
166
0
                            Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
167
0
            }
168
0
        }
169
0
        if (il == n_layer - 1 && inp_out_ids) {
170
0
            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
171
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
172
0
        }
173
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
174
0
        cb(ffn_inp, "ffn_inp", il);
175
176
0
        cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
177
0
        cb(cur, "ffn_norm", il);
178
179
0
        if ((uint32_t) il < hparams.n_layer_dense_lead) {
180
0
            cur = build_ffn(cur,
181
0
                model.layers[il].ffn_up, NULL, NULL,
182
0
                model.layers[il].ffn_gate, NULL, NULL,
183
0
                model.layers[il].ffn_down, NULL, NULL,
184
0
                NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
185
0
            cb(cur, "ffn_out", il);
186
0
        } else {
187
            // MoE branch
188
0
            ggml_tensor * moe_out = build_moe_ffn(cur,
189
0
                model.layers[il].ffn_gate_inp,
190
0
                model.layers[il].ffn_up_exps,
191
0
                model.layers[il].ffn_gate_exps,
192
0
                model.layers[il].ffn_down_exps,
193
0
                model.layers[il].ffn_exp_probs_b,
194
0
                n_expert, n_expert_used,
195
0
                LLM_FFN_SILU, hparams.expert_weights_norm,
196
0
                true, hparams.expert_weights_scale,
197
0
                (llama_expert_gating_func_type) hparams.expert_gating_func,
198
0
                il);
199
0
            cb(moe_out, "ffn_moe_out", il);
200
201
            // FFN shared expert
202
0
            {
203
0
                ggml_tensor * ffn_shexp =
204
0
                    build_ffn(cur,
205
0
                        model.layers[il].ffn_up_shexp, NULL, NULL,
206
0
                        model.layers[il].ffn_gate_shexp, NULL, NULL,
207
0
                        model.layers[il].ffn_down_shexp, NULL, NULL,
208
0
                        NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
209
0
                cb(ffn_shexp, "ffn_shexp", il);
210
211
0
                cur = ggml_add(ctx0, moe_out, ffn_shexp);
212
0
                cb(cur, "ffn_out", il);
213
0
            }
214
0
        }
215
0
        cur = ggml_add(ctx0, cur, ffn_inp);
216
217
0
        cur = build_cvec(cur, il);
218
0
        cb(cur, "l_out", il);
219
220
        // input for next layer
221
0
        inpL = cur;
222
0
    }
223
0
    cur = inpL;
224
225
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
226
227
0
    cb(cur, "result_norm", -1);
228
0
    res->t_embd = cur;
229
230
    // lm_head
231
0
    cur = ggml_mul_mat(ctx0, model.output, cur);
232
233
0
    cb(cur, "result_output", -1);
234
0
    res->t_logits = cur;
235
236
0
    ggml_build_forward_expand(gf, cur);
237
0
}