Coverage Report

Created: 2025-11-28 06:57

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/llama-kv-cache.cpp
Line
Count
Source
1
#include "llama-kv-cache.h"
2
3
#include "llama-impl.h"
4
#include "llama-io.h"
5
#include "llama-model.h"
6
#include "llama-context.h"
7
8
#include <algorithm>
9
#include <cassert>
10
#include <cmath>
11
#include <cstring>
12
#include <limits>
13
#include <map>
14
#include <stdexcept>
15
16
//
17
// llama_kv_cache
18
//
19
20
llama_kv_cache::llama_kv_cache(
21
        const llama_model & model,
22
                ggml_type   type_k,
23
                ggml_type   type_v,
24
                     bool   v_trans,
25
                     bool   offload,
26
                     bool   unified,
27
                 uint32_t   kv_size,
28
                 uint32_t   n_seq_max,
29
                 uint32_t   n_pad,
30
                 uint32_t   n_swa,
31
           llama_swa_type   swa_type,
32
    const layer_filter_cb & filter,
33
    const  layer_reuse_cb & reuse) :
34
0
    model(model), hparams(model.hparams), v_trans(v_trans),
35
0
    n_seq_max(n_seq_max), n_stream(unified ? 1 : n_seq_max), n_pad(n_pad), n_swa(n_swa), swa_type(swa_type) {
36
37
0
    GGML_ASSERT(kv_size % n_pad == 0);
38
39
0
    const uint32_t n_layer_kv = hparams.n_layer_kv();
40
41
    // define a comparator for the buft -> ctx map to ensure that the order is well-defined:
42
0
    struct ggml_backend_buft_comparator {
43
0
        bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const {
44
0
            return strcmp(ggml_backend_buft_name(lhs), ggml_backend_buft_name(rhs)) < 0;
45
0
        }
46
0
    };
47
0
    std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map;
48
49
    // create a context for each buffer type
50
0
    auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
51
0
        auto it = ctx_map.find(buft);
52
0
        if (it == ctx_map.end()) {
53
0
            ggml_init_params params = {
54
0
                /*.mem_size   =*/ size_t(2u*(1 + n_stream)*n_layer_kv*ggml_tensor_overhead()),
55
0
                /*.mem_buffer =*/ NULL,
56
0
                /*.no_alloc   =*/ true,
57
0
            };
58
59
0
            ggml_context * ctx = ggml_init(params);
60
0
            if (!ctx) {
61
0
                return nullptr;
62
0
            }
63
64
0
            ctx_map.emplace(buft, ctx);
65
66
0
            return ctx;
67
0
        }
68
69
0
        return it->second.get();
70
0
    };
71
72
0
    GGML_ASSERT(n_stream == 1 || n_stream == n_seq_max);
73
74
0
    v_heads.resize(n_stream);
75
0
    for (uint32_t s = 0; s < n_stream; ++s) {
76
0
        v_heads[s] = 0;
77
0
    }
78
79
0
    v_cells.resize(n_stream);
80
0
    for (uint32_t s = 0; s < n_stream; ++s) {
81
0
        v_cells[s].resize(kv_size);
82
0
    }
83
84
    // by default, all sequence ids are mapped to the 0th stream
85
0
    seq_to_stream.resize(LLAMA_MAX_SEQ, 0);
86
87
0
    if (n_stream > 1) {
88
0
        seq_to_stream.resize(n_stream, 0);
89
0
        for (uint32_t s = 0; s < n_stream; ++s) {
90
0
            seq_to_stream[s] = s;
91
0
        }
92
0
    }
93
94
    // [TAG_V_CACHE_VARIABLE]
95
0
    if (v_trans && hparams.is_n_embd_v_gqa_variable()) {
96
0
        LLAMA_LOG_WARN("%s: the V embeddings have different sizes across layers and FA is not enabled - padding V cache to %d\n",
97
0
                __func__, hparams.n_embd_v_gqa_max());
98
0
    }
99
100
0
    for (uint32_t il = 0; il < hparams.n_layer; il++) {
101
0
        if (!hparams.has_kv(il)) {
102
0
            LLAMA_LOG_DEBUG("%s: layer %3d: does not have KV cache\n", __func__, il);
103
0
            continue;
104
0
        }
105
106
0
        if (filter && !filter(il)) {
107
0
            LLAMA_LOG_DEBUG("%s: layer %3d: filtered\n", __func__, il);
108
0
            continue;
109
0
        }
110
111
        // [TAG_V_CACHE_VARIABLE]
112
0
        const uint32_t n_embd_k_gqa =            hparams.n_embd_k_gqa(il);
113
0
        const uint32_t n_embd_v_gqa = !v_trans ? hparams.n_embd_v_gqa(il) : hparams.n_embd_v_gqa_max();
114
115
0
        const char * dev_name = "CPU";
116
117
0
        ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type();
118
119
0
        if (offload) {
120
0
            auto * dev = model.dev_layer(il);
121
0
            buft = ggml_backend_dev_buffer_type(dev);
122
123
0
            dev_name = ggml_backend_dev_name(dev);
124
0
        }
125
126
0
        LLAMA_LOG_DEBUG("%s: layer %3d: dev = %s\n", __func__, il, dev_name);
127
128
0
        ggml_context * ctx = ctx_for_buft(buft);
129
0
        if (!ctx) {
130
0
            throw std::runtime_error("failed to create ggml context for kv cache");
131
0
        }
132
133
0
        ggml_tensor * k = ggml_new_tensor_3d(ctx, type_k, n_embd_k_gqa, kv_size, n_stream);
134
0
        ggml_tensor * v = ggml_new_tensor_3d(ctx, type_v, n_embd_v_gqa, kv_size, n_stream);
135
136
0
        ggml_format_name(k, "cache_k_l%d", il);
137
0
        ggml_format_name(v, "cache_v_l%d", il);
138
139
0
        std::vector<ggml_tensor *> k_stream;
140
0
        std::vector<ggml_tensor *> v_stream;
141
142
0
        for (uint32_t s = 0; s < n_stream; ++s) {
143
0
            k_stream.push_back(ggml_view_2d(ctx, k, n_embd_k_gqa, kv_size, k->nb[1], s*k->nb[2]));
144
0
            v_stream.push_back(ggml_view_2d(ctx, v, n_embd_v_gqa, kv_size, v->nb[1], s*v->nb[2]));
145
0
        }
146
147
0
        map_layer_ids[il] = layers.size();
148
149
0
        layers.push_back({ il, k, v, k_stream, v_stream, });
150
0
    }
151
152
0
    if (reuse) {
153
0
        LLAMA_LOG_DEBUG("%s: reusing layers:\n", __func__);
154
155
0
        for (uint32_t il = 0; il < hparams.n_layer; il++) {
156
0
            const int32_t il_reuse = reuse(il);
157
158
0
            if (il_reuse < 0) {
159
0
                LLAMA_LOG_DEBUG("%s: - layer %3d: no reuse\n", __func__, il);
160
0
                continue;
161
0
            }
162
163
0
            if (filter && !filter(il)) {
164
0
                LLAMA_LOG_DEBUG("%s: - layer %3d: filtered\n", __func__, il);
165
0
                continue;
166
0
            }
167
168
0
            GGML_ASSERT(map_layer_ids.find(il_reuse) != map_layer_ids.end());
169
170
0
            map_layer_ids[il] = map_layer_ids[il_reuse];
171
172
0
            LLAMA_LOG_DEBUG("%s: - layer %3d: reuse layer %d, is_swa = %d\n", __func__, il, il_reuse, hparams.is_swa(il));
173
0
        }
174
0
    }
175
176
    // allocate tensors and initialize the buffers to avoid NaNs in the padding
177
0
    for (auto & [buft, ctx] : ctx_map) {
178
0
        ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx.get(), buft);
179
0
        if (!buf) {
180
0
            throw std::runtime_error("failed to allocate buffer for kv cache");
181
0
        }
182
183
0
        LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
184
185
0
        ggml_backend_buffer_clear(buf, 0);
186
0
        ctxs_bufs.emplace_back(std::move(ctx), buf);
187
0
    }
188
189
0
    {
190
0
        const size_t memory_size_k = size_k_bytes();
191
0
        const size_t memory_size_v = size_v_bytes();
192
193
0
        LLAMA_LOG_INFO("%s: size = %7.2f MiB (%6u cells, %3d layers, %2u/%u seqs), K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
194
0
                (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), kv_size, (int) layers.size(), n_seq_max, n_stream,
195
0
                ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
196
0
                ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
197
0
    }
198
199
0
    const char * LLAMA_KV_CACHE_DEBUG = getenv("LLAMA_KV_CACHE_DEBUG");
200
0
    debug = LLAMA_KV_CACHE_DEBUG ? atoi(LLAMA_KV_CACHE_DEBUG) : 0;
201
0
}
202
203
0
void llama_kv_cache::clear(bool data) {
204
0
    for (uint32_t s = 0; s < n_stream; ++s) {
205
0
        v_cells[s].reset();
206
0
        v_heads[s] = 0;
207
0
    }
208
209
0
    if (data) {
210
0
        for (auto & [_, buf] : ctxs_bufs) {
211
0
            ggml_backend_buffer_clear(buf.get(), 0);
212
0
        }
213
0
    }
214
0
}
215
216
0
bool llama_kv_cache::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
217
0
    GGML_ASSERT(seq_id == -1 || (seq_id >= 0 && (size_t) seq_id < seq_to_stream.size()));
218
219
0
    if (p0 < 0) {
220
0
        p0 = 0;
221
0
    }
222
223
0
    if (p1 < 0) {
224
0
        p1 = std::numeric_limits<llama_pos>::max();
225
0
    }
226
227
0
    if (seq_id >= 0) {
228
0
        auto & cells = v_cells[seq_to_stream[seq_id]];
229
0
        auto & head  = v_heads[seq_to_stream[seq_id]];
230
231
0
        uint32_t new_head = cells.size();
232
233
0
        for (uint32_t i = 0; i < cells.size(); ++i) {
234
0
            if (!cells.pos_in(i, p0, p1)) {
235
0
                continue;
236
0
            }
237
238
0
            if (cells.seq_has(i, seq_id) && cells.seq_rm(i, seq_id)) {
239
0
                if (new_head == cells.size()) {
240
0
                    new_head = i;
241
0
                }
242
0
            }
243
0
        }
244
245
        // If we freed up a slot, set head to it so searching can start there.
