Coverage Report

Created: 2025-11-28 06:56

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/gptneox.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
0
llm_build_gptneox::llm_build_gptneox(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
6
0
    const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
7
8
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
9
10
0
    ggml_tensor * cur;
11
0
    ggml_tensor * inpL;
12
13
0
    inpL = build_inp_embd(model.tok_embd);
14
15
    // inp_pos - contains the positions
16
0
    ggml_tensor * inp_pos = build_inp_pos();
17
18
0
    auto * inp_attn = build_attn_inp_kv();
19
20
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
21
22
0
    for (int il = 0; il < n_layer; ++il) {
23
0
        cur = build_norm(inpL,
24
0
                model.layers[il].attn_norm,
25
0
                model.layers[il].attn_norm_b,
26
0
                LLM_NORM, il);
27
0
        cb(cur, "attn_norm", il);
28
29
        // self-attention
30
0
        {
31
0
            cur = build_lora_mm(model.layers[il].wqkv, cur);
32
0
            cb(cur, "wqkv", il);
33
34
0
            cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
35
0
            cb(cur, "bqkv", il);
36
37
0
            ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head,    n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
38
0
            ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
39
0
            ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
40
41
0
            Qcur = ggml_rope_ext(
42
0
                    ctx0, Qcur, inp_pos, nullptr,
43
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
44
0
                    ext_factor, attn_factor, beta_fast, beta_slow
45
0
                    );
46
47
0
            Kcur = ggml_rope_ext(
48
0
                    ctx0, Kcur, inp_pos, nullptr,
49
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
50
0
                    ext_factor, attn_factor, beta_fast, beta_slow
51
0
                    );
52
53
0
            cb(Qcur, "Qcur", il);
54
0
            cb(Kcur, "Kcur", il);
55
0
            cb(Vcur, "Vcur", il);
56
57
0
            cur = build_attn(inp_attn,
58
0
                    model.layers[il].wo, model.layers[il].bo,
59
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
60
0
        }
61
62
0
        if (il == n_layer - 1 && inp_out_ids) {
63
0
            cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
64
0
            inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
65
0
        }
66
67
        // ffn
68
0
        if (hparams.use_par_res) {
69
            // attention and ffn are computed in parallel
70
            // x = x + attn(ln1(x)) + ffn(ln2(x))
71
72
0
            ggml_tensor * attn_out = cur;
73
74
0
            cur = build_norm(inpL,
75
0
                    model.layers[il].ffn_norm,
76
0
                    model.layers[il].ffn_norm_b,
77
0
                    LLM_NORM, il);
78
0
            cb(cur, "ffn_norm", il);
79
80
0
            cur = build_ffn(cur,
81
0
                    model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
82
0
                    NULL,                      NULL,                        NULL,
83
0
                    model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
84
0
                    NULL,
85
0
                    LLM_FFN_GELU, LLM_FFN_SEQ, il);
86
0
            cb(cur, "ffn_out", il);
87
88
0
            cur = ggml_add(ctx0, cur, inpL);
89
0
            cb(cur, "ffn_out", il);
90
91
0
            cur = ggml_add(ctx0, cur, attn_out);
92
93
0
            cur = build_cvec(cur, il);
94
0
            cb(cur, "l_out", il);
95
96
            // input for next layer
97
0
            inpL = cur;
98
0
        } else {
99
            // attention and ffn are computed sequentially
100
            // x = x + attn(ln1(x))
101
            // x = x + ffn(ln2(x))
102
103
0
            ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
104
0
            cb(ffn_inp, "ffn_inp", il);
105
106
0
            cur = build_norm(ffn_inp,
107
0
                    model.layers[il].ffn_norm,
108
0
                    model.layers[il].ffn_norm_b,
109
0
                    LLM_NORM, il);
110
0
            cb(cur, "ffn_norm", il);
111
112
0
            cur = build_ffn(cur,
113
0
                    model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
114
0
                    NULL,                      NULL,                        NULL,
115
0
                    model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
116
0
                    NULL,
117
0
                    LLM_FFN_GELU, LLM_FFN_SEQ, il);
118
0
            cb(cur, "ffn_out", il);
119
120
0
            cur = ggml_add(ctx0, cur, ffn_inp);
121
122
0
            cur = build_cvec(cur, il);
123
0
            cb(cur, "l_out", il);
124
125
            // input for next layer
126
0
            inpL = cur;
127
0
        }
128
0
    }
129
130
0
    cur = build_norm(inpL,
131
0
            model.output_norm,
132
0
            model.output_norm_b,
133
0
            LLM_NORM, -1);
134
135
0
    cb(cur, "result_norm", -1);
136
0
    res->t_embd = cur;
137
138
0
    cur = build_lora_mm(model.output, cur);
139
140
0
    cb(cur, "result_output", -1);
141
0
    res->t_logits = cur;
142
143
0
    ggml_build_forward_expand(gf, cur);
144
0
}