Coverage Report

Created: 2025-11-28 06:56

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/cogvlm.cpp
Line
Count
Source
1
#include "models.h"
2
3
llm_build_cogvlm::llm_build_cogvlm(const llama_model & model, const llm_graph_params & params) :
4
0
    llm_graph_context(params) {
5
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
6
0
    float         kq_scale    = 1.0f / sqrtf(float(n_embd_head));
7
8
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
9
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
10
11
0
    ggml_tensor *inpL, *cur;
12
0
    inpL = build_inp_embd(model.tok_embd);
13
14
0
    ggml_tensor * inp_pos = build_inp_pos();
15
16
0
    auto * inp_attn = build_attn_inp_kv();
17
18
    // check ubatch to see if we have input tokens (text)
19
    // or an input embedding vector (image)
20
0
    bool is_text;
21
0
    if (ubatch.token) {
22
0
        is_text = true;
23
0
    } else {
24
0
        is_text = false;
25
0
    }
26
27
0
    for (int il = 0; il < n_layer; ++il) {
28
        // get either the text or image weight tensors
29
0
        ggml_tensor *wqkv, *wo;
30
0
        ggml_tensor *ffn_gate, *ffn_down, *ffn_up;
31
32
0
        if (is_text) {
33
0
            wqkv     = model.layers[il].wqkv;
34
0
            wo       = model.layers[il].wo;
35
0
            ffn_gate = model.layers[il].ffn_gate;
36
0
            ffn_down = model.layers[il].ffn_down;
37
0
            ffn_up   = model.layers[il].ffn_up;
38
0
        } else {
39
0
            wqkv     = model.layers[il].visexp_attn_wqkv;
40
0
            wo       = model.layers[il].visexp_attn_wo;
41
0
            ffn_gate = model.layers[il].visexp_ffn_gate;
42
0
            ffn_down = model.layers[il].visexp_ffn_down;
43
0
            ffn_up   = model.layers[il].visexp_ffn_up;
44
0
        }
45
46
0
        ggml_tensor * inpSA = inpL;
47
0
        cur                 = build_norm(inpSA, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
48
49
        // build self attention
50
0
        {
51
0
            ggml_tensor * qkv = build_lora_mm(wqkv, cur);
52
53
            // split qkv into Q, K, V along the first dimension
54
0
            ggml_tensor * Qcur =
55
0
                ggml_view_3d(ctx0, qkv, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), qkv->nb[1], 0);
56
0
            ggml_tensor * Kcur = ggml_view_3d(ctx0, qkv, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
57
0
                                              qkv->nb[1], n_embd * ggml_element_size(qkv));
58
0
            ggml_tensor * Vcur = ggml_view_3d(ctx0, qkv, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
59
0
                                              qkv->nb[1], 2 * n_embd * ggml_element_size(qkv));
60
61
0
            Qcur = ggml_rope(ctx0, Qcur, inp_pos, n_embd_head, rope_type);
62
0
            Kcur = ggml_rope(ctx0, Kcur, inp_pos, n_embd_head, rope_type);
63
64
0
            cur = build_attn(inp_attn,
65
0
                wo, nullptr,
66
0
                Qcur, Kcur, Vcur,
67
0
                nullptr, nullptr, nullptr,
68
0
                kq_scale, il);
69
0
            cb(cur, "attn_out", il);
70
0
        }
71
72
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
73
0
        cb(ffn_inp, "ffn_inp", il);
74
75
0
        cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
76
0
        cb(cur, "ffn_norm", il);
77
78
0
        cur = build_ffn(cur,
79
0
                ffn_up, NULL, NULL,
80
0
                ffn_gate, NULL, NULL,
81
0
                ffn_down, NULL, NULL,
82
0
                NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
83
84
0
        cur = ggml_add(ctx0, cur, ffn_inp);
85
0
        cb(cur, "ffn_out", il);
86
87
0
        inpL = cur;
88
0
    }
89
90
0
    cur = inpL;
91
92
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
93
0
    cb(cur, "result_norm", -1);
94
0
    res->t_embd = cur;
95
96
0
    cur = build_lora_mm(model.output, cur);
97
0
    cb(cur, "result_output", -1);
98
0
    res->t_logits = cur;
99
0
    ggml_build_forward_expand(gf, cur);
100
0
}