246
0
        if (new_head != cells.size() && new_head < head) {
247
0
            head = new_head;
248
0
        }
249
0
    } else {
250
        // match any sequence
251
0
        for (uint32_t s = 0; s < n_stream; ++s) {
252
0
            auto & cells = v_cells[s];
253
0
            auto & head  = v_heads[s];
254
255
0
            uint32_t new_head = cells.size();
256
257
0
            for (uint32_t i = 0; i < cells.size(); ++i) {
258
0
                if (!cells.pos_in(i, p0, p1)) {
259
0
                    continue;
260
0
                }
261
262
0
                cells.rm(i);
263
264
0
                if (new_head == cells.size()) {
265
0
                    new_head = i;
266
0
                }
267
0
            }
268
269
            // If we freed up a slot, set head to it so searching can start there.
270
0
            if (new_head != cells.size() && new_head < head) {
271
0
                head = new_head;
272
0
            }
273
0
        }
274
0
    }
275
276
0
    return true;
277
0
}
278
279
0
void llama_kv_cache::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
280
0
    GGML_ASSERT(seq_id_src >= 0 && (size_t) seq_id_src < seq_to_stream.size());
281
0
    GGML_ASSERT(seq_id_dst >= 0 && (size_t) seq_id_dst < seq_to_stream.size());
282
283
0
    const auto s0 = seq_to_stream[seq_id_src];
284
0
    const auto s1 = seq_to_stream[seq_id_dst];
285
286
0
    if (s0 == s1) {
287
        // since both sequences are in the same stream, no data copy is necessary
288
        // we just have to update the cells meta data
289
290
0
        auto & cells = v_cells[s0];
291
292
0
        if (seq_id_src == seq_id_dst) {
293
0
            return;
294
0
        }
295
296
0
        if (p0 < 0) {
297
0
            p0 = 0;
298
0
        }
299
300
0
        if (p1 < 0) {
301
0
            p1 = std::numeric_limits<llama_pos>::max();
302
0
        }
303
304
0
        for (uint32_t i = 0; i < cells.size(); ++i) {
305
0
            if (!cells.pos_in(i, p0, p1)) {
306
0
                continue;
307
0
            }
308
309
0
            if (cells.seq_has(i, seq_id_src)) {
310
0
                cells.seq_add(i, seq_id_dst);
311
0
            }
312
0
        }
313
314
0
        return;
315
0
    }
316
317
    // cross-stream sequence copies require to copy the actual buffer data
318
319
0
    bool is_full = true;
320
321
0
    if (p0 > 0 && p0 + 1 < (int) get_size()) {
322
0
        is_full = false;
323
0
    }
324
325
0
    if (p1 > 0 && p1 + 1 < (int) get_size()) {
326
0
        is_full = false;
327
0
    }
328
329
0
    GGML_ASSERT(is_full && "seq_cp() is only supported for full KV buffers");
330
331
    // enqueue the copy operation - the buffer copy will be performed during the next update
332
0
    sc_info.ssrc.push_back(s0);
333
0
    sc_info.sdst.push_back(s1);
334
335
0
    v_cells[s1].reset();
336
0
    for (uint32_t i = 0; i < v_cells[s0].size(); ++i) {
337
0
        if (v_cells[s0].seq_has(i, seq_id_src)) {
338
0
            llama_pos pos   = v_cells[s0].pos_get(i);
339
0
            llama_pos shift = v_cells[s0].get_shift(i);
340
341
0
            llama_kv_cell_ext ext = v_cells[s0].ext_get(i);
342
343
0
            if (shift != 0) {
344
0
                pos -= shift;
345
0
                assert(pos >= 0);
346
0
            }
347
348
0
            v_cells[s1].pos_set(i, pos);
349
0
            v_cells[s1].seq_add(i, seq_id_dst);
350
351
0
            if (shift != 0) {
352
0
                v_cells[s1].pos_add(i, shift);
353
0
            }
354
355
0
            v_cells[s1].ext_set(i, ext);
356
0
        }
357
0
    }
358
359
0
    v_heads[s1] = v_heads[s0];
360
361
    //for (uint32_t s = 0; s < n_stream; ++s) {
362
    //    LLAMA_LOG_WARN("%s: seq %d: min = %d, max = %d\n", __func__, s, v_cells[s].seq_pos_min(s), v_cells[s].seq_pos_max(s));
363
    //}
364
0
}
365
366
0
void llama_kv_cache::seq_keep(llama_seq_id seq_id) {
367
0
    GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
368
369
0
    auto & cells = v_cells[seq_to_stream[seq_id]];
370
0
    auto & head  = v_heads[seq_to_stream[seq_id]];
371
372
0
    uint32_t new_head = cells.size();
373
374
0
    for (uint32_t i = 0; i < cells.size(); ++i) {
375
0
        if (cells.seq_keep(i, seq_id)) {
376
0
            if (new_head == cells.size()) {
377
0
                new_head = i;
378
0
            }
379
0
        }
380
0
    }
381
382
    // If we freed up a slot, set head to it so searching can start there.
383
0
    if (new_head != cells.size() && new_head < head) {
384
0
        head = new_head;
385
0
    }
386
0
}
387
388
0
void llama_kv_cache::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
389
0
    GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
390
0
    GGML_ASSERT(hparams.n_pos_per_embd() == 1 && "seq_add() is only supported for n_pos_per_embd() == 1");
391
392
0
    auto & cells = v_cells[seq_to_stream[seq_id]];
393
0
    auto & head  = v_heads[seq_to_stream[seq_id]];
394
395
0
    if (shift == 0) {
396
0
        return;
397
0
    }
398
399
0
    uint32_t new_head = cells.size();
400
401
0
    if (p0 < 0) {
402
0
        p0 = 0;
403
0
    }
404
405
0
    if (p1 < 0) {
406
0
        p1 = std::numeric_limits<llama_pos>::max();
407
0
    }
408
409
    // If there is no range then return early to avoid looping over all cells.
410
0
    if (p0 == p1) {
411
0
        return;
412
0
    }
413
414
0
    for (uint32_t i = 0; i < cells.size(); ++i) {
415
0
        if (!cells.pos_in(i, p0, p1)) {
416
0
            continue;
417
0
        }
418
419
0
        if (cells.seq_has(i, seq_id)) {
420
0
            if (cells.pos_add(i, shift)) {
421
0
                if (new_head == cells.size()) {
422
0
                    new_head = i;
423
0
                }
424
0
            }
425
0
        }
426
0
    }
427
428
    // If we freed up a slot, set head to it so searching can start there.
429
    // Otherwise we just start the next search from the beginning.
430
0
    head = new_head != cells.size() ? new_head : 0;
431
0
}
432
433
0
void llama_kv_cache::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
434
0
    GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
435
0
    GGML_ASSERT(hparams.n_pos_per_embd() == 1 && "seq_div() is only supported for n_pos_per_embd() == 1");
436
437
0
    auto & cells = v_cells[seq_to_stream[seq_id]];
438
439
0
    if (d == 1) {
440
0
        return;
441
0
    }
442
443
0
    if (p0 < 0) {
444
0
        p0 = 0;
445
0
    }
446
447
0
    if (p1 < 0) {
448
0
        p1 = std::numeric_limits<llama_pos>::max();
449
0
    }
450
451
    // If there is no range then return early to avoid looping over the cache.
452
0
    if (p0 == p1) {
453
0
        return;
454
0
    }
455
456
0
    for (uint32_t i = 0; i < cells.size(); ++i) {
457
0
        if (!cells.pos_in(i, p0, p1)) {
458
0
            continue;
459
0
        }
460
461
0
        if (cells.seq_has(i, seq_id)) {
462
0
            cells.pos_div(i, d);
463
0
        }
464
0
    }
465
0
}
466
467
0
llama_pos llama_kv_cache::seq_pos_min(llama_seq_id seq_id) const {
468
0
    GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
469
470
0
    const auto & cells = v_cells[seq_to_stream[seq_id]];
471
472
0
    return cells.seq_pos_min(seq_id);
473
0
}
474
475
0
llama_pos llama_kv_cache::seq_pos_max(llama_seq_id seq_id) const {
476
0
    GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
477
478
0
    const auto & cells = v_cells[seq_to_stream[seq_id]];
479
480
0
    return cells.seq_pos_max(seq_id);
481
0
}
482
483
0
std::map<ggml_backend_buffer_type_t, size_t> llama_kv_cache::memory_breakdown() const {
484
0
    std::map<ggml_backend_buffer_type_t, size_t> ret;
485
0
    for (const auto & [_, buf] : ctxs_bufs) {
486
0
        ret[ggml_backend_buffer_get_type(buf.get())] += ggml_backend_buffer_get_size(buf.get());
487
0
    }
488
0
    return ret;
489
0
}
490
491
llama_memory_context_ptr llama_kv_cache::init_batch(
492
            llama_batch_allocr & balloc,
493
            uint32_t n_ubatch,
494
0
            bool embd_all) {
495
0
    GGML_UNUSED(embd_all);
496
497
0
    do {
498
0
        balloc.split_reset();
499
500
0
        std::vector<llama_ubatch> ubatches;
501
0
        while (true) {
502
0
            auto ubatch = n_stream == 1 ? balloc.split_simple(n_ubatch) : balloc.split_equal(n_ubatch, true);
503
504
0
            if (ubatch.n_tokens == 0) {
505
0
                break;
506
0
            }
507
508
0
            ubatches.push_back(std::move(ubatch)); // NOLINT
509
0
        }
510
511
0
        if (balloc.get_n_used() < balloc.get_n_tokens()) {
512
            // failed to find a suitable split
513
0
            break;
514
0
        }
515
516
0
        auto sinfos = prepare(ubatches);
517
0
        if (sinfos.empty()) {
518
0
            break;
519
0
        }
520
521
0
        return std::make_unique<llama_kv_cache_context>(
522
0
                this, std::move(sinfos), std::move(ubatches));
523
0
    } while (false);
524
525
0
    return std::make_unique<llama_kv_cache_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
526
0
}
527
528
0
llama_memory_context_ptr llama_kv_cache::init_full() {
529
0
    return std::make_unique<llama_kv_cache_context>(this);
530
0
}
531
532
0
llama_memory_context_ptr llama_kv_cache::init_update(llama_context * lctx, bool optimize) {
533
0
    GGML_UNUSED(optimize);
534
535
0
    bool do_shift = get_has_shift();
536
537
0
    return std::make_unique<llama_kv_cache_context>(this, lctx, do_shift, std::move(sc_info));
538
0
}
539
540
0
llama_kv_cache::slot_info_vec_t llama_kv_cache::prepare(const std::vector<llama_ubatch> & ubatches) {
541
0
    llama_kv_cache::slot_info_vec_t res;
542
543
0
    struct state_t {
544
0
        slot_info sinfo; // slot info for the ubatch
545
546
0
        std::vector<uint32_t> v_heads_old; // old positions of the heads, before placing the ubatch
547
548
0
        std::vector<llama_kv_cells> v_cells; // copy of the old cells, before placing the ubatch
549
0
    };
550
551
    // remember the old state of the cells so we can restore it in the end
552
0
    std::vector<state_t> states;
553
554
0
    bool success = true;
555
556
0
    for (const auto & ubatch : ubatches) {
557
        // only find a suitable slot for the ubatch. don't modify the cells yet
558
0
        const auto sinfo_new = find_slot(ubatch, false);
559
0
        if (sinfo_new.empty()) {
560
0
            success = false;
561
0
            break;
562
0
        }
563
564
        // remeber the position that we found
565
0
        res.push_back(sinfo_new);
566
567
        // store the old state of the cells in the recovery stack
568
0
        {
569
0
            state_t state = { sinfo_new, v_heads, {} };
570
571
0
            for (uint32_t s = 0; s < sinfo_new.n_stream(); ++s) {
572
0
                auto & cells = v_cells[sinfo_new.strm[s]];
573
574
0
                state.v_cells.push_back(cells.cp(sinfo_new.idxs[s]));
575
0
            }
576
577
0
            states.push_back(std::move(state));
578
0
        }
579
580
        // now emplace the ubatch
581
0
        apply_ubatch(sinfo_new, ubatch);
582
0
    }
583
584
0
    GGML_ASSERT(!states.empty() || !success);
585
586
    // iterate backwards and restore the cells to their original state
587
0
    for (auto it = states.rbegin(); it != states.rend(); ++it) {
588
0
        const auto & sinfo = it->sinfo;
589
590
0
        for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
591
0
            auto & cells = v_cells[sinfo.strm[s]];
592
0
            auto & head  = v_heads[sinfo.strm[s]];
593
594
0
            cells.set(sinfo.idxs[s], it->v_cells[s]);
595
0
            head = it->v_heads_old[s];
596
0
        }
597
0
    }
598
599
0
    if (!success) {
600
0
        return {};
601
0
    }
602
603
0
    return res;
604
0
}
605
606
0
bool llama_kv_cache::update(llama_context * lctx, bool do_shift, const stream_copy_info & sc_info) {
607
0
    bool updated = false;
608
609
0
    auto * sched = lctx->get_sched();
610
611
0
    if (!sc_info.empty()) {
612
0
        assert(n_stream > 1 && "stream copy should never happen with a single stream");
613
614
0
        llama_synchronize(lctx);
615
616
0
        const size_t n_copy = sc_info.ssrc.size();
617
618
0
        for (size_t i = 0; i < n_copy; ++i) {
619
0
            const auto ssrc = sc_info.ssrc[i];
620
0
            const auto sdst = sc_info.sdst[i];
621
622
0
            assert(ssrc < n_stream);
623
0
            assert(sdst < n_stream);
624
625
0
            LLAMA_LOG_DEBUG("%s: copying KV buffer: stream %d to stream %d\n", __func__, ssrc, sdst);
626
627
0
            assert(ssrc != sdst);
628
629
0
            for (uint32_t il = 0; il < layers.size(); ++il) {
630
0
                const auto & layer = layers[il];
631
632
0
                ggml_backend_tensor_copy(layer.k_stream[ssrc], layer.k_stream[sdst]);
633
0
                ggml_backend_tensor_copy(layer.v_stream[ssrc], layer.v_stream[sdst]);
634
0
            }
635
0
        }
636
0
    }
637
638
0
    if (do_shift) {
639
0
        if (!get_can_shift()) {
640
0
            GGML_ABORT("The current KV cache / model configuration does not support K-shift");
641
0
        }
642
643
0
        LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__);
644
645
        // apply K-shift if needed
646
0
        if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
647
0
            ggml_backend_sched_reset(sched);
648
649
0
            auto * res = lctx->get_gf_res_reserve();
650
651
0
            res->reset();
652
653
0
            auto * gf = build_graph_shift(res, lctx);
654
0
            if (!ggml_backend_sched_alloc_graph(sched, gf)) {
655
0
                LLAMA_LOG_ERROR("%s: failed to allocate compute graph for K-shift\n", __func__);
656
0
                return updated;
657
0
            }
658
659
0
            res->set_inputs(nullptr);
660
661
0
            if (lctx->graph_compute(gf, false) != GGML_STATUS_SUCCESS) {
662
0
                LLAMA_LOG_ERROR("%s: failed to compute K-shift\n", __func__);
663
0
                return updated;
664
0
            }
665
666
0
            updated = true;
667
0
        }
668
669
0
        for (uint32_t s = 0; s < n_stream; ++s) {
670
0
            auto & cells = v_cells[s];
671
672
0
            cells.reset_shift();
673
0
        }
674
0
    }
675
676
0
    return updated;
677
0
}
678
679
0
llama_kv_cache::slot_info llama_kv_cache::find_slot(const llama_ubatch & ubatch, bool cont) const {
680
681
0
    if (debug > 0) {
682
0
        for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) {
683
0
            const auto seq_id = ubatch.seq_id_unq[s];
684
0
            const auto stream_id = seq_to_stream[seq_id];
685
0
            const auto & cells = v_cells[stream_id];
686
0
            const uint32_t head_cur = v_heads[stream_id];
687
688
0
            LLAMA_LOG_DEBUG("%s: stream[%d], n = %5d, used = %5d, head = %5d, size = %5d, n_swa = %5d\n",
689
0
                    __func__, stream_id, cells.used_max_p1(), cells.get_used(), head_cur, get_size(), n_swa);
690
691
0
            if ((debug == 2 && n_swa > 0) || debug > 2) {
692
0
                std::string ss;
693
0
                for (uint32_t i = 0; i < cells.size(); ++i) {
694
0
                    if (cells.is_empty(i)) {
695
0
                        ss += '.';
696
0
                    } else {
697
0
                        assert(cells.seq_count(i) >= 1);
698
699
0
                        if (cells.seq_count(i) == 1) {
700
0
                            ss += std::to_string(cells.seq_get(i));
701
0
                        } else {
702
0
                            ss += 'M';
703
0
                        }
704
0
                    }
705
0
                    if (i%256 == 255) {
706
0
                        ss += " *";
707
0
                        ss += '\n';
708
0
                    }
709
0
                }
710
0
                LLAMA_LOG_DEBUG("\n%s\n", ss.c_str());
711
0
            }
712
713
0
            if ((debug == 2 && n_swa > 0) || debug > 2) {
714
0
                std::string ss;
715
0
                for (uint32_t i = 0; i < cells.size(); ++i) {
716
0
                    std::string cur;
717
0
                    if (cells.is_empty(i)) {
718
0
                        cur = '.';
719
0
                    } else {
720
0
                        cur = std::to_string(cells.pos_get(i));
721
0
                    }
722
0
                    const int n = cur.size();
723
0
                    for (int j = 0; j < 5 - n; ++j) {
724
0
                        cur += ' ';
725
0
                    }
726
0
                    ss += cur;
727
0
                    if (i%256 == 255) {
728
0
                        ss += " *";
729
0
                    }
730
0
                    if (i%64 == 63) {
731
0
                        ss += '\n';
732
0
                    }
733
0
                }
734
0
                LLAMA_LOG_DEBUG("\n%s\n", ss.c_str());
735
0
            }
736
737
0
            for (int s = 0; s < LLAMA_MAX_SEQ; ++s) {
738
0
                if (cells.seq_pos_min(s) < 0) {
739
0
                    continue;
740
0
                }
741
742
0
                LLAMA_LOG_DEBUG("%s: stream[%d] min[%d] = %5d, max[%d] = %5d\n", __func__, stream_id, s, cells.seq_pos_min(s), s, cells.seq_pos_max(s));
743
0
            }
744
0
        }
745
0
    }
746
747
0
    uint32_t n_tokens = ubatch.n_tokens;
748
0
    uint32_t n_seqs   = 1;
749
750
0
    if (n_stream > 1) {
751
0
        GGML_ASSERT(n_tokens % ubatch.n_seqs_unq == 0);
752
753
0
        n_seqs   = ubatch.n_seqs_unq;
754
0
        n_tokens = n_tokens / n_seqs;
755
0
    }
756
757
0
    slot_info res = {
758
0
        /*.s0   =*/ LLAMA_MAX_SEQ,
759
0
        /*.s1   =*/ 0,
760
0
        /*.strm =*/ { },
761
0
        /*.idxs =*/ { },
762
0
    };
763
764
0
    res.resize(n_seqs);
765
766
0
    for (uint32_t s = 0; s < n_seqs; ++s) {
767
0
        const auto seq_id = ubatch.seq_id_unq[s];
768
769
0
        if (n_stream > 1) {
770
0
            GGML_ASSERT(ubatch.n_seq_id[s*n_tokens]    == 1);
771
0
            GGML_ASSERT(ubatch.seq_id  [s*n_tokens][0] == seq_id);
772
0
        }
773
774
0
        res.s0 = std::min<uint32_t>(res.s0, seq_to_stream[seq_id]);
775
0
        res.s1 = std::max<uint32_t>(res.s1, seq_to_stream[seq_id]);
776
777
0
        res.strm[s] = seq_to_stream[seq_id];
778
0
        res.idxs[s].reserve(n_tokens);
779
780
0
        const auto & cells = v_cells[seq_to_stream[seq_id]];
781
782
0
        uint32_t head_cur = v_heads[seq_to_stream[seq_id]];
783
784
        // if we have enough unused cells before the current head ->
785
        //   better to start searching from the beginning of the cache, hoping to fill it
786
0
        if (head_cur > cells.get_used() + 2*n_tokens) {
787
0
            head_cur = 0;
788
0
        }
789
790
0
        if (n_tokens > cells.size()) {
791
0
            LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %u\n", __func__, n_tokens, cells.size());
792
0
            return { };
793
0
        }
794
795
0
        uint32_t n_tested = 0;
796
797
        // for continuous slots, we test that all tokens in the ubatch fit, starting from the current head
798
        // for non-continuous slots, we test the tokens one by one
799
0
        const uint32_t n_test = cont ? n_tokens : 1;
800
801
0
        while (true) {
802
0
            if (head_cur + n_test > cells.size()) {
803
0
                n_tested += cells.size() - head_cur;
804
0
                head_cur = 0;
805
0
                continue;
806
0
            }
807
808
0
            for (uint32_t i = 0; i < n_test; i++) {
809
0
                const auto idx = head_cur;
810
811
0
                head_cur++;
812
0
                n_tested++;
813
814
                //const llama_pos    pos    = ubatch.pos[i];
815
                //const llama_seq_id seq_id = ubatch.seq_id[i][0];
816
817
                // can we use this cell? either:
818
                //  - the cell is empty
819
                //  - the cell is occupied only by one sequence:
820
                //    - (disabled) mask causally, if the sequence is the same as the one we are inserting
821
                //    - mask SWA, using current max pos for that sequence in the cache
822
                //                always insert in the cell with minimum pos
823
0
                bool can_use = cells.is_empty(idx);
824
825
0
                if (!can_use && cells.seq_count(idx) == 1) {
826
0
                    const llama_pos pos_cell = cells.pos_get(idx);
827
828
                    // (disabled) causal mask
829
                    // note: it's better to purge any "future" tokens beforehand
830
                    //if (cells.seq_has(idx, seq_id)) {
831
                    //    can_use = pos_cell >= pos;
832
                    //}
833
834
0
                    if (!can_use) {
835
0
                        const llama_seq_id seq_id_cell = cells.seq_get(idx);
836
837
                        // SWA mask
838
0
                        if (is_masked_swa(pos_cell, cells.seq_pos_max(seq_id_cell) + 1)) {
839
0
                            can_use = true;
840
0
                        }
841
0
                    }
842
0
                }
843
844
0
                if (can_use) {
845
0
                    res.idxs[s].push_back(idx);
846
0
                } else {
847
0
                    if (cont) {
848
0
                        break;
849
0
                    }
850
0
                }
851
0
            }
852
853
0
            if (res.idxs[s].size() == n_tokens) {
854
0
                break;
855
0
            }
856
857
0
            if (cont) {
858
0
                res.idxs[s].clear();
859
0
            }
860
861
0
            if (n_tested >= cells.size()) {
862
                //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
863
0
                return { };
864
0
            }
865
0
        }
866
867
        // we didn't find a suitable slot - return empty result
868
0
        if (res.idxs[s].size() < n_tokens) {
869
0
            return { };
870
0
        }
871
0
    }
872
873
0
    assert(res.s1 >= res.s0);
874
875
0
    return res;
876
0
}
877
878
0
void llama_kv_cache::apply_ubatch(const slot_info & sinfo, const llama_ubatch & ubatch) {
879
    // keep track of the max sequence position that we would overwrite with this ubatch
880
    // for non-SWA cache, this would be always empty
881
0
    llama_seq_id seq_pos_max_rm[LLAMA_MAX_SEQ];
882
0
    for (uint32_t s = 0; s < LLAMA_MAX_SEQ; ++s) {
883
0
        seq_pos_max_rm[s] = -1;
884
0
    }
885
886
0
    assert(ubatch.n_tokens == sinfo.n_stream()*sinfo.size());
887
888
0
    for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
889
0
        for (uint32_t ii = 0; ii < sinfo.size(); ++ii) {
890
0
            const uint32_t i = s*sinfo.size() + ii;
891
892
0
            auto & cells = v_cells[sinfo.strm[s]];
893
894
0
            const auto idx = sinfo.idxs[s][ii];
895
896
0
            if (!cells.is_empty(idx)) {
897
0
                assert(cells.seq_count(idx) == 1);
898
899
0
                const llama_seq_id seq_id = cells.seq_get(idx);
900
0
                const llama_pos    pos    = cells.pos_get(idx);
901
902
0
                seq_pos_max_rm[seq_id] = std::max(seq_pos_max_rm[seq_id], pos);
903
904
0
                cells.rm(idx);
905
0
            }
906
907
0
            cells.pos_set(idx, ubatch.pos[i]);
908
909
0
            if (ubatch.is_pos_2d()) {
910
0
                llama_kv_cell_ext ext {
911
0
                    /*.x =*/ ubatch.pos[i + ubatch.n_tokens*2],
912
0
                    /*.y =*/ ubatch.pos[i + ubatch.n_tokens],
913
0
                };
914
0
                cells.ext_set(idx, ext);
915
0
            }
916
917
0
            for (int32_t s = 0; s < ubatch.n_seq_id[i]; s++) {
918
0
                cells.seq_add(idx, ubatch.seq_id[i][s]);
919
0
            }
920
0
        }
921
0
    }
922
923
    // note: we want to preserve the invariant that all positions between [pos_min, pos_max] for each sequence
924
    //       will be present in the cache. so we have to purge any position which is less than those we would overwrite
925
    //       ref: https://github.com/ggml-org/llama.cpp/pull/13746#issuecomment-2916057092
926
0
    for (uint32_t s = 0; s < LLAMA_MAX_SEQ; ++s) {
927
0
        if (seq_pos_max_rm[s] == -1) {
928
0
            continue;
929
0
        }
930
931
0
        GGML_ASSERT(s < seq_to_stream.size());
932
933
0
        auto & cells = v_cells[seq_to_stream[s]];
934
935
0
        if (cells.seq_pos_min(s) <= seq_pos_max_rm[s]) {
936
0
            LLAMA_LOG_DEBUG("%s: purging positions [%d, %d] of sequence %d from KV cache\n",
937
0
                    __func__, cells.seq_pos_min(s), seq_pos_max_rm[s], s);
938
939
0
            seq_rm(s, cells.seq_pos_min(s), seq_pos_max_rm[s] + 1);
940
0
        }
941
0
    }
942
943
    // move the head at the end of the slot
944
0
    for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
945
0
        auto & head = v_heads[sinfo.strm[s]];
946
947
0
        head = sinfo.idxs[s].back() + 1;
948
0
    }
949
0
}
950
951
0
bool llama_kv_cache::get_can_shift() const {
952
0
    return true;
953
0
}
954
955
0
uint32_t llama_kv_cache::get_size() const {
956
0
    const auto & cells = v_cells[seq_to_stream[0]];
957
958
0
    return cells.size();
959
0
}
960
961
0
uint32_t llama_kv_cache::get_n_stream() const {
962
0
    return n_stream;
963
0
}
964
965
0
bool llama_kv_cache::get_has_shift() const {
966
0
    bool result = false;
967
968
0
    for (uint32_t s = 0; s < n_stream; ++s) {
969
0
        result |= v_cells[s].get_has_shift();
970
0
    }
971
972
0
    return result;
973
0
}
974
975
0
uint32_t llama_kv_cache::get_n_kv(const slot_info & sinfo) const {
976
0
    uint32_t result = 0;
977
978
    // pad the n_kv value so that the graph remains constant across batches and can be reused
979
    // note: this also helps some backends with performance (f.ex https://github.com/ggml-org/llama.cpp/pull/16812#issuecomment-3455112220)
980
0
    const uint32_t n_pad_cur = std::max(n_pad, 256u);
981
982
0
    for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
983
0
        const auto & cells = v_cells[sinfo.strm[s]];
984
985
0
        result = std::max(std::min(cells.size(), std::max(n_pad_cur, GGML_PAD(cells.used_max_p1(), n_pad_cur))), result);
986
0
    }
987
988
0
    return result;
989
0
}
990
991
0
ggml_tensor * llama_kv_cache::get_k(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const {
992
0
    const int32_t ikv = map_layer_ids.at(il);
993
994
0
    auto * k = layers[ikv].k;
995
996
0
    const uint64_t kv_size      = get_size();
997
0
    const uint64_t n_embd_k_gqa = k->ne[0];
998
999
0
    assert(n_embd_k_gqa == hparams.n_embd_k_gqa(il));
1000
1001
0
    const uint32_t ns = sinfo.s1 - sinfo.s0 + 1;
1002
1003
0
    return ggml_view_4d(ctx, k,
1004
0
            hparams.n_embd_head_k, hparams.n_head_kv(il), n_kv, ns,
1005
0
            ggml_row_size(k->type, hparams.n_embd_head_k),
1006
0
            ggml_row_size(k->type, n_embd_k_gqa),
1007
0
            ggml_row_size(k->type, n_embd_k_gqa*kv_size),
1008
0
            ggml_row_size(k->type, n_embd_k_gqa*kv_size)*sinfo.s0);
1009
0
}
1010
1011
0
ggml_tensor * llama_kv_cache::get_v(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const {
1012
0
    const int32_t ikv = map_layer_ids.at(il);
1013
1014
0
    auto * v = layers[ikv].v;
1015
1016
0
    const uint64_t kv_size      = get_size();
1017
0
    const uint64_t n_embd_v_gqa = v->ne[0];
1018
1019
    // [TAG_V_CACHE_VARIABLE]
1020
0
    assert(n_embd_v_gqa >= hparams.n_embd_v_gqa(il));
1021
1022
0
    const uint32_t ns = sinfo.s1 - sinfo.s0 + 1;
1023
1024
0
    if (!v_trans) {
1025
        // note: v->nb[1] <= v->nb[2]
1026
0
        return ggml_view_4d(ctx, v,
1027
0
                hparams.n_embd_head_v, hparams.n_head_kv(il), n_kv, ns,
1028
0
                ggml_row_size(v->type, hparams.n_embd_head_v),          // v->nb[1]
1029
0
                ggml_row_size(v->type, n_embd_v_gqa),                   // v->nb[2]
1030
0
                ggml_row_size(v->type, n_embd_v_gqa*kv_size),           // v->nb[3]
1031
0
                ggml_row_size(v->type, n_embd_v_gqa*kv_size)*sinfo.s0);
1032
0
    }
1033
1034
    // note: v->nb[1] > v->nb[2]
1035
0
    return ggml_view_4d(ctx, v,
1036
0
            n_kv, hparams.n_head_kv(il), hparams.n_embd_head_v, ns,
1037
0
            ggml_row_size(v->type, kv_size*hparams.n_embd_head_v),  // v->nb[1]
1038
0
            ggml_row_size(v->type, kv_size),                        // v->nb[2]
1039
0
            ggml_row_size(v->type, kv_size*n_embd_v_gqa),           // v->nb[3]
1040
0
            ggml_row_size(v->type, kv_size*n_embd_v_gqa)*sinfo.s0);
1041
0
}
1042
1043
0
ggml_tensor * llama_kv_cache::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il, const slot_info & sinfo) const {
1044
0
    GGML_UNUSED(sinfo);
1045
1046
0
    const int32_t ikv = map_layer_ids.at(il);
1047
1048
0
    ggml_tensor * k = layers[ikv].k;
1049
1050
0
    const int64_t n_embd_head = k_cur->ne[0];
1051
0
    const int64_t n_head      = k_cur->ne[1];
1052
0
    const int64_t n_tokens    = k_cur->ne[2];
1053
1054
0
    const int64_t n_embd_gqa = n_embd_head*n_head;
1055
1056
    // we can merge dims 0 and 1
1057
    // TODO: add ggml helper function for this?
1058
0
    GGML_ASSERT(ggml_row_size(k_cur->type, n_embd_head) == k_cur->nb[1]);
1059
1060
0
    k_cur = ggml_view_2d(ctx, k_cur, n_embd_gqa, n_tokens, k_cur->nb[2], 0);
1061
1062
0
    const int64_t n_stream = k->ne[2];
1063
1064
0
    if (n_stream > 1) {
1065
0
        const int64_t kv_size = get_size();
1066
1067
0
        assert(n_embd_gqa == k->ne[0]);
1068
0
        assert(kv_size    == k->ne[1]);
1069
1070
        // merge the buffer across all streams because the idxs are global
1071
0
        k = ggml_reshape_2d(ctx, k, n_embd_gqa, kv_size*n_stream);
1072
0
    }
1073
1074
    // store the current K values into the cache
1075
0
    return ggml_set_rows(ctx, k, k_cur, k_idxs);
1076
0
}
1077
1078
0
ggml_tensor * llama_kv_cache::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il, const slot_info & sinfo) const {
1079
0
    GGML_UNUSED(sinfo);
1080
1081
0
    const int32_t ikv = map_layer_ids.at(il);
1082
1083
0
    auto * v = layers[ikv].v;
1084
1085
0
    const int64_t n_embd_head = v_cur->ne[0];
1086
0
    const int64_t n_head      = v_cur->ne[1];
1087
0
    const int64_t n_tokens    = v_cur->ne[2];
1088
1089
0
    const int64_t n_embd_gqa = n_embd_head*n_head;
1090
1091
    // we can merge dims 0 and 1
1092
0
    GGML_ASSERT(ggml_row_size(v_cur->type, n_embd_head) == v_cur->nb[1]);
1093
1094
0
    const int64_t n_stream = v->ne[2];
1095
1096
    // take this branch when FA is enabled (the V cache is not transposed)
1097
0
    if (!v_trans) {
1098
0
        v_cur = ggml_view_2d(ctx, v_cur, n_embd_gqa, n_tokens, v_cur->nb[2], 0);
1099
1100
0
        if (n_stream > 1) {
1101
0
            const int64_t kv_size = get_size();
1102
1103
0
            assert(n_embd_gqa == v->ne[0]);
1104
0
            assert(kv_size    == v->ne[1]);
1105
1106
            // merge the buffer across all streams because the idxs are global
1107
0
            v = ggml_reshape_2d(ctx, v, n_embd_gqa, kv_size*n_stream);
1108
0
        }
1109
1110
0
        return ggml_set_rows(ctx, v, v_cur, v_idxs);
1111
0
    }
1112
1113
0
    if (ggml_row_size(v_cur->type, n_embd_gqa) == v_cur->nb[2]) {
1114
        // we can merge dims 0, 1 and 2
1115
0
        v_cur = ggml_reshape_2d(ctx, v_cur, n_embd_gqa, n_tokens);
1116
0
    } else {
1117
        // otherwise -> make a copy to get contiguous data
1118
0
        v_cur = ggml_cont_2d   (ctx, v_cur, n_embd_gqa, n_tokens);
1119
0
    }
1120
1121
    // [TAG_V_CACHE_VARIABLE]
1122
0
    if (n_embd_gqa < v->ne[0]) {
1123
0
        v_cur = ggml_pad(ctx, v_cur, v->ne[0] - n_embd_gqa, 0, 0, 0);
1124
0
    }
1125
1126
    // in this branch the v_idxs are constructed in such a way that each row is a single head element
1127
0
    ggml_tensor * v_view = ggml_reshape_2d(ctx, v, 1, ggml_nelements(v));
1128
1129
0
    v_cur = ggml_reshape_2d(ctx, v_cur, 1, ggml_nelements(v_cur));
1130
1131
0
    return ggml_set_rows(ctx, v_view, v_cur, v_idxs);
1132
0
}
1133
1134
0
ggml_tensor * llama_kv_cache::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
1135
0
    const uint32_t n_tokens = ubatch.n_tokens;
1136
1137
0
    ggml_tensor * k_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);
1138
1139
0
    ggml_set_input(k_idxs);
1140
1141
0
    return k_idxs;
1142
0
}
1143
1144
0
ggml_tensor * llama_kv_cache::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
1145
0
    const uint32_t n_tokens = ubatch.n_tokens;
1146
1147
0
    ggml_tensor * v_idxs;
1148
1149
0
    if (!v_trans) {
1150
0
        v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);
1151
0
    } else {
1152
0
        v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens*hparams.n_embd_v_gqa_max());
1153
0
    }
1154
1155
0
    ggml_set_input(v_idxs);
1156
1157
0
    return v_idxs;
1158
0
}
1159
1160
0
void llama_kv_cache::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const {
1161
0
    const uint32_t n_tokens = ubatch->n_tokens;
1162
0
    GGML_ASSERT(n_tokens == (int64_t) sinfo.size()*sinfo.n_stream());
1163
1164
0
    GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
1165
0
    int64_t * data = (int64_t *) dst->data;
1166
1167
0
    for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
1168
0
        const int64_t offs = sinfo.strm[s]*get_size();
1169
1170
0
        for (uint32_t i = 0; i < sinfo.size(); ++i) {
1171
0
            data[s*sinfo.size() + i] = offs + sinfo.idxs[s][i];
1172
0
        }
1173
0
    }
1174
0
}
1175
1176
0
void llama_kv_cache::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const {
1177
0
    const uint32_t n_tokens = ubatch->n_tokens;
1178
0
    GGML_ASSERT(n_tokens == (int64_t) sinfo.size()*sinfo.n_stream());
1179
1180
0
    GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
1181
0
    int64_t * data = (int64_t *) dst->data;
1182
1183
0
    if (!v_trans) {
1184
0
        for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
1185
0
            const int64_t offs = sinfo.strm[s]*get_size();
1186
1187
0
            for (uint32_t i = 0; i < sinfo.size(); ++i) {
1188
0
                data[s*sinfo.size() + i] = offs + sinfo.idxs[s][i];
1189
0
            }
1190
0
        }
1191
0
    } else {
1192
        // note: the V cache is transposed when not using flash attention
1193
0
        const int64_t kv_size = get_size();
1194
1195
0
        const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa_max();
1196
1197
0
        for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
1198
0
            const int64_t offs = sinfo.strm[s]*kv_size*n_embd_v_gqa;
1199
1200
0
            for (uint32_t i = 0; i < sinfo.size(); ++i) {
1201
0
                for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
1202
0
                    data[s*sinfo.size()*n_embd_v_gqa + i*n_embd_v_gqa + j] = offs + j*kv_size + sinfo.idxs[s][i];
1203
0
                }
1204
0
            }
1205
0
        }
1206
0
    }
1207
0
}
1208
1209
0
void llama_kv_cache::set_input_k_shift(ggml_tensor * dst) const {
1210
0
    GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
1211
1212
0
    int32_t * data = (int32_t *) dst->data;
1213
1214
0
    for (uint32_t s = 0; s < n_stream; ++s) {
1215
0
        const auto & cells = v_cells[s];
1216
1217
0
        for (uint32_t i = 0; i < cells.size(); ++i) {
1218
0
            data[s*cells.size() + i] = cells.is_empty(i) ? 0 : cells.get_shift(i);
1219
0
        }
1220
0
    }
1221
0
}
1222
1223
0
void llama_kv_cache::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
1224
0
    const uint32_t n_tokens = ubatch->n_tokens;
1225
1226
0
    GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
1227
0
    float * data = (float *) dst->data;
1228
1229
0
    const int64_t n_kv     = dst->ne[0];
1230
0
    const int64_t n_stream = dst->ne[3]; // num streams in the current ubatch
1231
1232
0
    GGML_ASSERT(n_tokens%n_stream == 0);
1233
1234
    // n_tps == n_tokens_per_stream
1235
0
    const int64_t n_tps     = n_tokens/n_stream;
1236
0
    const int64_t n_tps_pad = GGML_PAD(n_tps, GGML_KQ_MASK_PAD);
1237
1238
0
    std::fill(data, data + ggml_nelements(dst), -INFINITY);
1239
1240
    // Use only the previous KV cells of the correct sequence for each token of the ubatch.
1241
    // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
1242
    // Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch:
1243
    //   Causal mask:
1244
    //      xxx-------
1245
    //      xxxx------
1246
    //      xxxxx-----
1247
    //   Non-causal mask:
1248
    //      xxxxx-----
1249
    //      xxxxx-----
1250
    //      xxxxx-----
1251
    // To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615
1252
    // TODO: optimize this section
1253
0
    for (uint32_t h = 0; h < 1; ++h) {
1254
0
        for (uint32_t s = 0; s < n_stream; ++s) {
1255
0
            for (uint32_t ii = 0; ii < n_tps; ++ii) {
1256
0
                const uint32_t i = s*n_tps + ii;
1257
1258
0
                const llama_seq_id seq_id = ubatch->seq_id[i][0];
1259
1260
0
                const auto & cells = v_cells[seq_to_stream[seq_id]];
1261
1262
0
                const llama_pos p1 = ubatch->pos[i];
1263
1264
                // for M-RoPE
1265
0
                const bool is_2d = ubatch->is_pos_2d();
1266
0
                const llama_pos p1_x = is_2d ? ubatch->pos[i + ubatch->n_tokens*2] : 0;
1267
0
                const llama_pos p1_y = is_2d ? ubatch->pos[i + ubatch->n_tokens]   : 0;
1268
1269
0
                const uint64_t idst = n_kv*(h*n_stream*n_tps_pad + s*n_tps_pad + ii);
1270
1271
0
                for (uint32_t j = 0; j < n_kv; ++j) {
1272
0
                    if (cells.is_empty(j)) {
1273
0
                        continue;
1274
0
                    }
1275
1276
                    // mask the token if not the same sequence
1277
0
                    if (!cells.seq_has(j, seq_id)) {
1278
0
                        continue;
1279
0
                    }
1280
1281
0
                    const llama_pos p0 = cells.pos_get(j);
1282
1283
                    // mask future tokens
1284
0
                    if (causal_attn && p0 > p1) {
1285
0
                        continue;
1286
0
                    }
1287
1288
                    // M-RoPE causal mask
1289
0
                    if (causal_attn && is_2d && p0 == p1) {
1290
0
                        const auto & p0_ext = cells.ext_get(j);
1291
0
                        if (p0_ext.is_2d_gt(p1_x, p1_y)) {
1292
0
                            continue;
1293
0
                        }
1294
0
                    }
1295
1296
                    // apply SWA if any
1297
0
                    if (is_masked_swa(p0, p1)) {
1298
0
                        continue;
1299
0
                    }
1300
1301
0
                    data[idst + j] = hparams.use_alibi ? -std::abs(p0 - p1) : 0.0f;
1302
0
                }
1303
0
            }
1304
0
        }
1305
0
    }
1306
0
}
1307
1308
0
void llama_kv_cache::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
1309
0
    const int64_t n_tokens = ubatch->n_tokens;
1310
1311
0
    GGML_ASSERT(n_stream == 1 && "TODO: support multiple streams");
1312
0
    const auto & cells = v_cells[0];
1313
1314
0
    GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
1315
0
    GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing
1316
1317
0
    int32_t * data = (int32_t *) dst->data;
1318
1319
0
    const int32_t n_kv = dst->ne[0];
1320
1321
0
    for (int h = 0; h < 1; ++h) {
1322
0
        for (int i = 0; i < n_tokens; ++i) {
1323
0
            for (int j = 0; j < n_kv; ++j) {
1324
                // the position when the cells is empty is irrelevant - it will be masked out later in the attention
1325
0
                const llama_pos p0 = cells.is_empty(j) ? -1 : cells.pos_get(j);
1326
1327
0
                data[h*(n_kv*n_tokens) + i*n_kv + j] = llama_relative_position_bucket(p0, ubatch->pos[i], hparams.n_rel_attn_bkts, false);
1328
0
            }
1329
0
        }
1330
0
    }
1331
0
}
1332
1333
0
size_t llama_kv_cache::total_size() const {
1334
0
    size_t size = 0;
1335
1336
0
    for (const auto & [_, buf] : ctxs_bufs) {
1337
0
        size += ggml_backend_buffer_get_size(buf.get());
1338
0
    }
1339
1340
0
    return size;
1341
0
}
1342
1343
0
size_t llama_kv_cache::size_k_bytes() const {
1344
0
    size_t size_k_bytes = 0;
1345
1346
0
    for (const auto & layer : layers) {
1347
0
        size_k_bytes += ggml_nbytes(layer.k);
1348
0
    }
1349
1350
0
    return size_k_bytes;
1351
0
}
1352
1353
0
size_t llama_kv_cache::size_v_bytes() const {
1354
0
    size_t size_v_bytes = 0;
1355
1356
0
    for (const auto & layer : layers) {
1357
0
        size_v_bytes += ggml_nbytes(layer.v);
1358
0
    }
1359
1360
0
    return size_v_bytes;
1361
0
}
1362
1363
ggml_tensor * llama_kv_cache::build_rope_shift(
1364
        const llama_cparams & cparams,
1365
               ggml_context * ctx,
1366
                ggml_tensor * cur,
1367
                ggml_tensor * shift,
1368
                ggml_tensor * factors,
1369
                      float   freq_base,
1370
0
                      float   freq_scale) const {
1371
0
    const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;
1372
1373
0
    const auto & yarn_ext_factor = cparams.yarn_ext_factor;
1374
0
    const auto & yarn_beta_fast  = cparams.yarn_beta_fast;
1375
0
    const auto & yarn_beta_slow  = cparams.yarn_beta_slow;
1376
1377
0
    const auto & n_rot     = hparams.n_rot;
1378
0
    const auto & rope_type = hparams.rope_type == LLAMA_ROPE_TYPE_MROPE || hparams.rope_type == LLAMA_ROPE_TYPE_IMROPE
1379
                                // @ngxson : this is a workaround
1380
                                // for M-RoPE, we want to rotate the whole vector when doing KV shift
1381
                                // a normal RoPE should work, we just need to use the correct ordering
1382
                                // ref: https://github.com/ggml-org/llama.cpp/pull/13870
1383
0
                                ? LLAMA_ROPE_TYPE_NEOX
1384
0
                                : hparams.rope_type;
1385
1386
    // See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
1387
    // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
1388
0
    const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2
1389
0
                                    ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale))
1390
0
                                    : cparams.yarn_attn_factor;
1391
1392
0
    ggml_tensor * tmp;
1393
1394
0
    if (ggml_is_quantized(cur->type)) {
1395
        // dequantize to f32 -> RoPE -> quantize back
1396
0
        tmp = ggml_cast(ctx, cur, GGML_TYPE_F32);
1397
1398
0
        tmp = ggml_rope_ext(ctx, tmp,
1399
0
                shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
1400
0
                yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
1401
1402
0
        tmp = ggml_cpy(ctx, tmp, cur);
1403
0
    } else {
1404
        // we rotate only the first n_rot dimensions
1405
0
        tmp = ggml_rope_ext_inplace(ctx, cur,
1406
0
                shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
1407
0
                yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
1408
0
    }
1409
1410
0
    return tmp;
1411
0
}
1412
1413
class llm_graph_input_k_shift : public llm_graph_input_i {
1414
public:
1415
0
    llm_graph_input_k_shift(const llama_kv_cache * kv_self) : kv_self(kv_self) {}
1416
    virtual ~llm_graph_input_k_shift() = default;
1417
1418
    void set_input(const llama_ubatch * ubatch) override;
1419
1420
    ggml_tensor * k_shift; // I32 [kv_size*n_stream]
1421
1422
    const llama_kv_cache * kv_self;
1423
};
1424
1425
0
void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) {
1426
0
    GGML_UNUSED(ubatch);
1427
1428
0
    if (k_shift) {
1429
0
        kv_self->set_input_k_shift(k_shift);
1430
0
    }
1431
0
}
1432
1433
0
ggml_cgraph * llama_kv_cache::build_graph_shift(llm_graph_result * res, llama_context * lctx) const {
1434
0
    auto * ctx = res->get_ctx();
1435
0
    auto * gf  = res->get_gf();
1436
1437
0
    const auto & n_embd_head_k = hparams.n_embd_head_k;
1438
  //const auto & n_embd_head_v = hparams.n_embd_head_v;
1439
1440
0
    auto inp = std::make_unique<llm_graph_input_k_shift>(this);
1441
1442
0
    inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, (int64_t) get_size()*n_stream);
1443
0
    ggml_set_input(inp->k_shift);
1444
1445
0
    const auto & cparams = lctx->get_cparams();
1446
1447
0
    for (const auto & layer : layers) {
1448
0
        const uint32_t il = layer.il;
1449
1450
0
        const int64_t n_head_kv    = hparams.n_head_kv(il);
1451
0
        const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
1452
1453
0
        const float freq_base_l  = model.get_rope_freq_base (cparams, il);
1454
0
        const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
1455
1456
0
        ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
1457
1458
0
        ggml_tensor * k =
1459
0
            ggml_view_3d(ctx, layer.k,
1460
0
                n_embd_head_k, n_head_kv, get_size()*n_stream,
1461
0
                ggml_row_size(layer.k->type, n_embd_head_k),
1462
0
                ggml_row_size(layer.k->type, n_embd_k_gqa),
1463
0
                0);
1464
1465
0
        ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l);
1466
1467
0
        ggml_build_forward_expand(gf, cur);
1468
0
    }
1469
1470
0
    res->add_input(std::move(inp));
1471
1472
0
    return gf;
1473
0
}
1474
1475
0
bool llama_kv_cache::is_masked_swa(llama_pos p0, llama_pos p1) const {
1476
0
    return llama_hparams::is_masked_swa(n_swa, swa_type, p0, p1);
1477
0
}
1478
1479
0
void llama_kv_cache::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const {
1480
0
    GGML_UNUSED(flags);
1481
1482
0
    io.write(&n_stream, sizeof(n_stream));
1483
1484
0
    for (uint32_t s = 0; s < n_stream; ++s) {
1485
0
        cell_ranges_t cr { s, {} };
1486
1487
0
        uint32_t cell_count = 0;
1488
1489
0
        const auto & cells = v_cells[s];
1490
1491
        // Count the number of cells with the specified seq_id
1492
        // Find all the ranges of cells with this seq id (or all, when -1)
1493
0
        uint32_t cell_range_begin = cells.size();
1494
1495
0
        for (uint32_t i = 0; i < cells.size(); ++i) {
1496
0
            if (!cells.is_empty(i) && (seq_id == -1 || cells.seq_has(i, seq_id))) {
1497
0
                ++cell_count;
1498
0
                if (cell_range_begin == cells.size()) {
1499
0
                    cell_range_begin = i;
1500
0
                }
1501
0
            } else {
1502
0
                if (cell_range_begin != cells.size()) {
1503
0
                    cr.data.emplace_back(cell_range_begin, i);
1504
0
                    cell_range_begin = cells.size();
1505
0
                }
1506
0
            }
1507
0
        }
1508
1509
0
        if (cell_range_begin != cells.size()) {
1510
0
            cr.data.emplace_back(cell_range_begin, cells.size());
1511
0
        }
1512
1513
        // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
1514
0
        uint32_t cell_count_check = 0;
1515
0
        for (const auto & range : cr.data) {
1516
0
            cell_count_check += range.second - range.first;
1517
0
        }
1518
0
        GGML_ASSERT(cell_count == cell_count_check);
1519
1520
0
        io.write(&cell_count, sizeof(cell_count));
1521
1522
        // skip empty streams
1523
0
        if (cell_count == 0) {
1524
0
            continue;
1525
0
        }
1526
1527
0
        state_write_meta(io, cr, seq_id);
1528
0
        state_write_data(io, cr);
1529
0
    }
1530
0
}
1531
1532
0
void llama_kv_cache::state_read(llama_io_read_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) {
1533
0
    GGML_UNUSED(flags);
1534
1535
0
    GGML_ASSERT(seq_id == -1 || (seq_id >= 0 && (size_t) seq_id < seq_to_stream.size()));
1536
1537
0
    uint32_t n_stream_cur;
1538
0
    io.read_to(&n_stream_cur, sizeof(n_stream_cur));
1539
0
    if (n_stream_cur != n_stream) {
1540
0
        throw std::runtime_error("n_stream mismatch");
1541
0
    }
1542
1543
0
    for (uint32_t s = 0; s < n_stream; ++s) {
1544
0
        uint32_t cell_count;
1545
0
        io.read_to(&cell_count, sizeof(cell_count));
1546
1547
0
        if (cell_count == 0) {
1548
0
            continue;
1549
0
        }
1550
1551
0
        const uint32_t strm = seq_id == -1 ? s : seq_to_stream[seq_id];
1552
1553
0
        bool res = true;
1554
0
        res = res && state_read_meta(io, strm, cell_count, seq_id);
1555
0
        res = res && state_read_data(io, strm, cell_count);
1556
1557
0
        if (!res) {
1558
0
            if (seq_id == -1) {
1559
0
                clear(true);
1560
0
            } else {
1561
0
                seq_rm(seq_id, -1, -1);
1562
0
            }
1563
0
            throw std::runtime_error("failed to restore kv cache");
1564
0
        }
1565
0
    }
1566
0
}
1567
1568
0
void llama_kv_cache::state_write_meta(llama_io_write_i & io, const cell_ranges_t & cr, llama_seq_id seq_id) const {
1569
0
    const auto & cells = v_cells[cr.strm];
1570
1571
0
    for (const auto & range : cr.data) {
1572
0
        for (uint32_t i = range.first; i < range.second; ++i) {
1573
0
            std::vector<llama_seq_id> seq_ids;
1574
1575
0
            for (llama_seq_id cur = 0; cur < (int) n_seq_max; ++cur) {
1576
0
                if (cur == seq_id || seq_id == -1) {
1577
0
                    if (cells.seq_has(i, cur)) {
1578
0
                        seq_ids.push_back(cur);
1579
0
                    }
1580
0
                }
1581
0
            }
1582
1583
0
            const llama_pos pos     = cells.pos_get(i);
1584
0
            const uint32_t n_seq_id = seq_ids.size();
1585
1586
0
            io.write(&pos,      sizeof(pos));
1587
0
            io.write(&n_seq_id, sizeof(n_seq_id));
1588
1589
            // TODO: we also need to save llama_kv_cell_ext when apply_ubatch() support loading it
1590
            //       see: https://github.com/ggml-org/llama.cpp/pull/16825#issuecomment-3460868350
1591
1592
0
            for (const auto & seq_id : seq_ids) {
1593
0
                io.write(&seq_id, sizeof(seq_id));
1594
0
            }
1595
0
        }
1596
0
    }
1597
0
}
1598
1599
0
void llama_kv_cache::state_write_data(llama_io_write_i & io, const cell_ranges_t & cr) const {
1600
0
    const auto & cells = v_cells[cr.strm];
1601
1602
0
    const uint32_t v_trans = this->v_trans ? 1 : 0;
1603
0
    const uint32_t n_layer = layers.size();
1604
1605
0
    io.write(&v_trans, sizeof(v_trans));
1606
0
    io.write(&n_layer, sizeof(n_layer));
1607
1608
0
    std::vector<uint8_t> tmp_buf;
1609
1610
    // Iterate and write all the keys first, each row is a cell
1611
    // Get whole range at a time
1612
0
    for (const auto & layer : layers) {
1613
0
        const uint32_t il = layer.il;
1614
1615
0
        const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
1616
1617
0
        auto * k = layer.k_stream[cr.strm];
1618
1619
        // Write key type
1620
0
        const int32_t k_type_i = (int32_t) k->type;
1621
0
        io.write(&k_type_i, sizeof(k_type_i));
1622
1623
        // Write row size of key
1624
0
        const uint64_t k_size_row = ggml_row_size(k->type, n_embd_k_gqa);
1625
0
        io.write(&k_size_row, sizeof(k_size_row));
1626
1627
        // Read each range of cells of k_size length each into tmp_buf and write out
1628
0
        for (const auto & range : cr.data) {
1629
0
            const size_t range_size = range.second - range.first;
1630
0
            const size_t buf_size = range_size * k_size_row;
1631
0
            io.write_tensor(k, range.first * k_size_row, buf_size);
1632
0
        }
1633
0
    }
1634
1635
0
    if (!v_trans) {
1636
0
        for (const auto & layer : layers) {
1637
0
            const uint32_t il = layer.il;
1638
1639
0
            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
1640
1641
0
            auto * v = layer.v_stream[cr.strm];
1642
1643
            // Write value type
1644
0
            const int32_t v_type_i = (int32_t) v->type;
1645
0
            io.write(&v_type_i, sizeof(v_type_i));
1646
1647
            // Write row size of value
1648
0
            const uint64_t v_size_row = ggml_row_size(v->type, n_embd_v_gqa);
1649
0
            io.write(&v_size_row, sizeof(v_size_row));
1650
1651
            // Read each range of cells of v_size length each into tmp_buf and write out
1652
0
            for (const auto & range : cr.data) {
1653
0
                const size_t range_size = range.second - range.first;
1654
0
                const size_t buf_size = range_size * v_size_row;
1655
0
                io.write_tensor(v, range.first * v_size_row, buf_size);
1656
0
            }
1657
0
        }
1658
0
    } else {
1659
        // When v is transposed, we also need the element size and get the element ranges from each row
1660
0
        const uint32_t kv_size = cells.size();
1661
1662
0
        for (const auto & layer : layers) {
1663
0
            const uint32_t il = layer.il;
1664
1665
0
            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
1666
1667
0
            auto * v = layer.v_stream[cr.strm];
1668
1669
            // Write value type
1670
0
            const int32_t v_type_i = (int32_t) v->type;
1671
0
            io.write(&v_type_i, sizeof(v_type_i));
1672
1673
            // Write element size
1674
0
            const uint32_t v_size_el = ggml_type_size(v->type);
1675
0
            io.write(&v_size_el, sizeof(v_size_el));
1676
1677
            // Write GQA embedding size
1678
0
            io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
1679
1680
            // For each row, we get the element values of each cell
1681
0
            for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
1682
                // Read each range of cells of v_size_el length each into tmp_buf and write out
1683
0
                for (const auto & range : cr.data) {
1684
0
                    const size_t range_size = range.second - range.first;
1685
0
                    const size_t src_offset = (range.first + j * kv_size) * v_size_el;
1686
0
                    const size_t buf_size = range_size * v_size_el;
1687
0
                    io.write_tensor(v, src_offset, buf_size);
1688
0
                }
1689
0
            }
1690
0
        }
1691
0
    }
1692
0
}
1693
1694
0
bool llama_kv_cache::state_read_meta(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, llama_seq_id dest_seq_id) {
1695
0
    auto & cells = v_cells[strm];
1696
0
    auto & head  = v_heads[strm];
1697
1698
0
    if (dest_seq_id != -1) {
1699
        // single sequence
1700
0
        seq_rm(dest_seq_id, -1, -1);
1701
1702
0
        llama_batch_allocr balloc(hparams.n_pos_per_embd());
1703
1704
0
        llama_ubatch ubatch = balloc.ubatch_reserve(cell_count, 1);
1705
1706
0
        ubatch.seq_id_unq[0] = dest_seq_id;
1707
1708
0
        for (uint32_t i = 0; i < cell_count; ++i) {
1709
0
            llama_pos pos;
1710
0
            uint32_t n_seq_id;
1711
1712
0
            io.read_to(&pos,      sizeof(pos));
1713
0
            io.read_to(&n_seq_id, sizeof(n_seq_id));
1714
1715
0
            if (n_seq_id != 1) {
1716
0
                LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
1717
0
                return false;
1718
0
            }
1719
1720
            // read the sequence id, but directly discard it - we will use dest_seq_id instead
1721
0
            {
1722
0
                llama_seq_id seq_id;
1723
0
                io.read_to(&seq_id, sizeof(seq_id));
1724
0
            }
1725
1726
0
            ubatch.pos[i]      = pos;
1727
0
            ubatch.n_seq_id[i] = n_seq_id;
1728
0
            ubatch.seq_id[i]   = &dest_seq_id;
1729
0
        }
1730
1731
0
        const auto sinfo = find_slot(ubatch, true);
1732
0
        if (sinfo.empty()) {
1733
0
            LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
1734
0
            return false;
1735
0
        }
1736
1737
        // TODO: we cannot yet restore llama_kv_cell_ext as the apply_ubatch() does not support it yet
1738
        //       see: https://github.com/ggml-org/llama.cpp/pull/16825#issuecomment-3460868350
1739
0
        apply_ubatch(sinfo, ubatch);
1740
1741
0
        const auto head_cur = sinfo.head();
1742
1743
        // keep the head at the old position because we will read the KV data into it in state_read_data()
1744
0
        head = head_cur;
1745
1746
0
        LLAMA_LOG_DEBUG("%s: head_cur = %d, head = %d, cell_count = %d, dest_seq_id = %d\n", __func__, head_cur, head, cell_count, dest_seq_id);
1747
1748
        // DEBUG CHECK: head_cur should be our first cell, head_cur + cell_count - 1 should be our last cell (verify seq_id and pos values)
1749
        // Assume that this is one contiguous block of cells
1750
0
        GGML_ASSERT(head_cur + cell_count <= cells.size());
1751
0
        GGML_ASSERT(cells.pos_get(head_cur)                  == ubatch.pos[0]);
1752
0
        GGML_ASSERT(cells.pos_get(head_cur + cell_count - 1) == ubatch.pos[cell_count - 1]);
1753
0
        GGML_ASSERT(cells.seq_has(head_cur,                  dest_seq_id));
1754
0
        GGML_ASSERT(cells.seq_has(head_cur + cell_count - 1, dest_seq_id));
1755
0
    } else {
1756
        // whole KV cache restore
1757
1758
0
        if (cell_count > cells.size()) {
1759
0
            LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
1760
0
            return false;
1761
0
        }
1762
1763
0
        clear(true);
1764
1765
0
        for (uint32_t i = 0; i < cell_count; ++i) {
1766
0
            llama_pos pos;
1767
0
            uint32_t  n_seq_id;
1768
1769
0
            io.read_to(&pos,      sizeof(pos));
1770
0
            io.read_to(&n_seq_id, sizeof(n_seq_id));
1771
1772
0
            cells.pos_set(i, pos);
1773
1774
0
            for (uint32_t j = 0; j < n_seq_id; ++j) {
1775
0
                llama_seq_id seq_id;
1776
0
                io.read_to(&seq_id, sizeof(seq_id));
1777
1778
0
                if (seq_id < 0 || (uint32_t) seq_id >= n_seq_max) {
1779
0
                    LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, n_seq_max);
1780
0
                    return false;
1781
0
                }
1782
1783
0
                cells.seq_add(i, seq_id);
1784
0
            }
1785
0
        }
1786
1787
0
        head = 0;
1788
0
    }
1789
1790
0
    return true;
1791
0
}
1792
1793
0
bool llama_kv_cache::state_read_data(llama_io_read_i & io, uint32_t strm, uint32_t cell_count) {
1794
0
    auto & cells = v_cells[strm];
1795
0
    auto & head  = v_heads[strm];
1796
1797
0
    uint32_t v_trans;
1798
0
    uint32_t n_layer;
1799
1800
0
    io.read_to(&v_trans, sizeof(v_trans));
1801
0
    io.read_to(&n_layer, sizeof(n_layer));
1802
1803
0
    if (n_layer != layers.size()) {
1804
0
        LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, (uint32_t) layers.size());
1805
0
        return false;
1806
0
    }
1807
1808
0
    if (cell_count > cells.size()) {
1809
0
        LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, cells.size());
1810
0
        return false;
1811
0
    }
1812
1813
0
    if (this->v_trans != (bool) v_trans) {
1814
0
        LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
1815
0
        return false;
1816
0
    }
1817
1818
    // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
1819
0
    for (const auto & layer : layers) {
1820
0
        const uint32_t il = layer.il;
1821
1822
0
        const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
1823
1824
0
        auto * k = layer.k_stream[strm];
1825
1826
        // Read type of key
1827
0
        int32_t k_type_i_ref;
1828
0
        io.read_to(&k_type_i_ref, sizeof(k_type_i_ref));
1829
0
        const int32_t k_type_i = (int32_t) k->type;
1830
0
        if (k_type_i != k_type_i_ref) {
1831
0
            LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
1832
0
            return false;
1833
0
        }
1834
1835
        // Read row size of key
1836
0
        uint64_t k_size_row_ref;
1837
0
        io.read_to(&k_size_row_ref, sizeof(k_size_row_ref));
1838
0
        const size_t k_size_row = ggml_row_size(k->type, n_embd_k_gqa);
1839
0
        if (k_size_row != k_size_row_ref) {
1840
0
            LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
1841
0
            return false;
1842
0
        }
1843
1844
0
        if (cell_count) {
1845
            // Read and set the keys for the whole cell range
1846
0
            ggml_backend_tensor_set(k, io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row);
1847
0
        }
1848
0
    }
1849
1850
0
    if (!this->v_trans) {
1851
0
        for (const auto & layer : layers) {
1852
0
            const uint32_t il = layer.il;
1853
1854
0
            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
1855
1856
0
            auto * v = layer.v_stream[strm];
1857
1858
            // Read type of value
1859
0
            int32_t v_type_i_ref;
1860
0
            io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
1861
0
            const int32_t v_type_i = (int32_t) v->type;
1862
0
            if (v_type_i != v_type_i_ref) {
1863
0
                LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
1864
0
                return false;
1865
0
            }
1866
1867
            // Read row size of value
1868
0
            uint64_t v_size_row_ref;
1869
0
            io.read_to(&v_size_row_ref, sizeof(v_size_row_ref));
1870
0
            const size_t v_size_row = ggml_row_size(v->type, n_embd_v_gqa);
1871
0
            if (v_size_row != v_size_row_ref) {
1872
0
                LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
1873
0
                return false;
1874
0
            }
1875
1876
0
            if (cell_count) {
1877
                // Read and set the values for the whole cell range
1878
0
                ggml_backend_tensor_set(v, io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row);
1879
0
            }
1880
0
        }
1881
0
    } else {
1882
        // For each layer, read the values for each cell (transposed)
1883
0
        for (const auto & layer : layers) {
1884
0
            const uint32_t il = layer.il;
1885
1886
0
            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
1887
1888
0
            auto * v = layer.v_stream[strm];
1889
1890
            // Read type of value
1891
0
            int32_t v_type_i_ref;
1892
0
            io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
1893
0
            const int32_t v_type_i = (int32_t) v->type;
1894
0
            if (v_type_i != v_type_i_ref) {
1895
0
                LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
1896
0
                return false;
1897
0
            }
1898
1899
            // Read element size of value
1900
0
            uint32_t v_size_el_ref;
1901
0
            io.read_to(&v_size_el_ref, sizeof(v_size_el_ref));
1902
0
            const size_t v_size_el = ggml_type_size(v->type);
1903
0
            if (v_size_el != v_size_el_ref) {
1904
0
                LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
1905
0
                return false;
1906
0
            }
1907
1908
            // Read GQA embedding size
1909
0
            uint32_t n_embd_v_gqa_ref;
1910
0
            io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
1911
0
            if (n_embd_v_gqa != n_embd_v_gqa_ref) {
1912
0
                LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
1913
0
                return false;
1914
0
            }
1915
1916
0
            if (cell_count) {
1917
                // For each row in the transposed matrix, read the values for the whole cell range
1918
0
                for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
1919
0
                    const size_t dst_offset = (head + j * cells.size()) * v_size_el;
1920
0
                    ggml_backend_tensor_set(v, io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
1921
0
                }
1922
0
            }
1923
0
        }
1924
0
    }
1925
1926
0
    return true;
1927
0
}
1928
1929
//
1930
// llama_kv_cache_context
1931
//
1932
1933
0
llama_kv_cache_context::llama_kv_cache_context(llama_memory_status status) : status(status) {}
1934
1935
llama_kv_cache_context::llama_kv_cache_context(
1936
0
        llama_kv_cache * kv) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv) {
1937
0
    n_kv = kv->get_size();
1938
1939
0
    const uint32_t n_stream = kv->get_n_stream();
1940
1941
    // create a dummy slot info - the actual data is irrelevant. we just need to build the graph
1942
0
    sinfos.resize(1);
1943
0
    sinfos[0].s0 = 0;
1944
0
    sinfos[0].s1 = n_stream - 1;
1945
0
    sinfos[0].idxs.resize(n_stream);
1946
0
    for (uint32_t s = 0; s < n_stream; ++s) {
1947
0
        sinfos[0].strm.push_back(s);
1948
0
        sinfos[0].idxs[s].resize(1, 0);
1949
0
    }
1950
0
}
1951
1952
llama_kv_cache_context::llama_kv_cache_context(
1953
        llama_kv_cache * kv,
1954
        llama_context * lctx,
1955
        bool do_shift,
1956
0
        stream_copy_info sc_info) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), lctx(lctx), do_shift(do_shift), sc_info(std::move(sc_info)) {
1957
0
    if (!do_shift && this->sc_info.empty()) {
1958
0
        status = LLAMA_MEMORY_STATUS_NO_UPDATE;
1959
0
    }
1960
0
}
1961
1962
llama_kv_cache_context::llama_kv_cache_context(
1963
        llama_kv_cache * kv,
1964
        llama_kv_cache::slot_info_vec_t sinfos,
1965
0
        std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), sinfos(std::move(sinfos)), ubatches(std::move(ubatches)) {
1966
0
}
1967
1968
0
llama_kv_cache_context::~llama_kv_cache_context() = default;
1969
1970
0
bool llama_kv_cache_context::next() {
1971
0
    assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
1972
1973
0
    if (++i_cur >= ubatches.size()) {
1974
0
        return false;
1975
0
    }
1976
1977
0
    return true;
1978
0
}
1979
1980
0
bool llama_kv_cache_context::apply() {
1981
0
    assert(!llama_memory_status_is_fail(status));
1982
1983
    // no ubatches -> this is a KV cache update
1984
0
    if (ubatches.empty()) {
1985
0
        kv->update(lctx, do_shift, sc_info);
1986
1987
0
        return true;
1988
0
    }
1989
1990
0
    kv->apply_ubatch(sinfos[i_cur], ubatches[i_cur]);
1991
0
    n_kv = kv->get_n_kv(sinfos[i_cur]);
1992
1993
0
    return true;
1994
0
}
1995
1996
0
llama_memory_status llama_kv_cache_context::get_status() const {
1997
0
    return status;
1998
0
}
1999
2000
0
const llama_ubatch & llama_kv_cache_context::get_ubatch() const {
2001
0
    assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
2002
2003
0
    return ubatches[i_cur];
2004
0
}
2005
2006
0
uint32_t llama_kv_cache_context::get_n_kv() const {
2007
0
    return n_kv;
2008
0
}
2009
2010
0
ggml_tensor * llama_kv_cache_context::get_k(ggml_context * ctx, int32_t il) const {
2011
0
    return kv->get_k(ctx, il, n_kv, sinfos[i_cur]);
2012
0
}
2013
2014
0
ggml_tensor * llama_kv_cache_context::get_v(ggml_context * ctx, int32_t il) const {
2015
0
    return kv->get_v(ctx, il, n_kv, sinfos[i_cur]);
2016
0
}
2017
2018
0
ggml_tensor * llama_kv_cache_context::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il) const {
2019
0
    return kv->cpy_k(ctx, k_cur, k_idxs, il, sinfos[i_cur]);
2020
0
}
2021
2022
0
ggml_tensor * llama_kv_cache_context::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il) const {
2023
0
    return kv->cpy_v(ctx, v_cur, v_idxs, il, sinfos[i_cur]);
2024
0
}
2025
2026
0
ggml_tensor * llama_kv_cache_context::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
2027
0
    return kv->build_input_k_idxs(ctx, ubatch);
2028
0
}
2029
2030
0
ggml_tensor * llama_kv_cache_context::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
2031
0
    return kv->build_input_v_idxs(ctx, ubatch);
2032
0
}
2033
2034
0
void llama_kv_cache_context::set_input_k_shift(ggml_tensor * dst) const {
2035
0
    kv->set_input_k_shift(dst);
2036
0
}
2037
2038
0
void llama_kv_cache_context::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const {
2039
0
    kv->set_input_k_idxs(dst, ubatch, sinfos[i_cur]);
2040
0
}
2041
2042
0
void llama_kv_cache_context::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const {
2043
0
    kv->set_input_v_idxs(dst, ubatch, sinfos[i_cur]);
2044
0
}
2045
2046
0
void llama_kv_cache_context::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
2047
0
    kv->set_input_kq_mask(dst, ubatch, causal_attn);
2048
0
}
2049
2050
0
void llama_kv_cache_context::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
2051
0
    kv->set_input_pos_bucket(dst, ubatch);
2052
0
}